
ON SUBNORMAL FLOATING

POINT AND ABNORMAL TIMING
Marc Andrysco, David Kohlbrenner, Keaton Mowery,

Ranjit Jhala, Sorin Lerner, and Hovav Shacham

UC San Diego

2

3

LETS RUN SOME CODE

4

Normal Floating Point
Subnormal Floating

Point

LETS RUN SOME CODE

5

Normal Floating Point
Subnormal Floating

Point

0.204s 4.332s

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

6

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

 Who should know?

 “What Every Computer Scientist Should Know About

Floating-Point Arithmetic” – Goldberg ’91

7

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

 Who should know?

 “What Every Computer Scientist Should Know About

Floating-Point Arithmetic” – Goldberg ’91

 Academic researchers claim to “effectively

close[s] all known remotely exploitable channels”

 Specifically referring to timing side channels!
8

FLOATING POINT AND TIMING

9

WHAT HAPPENED?

 IEEE 754 specifies subnormal floating point

values

10

FLOATING POINT NORMAL AND

SUBNORMAL



 Value = (−1)𝑠𝑖𝑔𝑛 ∗ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 ∗ 2(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠)

 The exponent is non-zero

 Normal values have an implicit leading 1-bit on the
significand

 A subnormal value is a special encoding

 The exponent is all zeroes

 The significand has an implicit leading 0-bit

11

SUBNORMAL DETAILS

 Subnormal ranges (double)

 Minimum: ~4.9 × 10−324

 Maximum: ~2.23 × 10−308

 Planck length: 1.6 × 10−35 m

 Why?

 Extend the range of floating point

 Graceful underflow

12 if(a != b)

 x = c / (a-b);

WHAT HAPPENED?

 IEEE 754 specifies subnormal floating point

values

 FPUs are optimized for pure speed

 Subnormals are not the common case

 So let's pretend they don't matter!

 Subnormals are a hardware slowpath

 The Alpha trapped to kernel for subnormals!

 Most GPUs don’t support them

13

FLOATING POINT IS A SECURITY ISSUE

 Ilya Mironov on Laplacian noise generation

 Lack of dependable results

 gcc –O1 vs gcc –O3

14

LEVERAGING SUBNORMAL

FLOATING POINT INTO ATTACKS

15

FLOATING POINT AS A SIDE-CHANNEL

 Code that operates on secret and attacker values

can result in timing side channels

 From instruction traces

 Or memory access patterns

 Or IO usage

 Etc.

 We present the first instruction data based

timing side channel attack on a commodity

desktop processor

 Proposed by Kocher 20 years ago!

16

FLOATING POINT HARDWARE DATA

17

Core i7-3667U SSE and x87

Atom D2550 SSE and x87

AMPLIFYING TIMING DIFFERENCES

 Even a 100 cycle difference is hard to spot

 Especially with a loaded system

18

AMPLIFYING TIMING DIFFERENCES

 Even a 100 cycle difference is hard to spot

 Especially with a loaded system

 We need an amplifier

 Remember our sample code?

 We need tight math loops

19

DETOUR TIME!

Firefox SVG Filters and Previous Attacks

20

FIREFOX SVG FILTERS

 Turn this

21

FIREFOX SVG FILTERS

 Into this!

<svg><filter>

<feGaussianBlur
stdDeviation="3"/>

</filter></svg>

22

FIREFOX SVG FILTERS

 CSS defined filters

 <div>

 <iframe>

 Really any element

 Run various functions

 convolve

 blur

 skew

 gradient

 clipping

 Stackable!
23

FIREFOX SVG FILTER TIMING ATTACK

24

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

25

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

26

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

27

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

PAUL STONE’S SVG TIMING SIDE

CHANNEL

 Relied on a fast path optimization in the

femorphology SVG filter

 In cases of a solid color image, filter ran much faster

 Fix was to write constant time code!

 Took ~2 years to land, and 150+ comment bug thread

 “the problem boils down to: how to implement constant-time
min(a, b) and max(a, b) in C++?” – Bugzilla thread

28

BACK TO THE PRESENT

29

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

30

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

 SVG Filters run floating point math!

31

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

 SVG Filters run floating point math!

 We need an amplifier

32

NEW FIREFOX SVG FILTER ATTACK

 We need an amplifier

33

FIREFOX SVG FILTERS AND SUBNORMALS

34

FIREFOX SVG FILTERS AND SUBNORMALS

35

1 × 𝑠

0 × 𝑠

FIREFOX SVG FILTERS AND SUBNORMALS

36

𝑠 + 𝑠

0+0

FIREFOX SVG FILTER TIMING ATTACK

37

FIREFOX SVG FILTERS ATTACK IMPACT

 Firefox does not consider running SVG filters
over foreign pixels a violation of SOP

 We disagree

 Cross Origin Resource Sharing (CORS) is the obvious
solution 38

READING PIXELS

 From other origins

 Reconstruct characters (OCR)

 Extract usernames, login status, user information,

etc

 Blocked with frame options or CSP

 From our origin

 History sniffing
39

AVOIDING FLOATING POINT

PROBLEMS

40

RECOMMENDATIONS

 Don’t use floating point in security critical code

 Unpredictable results

 Large timing variations

 Highly processor and build dependent

 Use Fixed Point if you need non-integer math

41

LIBFTFP – FIXED TIME FIXED POINT

 C library implementing most math operations

 Add, divide, etc

 Transcendentals

 Exponents, logs, etc

 Variable Width

 Constant time! (Probably!) 42

BUILDING LIBFTFP

 Techniques
 No data dependent jumps (&&, if, etc.)

 No known variable time instructions (div, idiv, etc.)

 No look-up tables (due to caching)

 We cannot be 100% sure of the constant-ness of our
code
 Intel doesn’t release any information about instruction

data dependency

 We cannot exhaustively test processors and instruction
arguments

 Writing constant time code is a battle against all
future processors and compilers

 LibFTFP uses approximations

43

LIBFTFP STATISTICS

 Comparing to hardware

slightly unfair

 Comparing to infinite

precision software

(MPFR) also slightly

unfair

44

github.com/kmowery/libfixedtimefixedpoint

TAKEAWAYS

 Security critical code should omit floating

point or be extremely careful

 Writing provably constant time code is

impossible

 Intel? Some help here?

 Browsers should require CORS/CSP for

computing over all foreign data

 Like pixels

45

FUTURE WORK

 Firefox attack works on FF 23-27

 Attack stopped working when filters changed to GPU

 GPU floating point implementations

 “On NVIDIA GPUs starting with the Fermi architecture […]
multi-instruction sequences such as square root and […]
reciprocal square root, must do extra work and take a slower
path for denormal values “

 Other math operation data side channels

 imul, div/idiv cycle counts are data dependent

 What can we break with that?

46

QUESTIONS?

dkohlbre@cs.ucsd.edu

LibFTFP: github.com/kmowery/libfixedtimefixedpoint

47

