
ON SUBNORMAL FLOATING

POINT AND ABNORMAL TIMING
Marc Andrysco, David Kohlbrenner, Keaton Mowery,

Ranjit Jhala, Sorin Lerner, and Hovav Shacham

UC San Diego

2

3

LETS RUN SOME CODE

4

Normal Floating Point
Subnormal Floating

Point

LETS RUN SOME CODE

5

Normal Floating Point
Subnormal Floating

Point

0.204s 4.332s

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

6

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

 Who should know?

 “What Every Computer Scientist Should Know About

Floating-Point Arithmetic” – Goldberg ’91

7

20 TIMES SLOWER?

 Who knew?

 Numerical analysts

 CPU designers

 Game engine authors

 Who should know?

 “What Every Computer Scientist Should Know About

Floating-Point Arithmetic” – Goldberg ’91

 Academic researchers claim to “effectively

close[s] all known remotely exploitable channels”

 Specifically referring to timing side channels!
8

FLOATING POINT AND TIMING

9

WHAT HAPPENED?

 IEEE 754 specifies subnormal floating point

values

10

FLOATING POINT NORMAL AND

SUBNORMAL

 Value = (−1)𝑠𝑖𝑔𝑛 ∗ 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑑 ∗ 2(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−𝑏𝑖𝑎𝑠)

 The exponent is non-zero

 Normal values have an implicit leading 1-bit on the
significand

 A subnormal value is a special encoding

 The exponent is all zeroes

 The significand has an implicit leading 0-bit

11

SUBNORMAL DETAILS

 Subnormal ranges (double)

 Minimum: ~4.9 × 10−324

 Maximum: ~2.23 × 10−308

 Planck length: 1.6 × 10−35 m

 Why?

 Extend the range of floating point

 Graceful underflow

12 if(a != b)

 x = c / (a-b);

WHAT HAPPENED?

 IEEE 754 specifies subnormal floating point

values

 FPUs are optimized for pure speed

 Subnormals are not the common case

 So let's pretend they don't matter!

 Subnormals are a hardware slowpath

 The Alpha trapped to kernel for subnormals!

 Most GPUs don’t support them

13

FLOATING POINT IS A SECURITY ISSUE

 Ilya Mironov on Laplacian noise generation

 Lack of dependable results

 gcc –O1 vs gcc –O3

14

LEVERAGING SUBNORMAL

FLOATING POINT INTO ATTACKS

15

FLOATING POINT AS A SIDE-CHANNEL

 Code that operates on secret and attacker values

can result in timing side channels

 From instruction traces

 Or memory access patterns

 Or IO usage

 Etc.

 We present the first instruction data based

timing side channel attack on a commodity

desktop processor

 Proposed by Kocher 20 years ago!

16

FLOATING POINT HARDWARE DATA

17

Core i7-3667U SSE and x87

Atom D2550 SSE and x87

AMPLIFYING TIMING DIFFERENCES

 Even a 100 cycle difference is hard to spot

 Especially with a loaded system

18

AMPLIFYING TIMING DIFFERENCES

 Even a 100 cycle difference is hard to spot

 Especially with a loaded system

 We need an amplifier

 Remember our sample code?

 We need tight math loops

19

DETOUR TIME!

Firefox SVG Filters and Previous Attacks

20

FIREFOX SVG FILTERS

 Turn this

21

FIREFOX SVG FILTERS

 Into this!

<svg><filter>

<feGaussianBlur
stdDeviation="3"/>

</filter></svg>

22

FIREFOX SVG FILTERS

 CSS defined filters

 <div>

 <iframe>

 Really any element

 Run various functions

 convolve

 blur

 skew

 gradient

 clipping

 Stackable!
23

FIREFOX SVG FILTER TIMING ATTACK

24

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

25

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

26

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

FIREFOX SVG FILTER TIMING ATTACK

27

 See Paul Stone’s “Pixel Perfect Timing Attacks

with HTML 5”

PAUL STONE’S SVG TIMING SIDE

CHANNEL

 Relied on a fast path optimization in the

femorphology SVG filter

 In cases of a solid color image, filter ran much faster

 Fix was to write constant time code!

 Took ~2 years to land, and 150+ comment bug thread

 “the problem boils down to: how to implement constant-time
min(a, b) and max(a, b) in C++?” – Bugzilla thread

28

BACK TO THE PRESENT

29

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

30

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

 SVG Filters run floating point math!

31

NEW FIREFOX SVG FILTER ATTACK

 Firefox SVG Filters are still ‘vulnerable’ pending

a timing difference

 We have a new timing side-channel source

 SVG Filters run floating point math!

 We need an amplifier

32

NEW FIREFOX SVG FILTER ATTACK

 We need an amplifier

33

FIREFOX SVG FILTERS AND SUBNORMALS

34

FIREFOX SVG FILTERS AND SUBNORMALS

35

1 × 𝑠

0 × 𝑠

FIREFOX SVG FILTERS AND SUBNORMALS

36

𝑠 + 𝑠

0+0

FIREFOX SVG FILTER TIMING ATTACK

37

FIREFOX SVG FILTERS ATTACK IMPACT

 Firefox does not consider running SVG filters
over foreign pixels a violation of SOP

 We disagree

 Cross Origin Resource Sharing (CORS) is the obvious
solution 38

READING PIXELS

 From other origins

 Reconstruct characters (OCR)

 Extract usernames, login status, user information,

etc

 Blocked with frame options or CSP

 From our origin

 History sniffing
39

AVOIDING FLOATING POINT

PROBLEMS

40

RECOMMENDATIONS

 Don’t use floating point in security critical code

 Unpredictable results

 Large timing variations

 Highly processor and build dependent

 Use Fixed Point if you need non-integer math

41

LIBFTFP – FIXED TIME FIXED POINT

 C library implementing most math operations

 Add, divide, etc

 Transcendentals

 Exponents, logs, etc

 Variable Width

 Constant time! (Probably!) 42

BUILDING LIBFTFP

 Techniques
 No data dependent jumps (&&, if, etc.)

 No known variable time instructions (div, idiv, etc.)

 No look-up tables (due to caching)

 We cannot be 100% sure of the constant-ness of our
code
 Intel doesn’t release any information about instruction

data dependency

 We cannot exhaustively test processors and instruction
arguments

 Writing constant time code is a battle against all
future processors and compilers

 LibFTFP uses approximations

43

LIBFTFP STATISTICS

 Comparing to hardware

slightly unfair

 Comparing to infinite

precision software

(MPFR) also slightly

unfair

44

github.com/kmowery/libfixedtimefixedpoint

TAKEAWAYS

 Security critical code should omit floating

point or be extremely careful

 Writing provably constant time code is

impossible

 Intel? Some help here?

 Browsers should require CORS/CSP for

computing over all foreign data

 Like pixels

45

FUTURE WORK

 Firefox attack works on FF 23-27

 Attack stopped working when filters changed to GPU

 GPU floating point implementations

 “On NVIDIA GPUs starting with the Fermi architecture […]
multi-instruction sequences such as square root and […]
reciprocal square root, must do extra work and take a slower
path for denormal values “

 Other math operation data side channels

 imul, div/idiv cycle counts are data dependent

 What can we break with that?

46

QUESTIONS?

dkohlbre@cs.ucsd.edu

LibFTFP: github.com/kmowery/libfixedtimefixedpoint

47

