
Trusted Browsers for
 Uncertain Times

David Kohlbrenner and Hovav Shacham

UC San Diego

Building a browser that can provably
mitigate timing attacks

Trusted Browsers
for

 Uncertain Times

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Timing attacks
● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Browsers and timing attacks
● Browser has multiple privilege levels

○ User secrets

○ System secrets

○ Origin secrets

● Browsers expose detailed information

○ performance.now()

○ getAnimationFrame()

● Browsers compute and communicate between levels

Timing attacks in web browsers
● SVG Filter cross-origin pixel stealing

● JavaScript cache timing attacks

● Fingerprinting

● History Sniffing

What is being done about it? - SVG attack

What is being done about it? - Cache attack

What is being done about it? - Cache attack

Unfortunately,
this doesn’t work.

Better clocks
with edges

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Rounding down the clock

Clock-edge technique

Clock-edge technique - performance.now()

Clock-edge technique - performance.now()

Implicit clocks
in the browser

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Implicit clocks - Techniques
● <video> frames

● Web Speech

● <video> played

● setTimeout()

● CSS Animations

● WebVTT API

● XHRs with cooperating server

Implicit clocks - Techniques
● <video> frames

● Web Speech

● <video> played

● setTimeout()

● CSS Animations

● WebVTT API

● XHRs with cooperating server

Probably many many more!

Implicit clocks - WebVTT
● Subtitles for <video> elements

● Specified in a .vtt file

○ WEBVTT

00:00:00.000 --> 00:00:00.001

A very short duration subtitle

● Specifies arbitrary subtitles with 1ms granularity

● track.activeCues returns all displayed subtitles

Implicit clocks - WebVTT

Implicit clocks - WebVTT and clock-edge

How to mitigate
timing attacks

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Degrade all clocks
available to the attacker.

Fuzzy time for the VAX security kernel
● “[A] collection of techniques that reduces the bandwidths of covert timing

channels by making all clocks available to a process noisy.”

● “Reducing Timing Channels with Fuzzy Time”

○ Hu at Oakland 1991!

Covert channels
● Two clocks

● Modulated

○ The channel

● Reference

○ Wall clock, etc

Fuzzy time for the VAX security kernel
● VAX VMM

○ Single thread per VM

○ Clean VM interface

● All I/O is asynchronous

Fuzzy time - Problem
● Ineffective countermeasures to disk covert channel

○ Cannot be closed

○ Not auditable

○ Added noise impractical

○ No hardware solution

● Plenty of other potential ‘shared buses’

Fuzzy time - Solution
● “reduce the accuracy and precision of system clocks”

● “randomly alter the timings of I/O operations”

Fuzzy time - Solution
● Explicit clocks

○ “make the interval-timer interrupt random”

Fuzzy time - Solution
● Explicit clocks

○ “make the interval-timer interrupt random”

Fuzzy time - Solution
● Explicit clocks

○ “make the interval-timer interrupt random”

● Implicit clocks

○ “[use] random clock ticks … to make fuzzy the clocks derived

from I/O operations”

○ “Add new buffers … for all I/O operations”

Fuzzy time - Solution guarantees
● Degraded clocks

○ Limit the bandwidth

● Time granularity

○ g

● Bounded channel bandwidth

○ For any timing covert channel

○ ~

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo

ActiveActive

Response queue

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo Todo

ActiveActive

Response queue

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo Todo

ActiveActive

Response queue

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo Todo

Active

Response queue

Done Todo

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo Todo

Response queue

Done TodoDone Todo

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Todo Todo

Response queue

Done TodoDone TodoActive Active

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Response queue

Done TodoDone TodoActive Active

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Response queue

Done TodoDone TodoActive Active

Next queue

Currently queued

Fuzzy time - I/O queuing

Active

Response queue

Done Done Active Active

Fermata
● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fermata - Why adapt fuzzy time?
● Degrade clocks

○ Slow down attacks

● Verifiability

● Browsers are uniquely well suited

Fermata - Fuzzy time for browsers
● Adapt the VAX fuzzy time model to JS etc!

● Put all I/O operations into queues

● Make all the explicit clocks fuzzy

● Prove everything falls into a fuzzy time defense

But w
ith

JavaScript!

Fermata - Fuzzy time for browsers
● Adapt the VAX fuzzy time model to JS etc!

● Put all I/O operations into queues

● Make all the explicit clocks fuzzy

● Prove everything falls into a fuzzy time defense

● Change all DOM accesses to be asynchronous!

But w
ith

JavaScript!

Fuzzyfox
Rationale and design

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Why we didn’t build Fermata
1. We didn’t know if it would work

2. We didn’t know what to start with

3. We want to push mitigations to real browsers

Fuzzyfox
● Patch set on trunk Mozilla Firefox

● Supports multiple clock granularities

○ Tested 0.5ms to 100ms

● Fully fuzzes explicit clocks

● Breaks main thread into ‘ticks’

● Delays outgoing HTTP request start

Next queue

Current queue

Fuzzyfox - Main thread queuing

Next queue

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo

Todo Todo

Todo

Next queue

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo

Todo Todo

Todo

Todo

Next queue

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo

Todo Todo

Todo

Todo

Next queue

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo

Todo Todo

Todo

Todo

Pause

Next queueCurrent queue

Fuzzyfox - Main thread queuing

Done Done Active Todo Todo TodoTodo TodoPause

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo Todo TodoTodo TodoPause

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo TodoTodo TodoPauseDone

Current queue

Fuzzyfox - Main thread queuing

Done Done Active Todo Todo TodoTodoPauseDone Done

Current queue

Fuzzyfox - Main thread queuing

Done Done Todo Todo TodoTodoPauseDone Done Done

Current queue

Fuzzyfox - Main thread queuing

Done Done Todo Todo TodoTodoPauseDone Done Done Pause

Current queue

Fuzzyfox - Main thread queuing

Done Done Todo TodoTodoPauseDone Done Done PauseActive

Current queue

Fuzzyfox - Main thread queuing

Done Done TodoTodoTodoPauseDone Done Done PauseActiveDone

Queue 3

Queue 2

Queue 1

Fuzzyfox - Main thread queuing

Done Done

Todo

TodoTodo

Done Done Done

ActiveDone

Pause

Pause

Current queue

Fuzzyfox - Main thread queuing

Done TodoDone Done Done ActiveDone

Epoch

TodoPause Done TodoPause

Epoch Epoch

Current queue

Fuzzyfox - Main thread queuing

Done TodoDone Done Done ActiveDone

Epoch

TodoPause Done TodoPause

Epoch Epoch

Current queue

Fuzzyfox - Main thread queuing

Done TodoDone Done Done ActiveDone

Epoch

TodoPause Done TodoPause

Epoch Epoch

● Sleep
● Update clocks
● Flush queues
● Schedule next pause

Fuzzyfox
Effectiveness

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fuzzyfox - Effectiveness - Explicit - performance.now()
Firefox Fuzzyfox

Fuzzyfox - Effectiveness - Implicit - WebVTT clock
Firefox Fuzzyfox

Fuzzyfox
Performance

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fuzzyfox - Performance
● “Micro” performance

○ Synthetic microbenchmark page load times

● “Macro” performance

○ Real website load times

● Interactivity

○ User study

Fuzzyfox - Performance
● “Micro” performance

○ Synthetic microbenchmark page load times

● “Macro” performance

○ Real website load times

● Interactivity

○ User study

Fuzzyfox - Performance - Micro benchmarks
● Page load times

○ As reported by onload()

● Measured effects of

○ Sequential resource loads

○ Parallel resource loads

Fuzzyfox - Performance - Sequential loads

Fuzzyfox - Performance vs Tor Browser

Takeaways
● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Timing attacks
Rounding clocks doesn’t work

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fuzzy time
Secure operating systems tech

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fermata
A different design for the browser

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Fuzzyfox
Defenses that can work

and that we can deploy

● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

Takeaways
● Time and web browsers

● Mitigating attacks

● A trusted browser

● A (less) trusted browser

This material is based upon work supported by

the National Science Foundation and by a gift from Mozilla.

We thank Kyle Huey, Patrick McManus, Eric Rescorla,

and Martin Thomson at Mozilla for helpful discussions

about this work, and for sharing their insights with us

about Firefox internals.

Fuzzyfox - Effectiveness - Explicit - performance.now()
Firefox Fuzzyfox

Fuzzyfox - Effectiveness - Implicit - WebVTT clock
Firefox Fuzzyfox

Performance - Micro benchmarks - Sequential loads

Performance - Micro benchmarks - Tor Browser

Performance - Load times* - Google search

