
SP22 CSE599d:
Hardware Security

DAVID KOHLBRENNER

Today: Caches and Projects

Recap
You’ll need to:

◦ Sign up for (3?) presentations during the course, 2 people per-day

◦ Form a group (2-3 people) for a project

◦ We’ll start meeting next week (or the week after) for project planning

Cache basics
L1 i

L1 d

L2 L3/LLC DRAM

L1 i

L1 d

L2

Different caches for different designs
Generally 1-3 levels of caching

Inclusive vs Exclusive vs Non-inclusive

Cache lines

Cache eviction policies

…

Cache Missing for Fun and Profit
~2005

Mostly about the Pentium 4
◦ 128 cache lines of 64 bytes each, organized into 32 4-way associative sets

L2 DRAM

L1 i

L1 d

L1 i

L1 d

“128 cache lines of 64 bytes each,
organized into 32 4-way associative sets”

Aside: Difficulty of measurement
How do we measure ‘how long’ something takes?

What if ‘something’ is really fast?

Colin’s solution
RDTSC – ReaDTimeStampCounter
◦ Fills edx,eax with current timestamp

Still not good enough

“This alone would not be measurable, thanks to the long latency of the RDTSC (read time stamp
counter) instruction […]”

Colin’s solution
RDTSC – ReaDTimeStampCounter
◦ Fills edx,eax with current timestamp

Still not good enough

“This alone would not be measurable, thanks to the long latency of the RDTSC (read time stamp
counter) instruction , but this problem is resolved by adding some high-latency instructions –
for example, integer multiplications – into the critical path”

Measuring effectively (in 2022)

CPUID

RDTSC

mov [start_high], edx

mov [start_low], eax

call measure_me

RDTSCP

mov [end_high], edx

mov [end_low], eax

CPUID

Back to caches

SMT (or Hyperthreading® Intel)
Idea: Why not run two different threads at the same time!

Thread 0 is sometimes waiting for memory, etc

Let Thread 1 use that time!

Result: Thread 0 and Thread 1 compete for L1 cache ☺

(Thanks to Dean, Susan, and Hank for making it practical)

Simultaneous multithreading: Maximizing on-chip parallelism. ISCA 1995

Back to caches (really)

L1 Cache misses as covert channel

L1 Cache misses as covert channel
“Using this code, 32 bits can be reliably transmitted from the Trojan to the Spy in roughly 5000
cycles with a bit error rate of under 25%; using an appropriate error correcting code, this
provides a covert channel of 400 kilobytes per second on a 2.8 GHz processor.”

L2 Cache misses as covert channel
L2: “4096 cache lines of 128 bytes each, organized into 512 8-way associative sets”

Now needs to worry about TLB as well

Also prefetchers

L1 Cache misses as side-channel
Apply what we learned to attack RSA implementations

L1 Cache misses as side-channel
Apply what we learned to attack RSA implementations

OpenSSL (0.9.7c) uses several vulnerable patterns:
◦ Decomposes modular exponentiation into repeated squares or multiplications

◦ Multiplications are against precomputed values

Result of attack
310 out of 512 bits of each RSA modulus

Can now solve the rest!

Solutions

Isolation

Isolation (pt2)

Isolation (pt2)

Isolation (pt3)
Or, refuse to schedule 2 different threads at the same time

(Q: Does this work?)

Removal of channel
Rewrite code to not leak based on cache behavior

“This would be a dramatic divergence from existing practice , and would require that some
existing algorithms be thrown out or reworked considerably”

“This approach has the disadvantage of requiring a vast amount of code to be audited if it is to
be carried out comprehensively”

Mitigation of channel
Remove ability to measure time (or, limit it)

