SP22 CSE599d:
Hardware Security

DDDDDDDDDDDDDDDD

Introductions

David Kohlbrenner (he/him)

Course objectives

1. Familiarize you with what aspects of physical systems affect software security

2. Gain a detailed understanding of current and historical work on specific families of
hardware related attacks and defenses

3. Build hands-on experience with a major project in one specific sub-area

But why'?

Aren’t most problems phishing/data breaches/etc?

What is/isn’t “hardware security?”

snenwr

Side-channels: conceptually

A program’s implementation (that is, the final compiled version) is different from the conceptual
description

Side-effects of the difference between the implementation and conception can reveal
unexpected information

o Thus: Side-channels

Covert-channels

Many times a covert channel is demonstrated:
° unusual ways to have information flow from thing A to thing B

If this is an intentional usage of side effects, it is a covert channel
Unintentional means it is a side-channel

The same mechanism can be used as a covert-channel, or abused as a side-channel

Class plan

Course structure

® Per-class readings & writeups
® Present papers + lead discussion

® Project
O Writeup
O Presentation

Leading discussions

® 2 of the 3 classes per-topic are student led

® You will need to sign up to lead SN
O This means presenting a summary of the readings
O Providing a series of discussion questions based on the class questions

Signup sheet on edstem

Project

® Groupof2-3
® Will want to start planning soon
® I'll meet with groups about projects
® This will happen next week
® Lets find something fun and interesting for every group
® Required:
O Presentation (10 minutes-ish)
O Paper-style writeup (6-10 pages)

Project ideas

® MUST: have hardware as a critical component
O E.g.if you can imagine the project without a specific hardware implementation mattering, it
isn’t an appropriate project

® Otherwise, very open to ideas!

Course misc:

® We'll follow school COVID policies
O Right now that means: masks are optional but “encouraged for the first 2 weeks”
O Ifit changes, we’ll change to match

® Attendance is (for now) required in-person
O Thisis a discussion course!

Hardware basics

9th-generation Intel Core i7-9750H 6-core
processor

16x Micron MT40A1G8SA-075 8 Gb DDR4
SDRAM (16 GB total)

AMD Radeon Pro 5300M mobile GPU

4x Samsung K4780325BC-HC14 8 Gb GDDR6&
RAM (4 GB total)

Toshiba TSB4227VE8434CHNA11926 and
TSB4227VE8437CHNA11926 flash storage
(512 GB total)

Apple T2 APL1027 339500536 coprocessor

Intel JHL7540 Thunderbolt 3 controller

Intel SR40F platform controller hub

Texas Instruments CD3217B12 (likely power
controllers)

338500267-A0 (likely Apple PMIC)

Texas Instruments TPS51980B power
controller

339500610 (likely Apple Wi-Fi/Bluetooth
module)

Intersil 6277 PWM modulator

Renesas 225101C

https://www.ifixit.com/Teardown/iPhone+
XS+and+XS+Max+Teardown/113021

® Apple APL1IW81 A12 Bionic SoC layered over
Micron MT53D512M64D45SB-046 4 GB
LPDDR4X SDRAM

2000R0RAANANIN
nnnnnn ANBONAN
L)

STMicroelectronics STB601A0 power
management |C (possibly for Face ID)

3x Apple/Cirrus Logic 338500411 audio
amplifiers, two for stereo and one for haptics

anar NO.....QI.I..IQOQOOQQI.
. Baa® o
")

Apple/Dialog Semiconductor 338S00383-A0
power management |C

Apple 338500456 power management IC

® Apple/Dialog Semiconductor 338500375
system power management [C

® Texas Instruments SN2600B1 battery charger
IC

I Emma Wang

I@Harvard IE +'DDR logic ’_J—'_J—’__

[__J—

DDR logic _,—'

Neural-Engine
(cores x8)

system cache
slices (x4)

DDR logic. '

: Big cores (x2)

little cores (x4)

GPU cores (x4)
and shared logic
(EERE |

ﬂ.\%‘lzghts

,_I“ DDR logic ' - ‘|

INTEL(R) CORE™ i7

o Front-end ; (3 Memory Pipeline |

b Instruction i LliCache | = | [L2 Cache

i Predecode & Fetch 32 kiB = = 256 kiB

(16 bytes) i 8way |[w||® AWay | e

[6 MOPs o Tnstruction

L - | poP = | L1d Cache Line Fill :

| i Instruction Queue ! i Cache Tags c_pi 32 kiR Buffer i

; 3 (2x25 entries) i i o 8-way (10 entries) %

- Macro (RS Y R :

o Fusion| | | INTALU|

D T 5 e] VEC |:

b s s ! SHUFFLE| ! t t
o 7y 5-way Decoder Branch | | Load Buffer Physical i VECALU] System Agen
P MS e | = Prediction | ' joads : nysical : LEA ' Display
L [lrROM|2 a8 el el el v Unit 1 | (72 entries) Register File : : Controller
[D 1 LA F

P 22 1I2112[2]12]12] [[erormsa] i Tnteger g ;[FPRNA |l

o g < (1 | | Buffer || i, stores Registers i - TVECALU | | PCle

b | Branch ' (180 entries) 2 IVEC MUL] ;

o v ‘B | EEEDI §888§§§'§ FPFMA | |

E 1 < 1-:09 ‘!é 1-:0., B arget Buffer i , BFEFERES Bran;?;t;:i:re S)uffer Vector g | Branch | EREEEEREE [Etsen : Memory
C 5 v H | Registers J SRR E B BB B BN - - Controller
| | | e | |

[. H | . W

D o pors ‘_:% 4HOPs | g vy 1 | ‘ (224 entries)] HOP Scheduler

L “ | Retirement Unit Unified Reservation Station (97 entries)

E 3 \ Multiplexer / E E Register Alias Table

| 1 | Primary || Shadow

| Stack Engine Allocation Queue | : | RAT RaT || #HOPS

P z (2x64 entries) | ! !

| = Micro| ['gpops Register

| a Fusion| | i1 Allocation & Renaming

REVOLUTION

Threat models

Starting with threat models

What are my adversary capabilities?

What does my adversary gain?

“Realistic” threat models

* Physical access?

OK, but how much?
* “Nearby” access?
* User-level access?

* |nteraction with remote servers?

Examples:

Microarchitectural attacks
o Adversary can run usermode code
o Or can run JS/similar

o Attempts to read secret data they don’t own

Physical side-channels
o Adversary can touch/measure machine

o Tries to learn secret data

Examples:

Glitch attacks
o Adversary can partially take apart system
> Has access to sophisticated equipment

o Tries to induce incorrect computation

Remote timing
o Adversary can interact with a server via ‘normal’ methods

o Attempts to learn secrets via timing variation

Concrete example:

CVE-2021-30747 Should you be worried?

i
M1RACLI

b

M1ssing Register Access Controls Leak ELO State

M1RACLES (CVE-2021-30747) is a covert channel
vulnerability in the Apple Silicon “M1” chip.

MI1RACLES

“A flaw in the design of the Apple Silicon “M1” chip allows any two applications running under
an OS to covertly exchange data between them, without using memory, sockets, files, or any
other normal operating system features. This works between processes running as different
users and under different privilege levels, creating a covert channel for surreptitious data
exchange.

The vulnerability is baked into Apple Silicon chips, and cannot be fixed without a new silicon
revision.”

So you're telling me I shouldn't worry?

Yes.

What, really?

Really, nobody's going to actually find a nefarious use for this flaw in practical circumstances. Besides, there are already a
million side channels you can use for cooperative cross-process communication (e.g. cache stuff), on every system. Covert
channels can't leak data from uncooperative apps or systems.

Actually, that one's worth repeating: Covert channels are completely useless unless your system is already
compromised.

So how is this a vulnerability if you can't exploit it?

It violates the OS security model. You're not supposed to be able to send data from one process to another secretly. And
even if harmless in this case, you're not supposed to be able to write to random CPU system registers from userspace
either.

It was fairly lucky that the bug can be mitigated in VMs (as the register still responds to VM-related access controls); had
this not been the case, the impact would have been more severe.

Other common topics

Constant-time programming

Defensive programming techniques

Goal: program whose runtime is independent of secret inputs

Will include many platform specifics

|solation

Processes
Sandboxing

Kernel-userspace isolation

Enclaves and Trusted Execution

Cache side-channels

Attacker wants to observe cache state

Many attacker models/defenses

