SlimeMold: Hardware Load Balancer at Scale in Datacenter

Ziyuan Liu'?, Zhixiong Niu?, Ran Shu?, Liang Gao®, Guohong Lai®, Na Wang*, Zongying He*
Jacob Nelson?, Dan R. K. Ports?, Lihua Yuan®, Peng Cheng?, Yongqiang Xiong?
!Beihang University SKLSDE, 2Microsoft Research, 3Ragile Networks Inc., ‘Broadcom Inc., >Microsoft

ABSTRACT

Stateful load balancers (LB) are essential services in cloud data
centers, playing a crucial role in enhancing the availability and ca-
pacity of applications. Numerous studies have proposed methods to
improve the throughput, connections per second, and concurrent
flows of single LBs. For instance, with the advancement of pro-
grammable switches, hardware-based load balancers (HLB) have
become mainstream due to their high efficiency. However, pro-
grammable switches still face the issue of limited registers and
table entries, preventing them from fully meeting the performance
requirements of data centers. In this paper, rather than solely focus-
ing on enhancing individual HLBs, we introduce SlimeMold, which
enables HLBs to work collaboratively at scale as an integrated LB
system in data centers.

First, we design a novel HLB building block capable of achieving
load balancing and exchanging states with other building blocks in
the data plane. Next, we decouple forwarding and state operations,
organizing the states using our proposed 2-level mapping mecha-
nism. Finally, we optimize the system with flow caching and table
entry balancing. We implement a real HLB building block using
the Broadcom 56788 SmartToR chip, which attains line rate for
state read and >1M OPS for flow write operations. Our simulation
demonstrates full scalability in large-scale experiments, supporting
454 million concurrent flows with 512 state-hosting building blocks.

CCS CONCEPTS

» Networks — Data center networks; Network management.

KEYWORDS
Load Balancing, Programmable Switches

ACM Reference Format:

Ziyuan Liul2, Zhixiong Niu?, Ran Shu?, Liang Gao®, Guohong Lai®, Na
Wang?, Zongying He? and Jacob Nelson?, Dan R. K. Ports?, Lihua Yuan®,
Peng Cheng?, Yongqiang Xiong?. 2023. SlimeMold: Hardware Load Balancer
at Scale in Datacenter. In 7th Asia-Pacific Workshop on Networking (APNET
2023), June 29-30, 2023, Hong Kong, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3600061.3600067

1 INTRODUCTION

In cloud data centers, layer-4 load balancers are critical to scale-
out services which distribute application traffic to backend servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

APNET 2023, June 29-30, 2023, Hong Kong, China

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0782-7/23/06...$15.00
https://doi.org/10.1145/3600061.3600067

by mapping virtual IPs (VIPs) to direct IPs (DIPs) [17]. They help
improve the service capacity and reliability of applications. State-
ful load balancers are widely used in production, which keep the
load balancing decisions for each connection and ensure the con-
sistency of connections when adding or removing backend servers
[12-14, 17, 19]. As data center applications’ scale and capacity in-
crease, applications require larger-scale load balancers with greater
bandwidth, higher connection per second (CPS), and larger total
concurrent connections. The required bandwidth can reach up to
O(Tbps), the maximum concurrent flows can be hundreds of mil-
lions, and the CPS can reach tens of millions [1].

In recent years, software-based load balancer (SLB) has been
widely used by the industry due to its agility and reliability [12, 17].
However, the SLB can incur significant costs for data centers due
to its inefficiency. For instance, a single server of Maglev can only
saturate a 10Gbps link [12] and it requires hundreds of servers
to support data center scale traffic. Programmable switches have
emerged as a highly promising solution due to their programmable
capabilities and high throughput density, enabling them to handle
orders of magnitude higher traffic while reducing costs. Recent
works have attempted to accelerate these software LBs with new
programmable switches [11, 13, 16, 19].

Despite this, the programmable switch’s ability to support CPS
and concurrent connections remains restricted in comparison to
its overall throughput, as its primary purpose is to process and
forward packets with limited functionality using stateful objects.
There are typically about 10MB [20] on-chip tables and registers
to store states. For example, a switch can only support up to 200K
concurrent flows if a table entry takes 50B [19]. Such capacity
is far less than the requirement of layer-4 load balancers which
is hundreds of millions. As a consequence, data center operators
still need multiple nodes to scale out. However, existing scale-out
solutions use ECMP to distribute traffic to different nodes and it
will cause Per-Connection Consistency violations due to network
changes or changes in the load balancer pool [12]. PCC violation
means that a flow served by a backend server is changed to another
one, which breaks the session context as the new backend does not
have the corresponding state of the flow.

To address this issue, we propose SlimeMold, a solution to solve
capacity problems in hardware load balancers. Our approach dif-
fers from existing ones by advocating for collaborative HLBs for
entire HLB performance, rather than solely focusing on improving
individual LB. In this architecture, each LB on a programmable
switch serves as a building block of the entire HLB. As such, the
total capacity of the load balancer is proportional to the number of
building blocks in our design. In other words, our goal is to maintain
simplicity in the HLB rather than striving for peak performance
in a single HLB unit. Instead, we are taking a flexible approach by
composing HLBs within the network as a whole to achieve maxi-
mum performance, allowing for collaborative work by utilizing the

https://doi.org/10.1145/3600061.3600067
https://doi.org/10.1145/3600061.3600067

APNET 2023, June 29-30, 2023, Hong Kong, China

resources of other building blocks through our design in scheduling
and communication. As a result, with the increasing deployment
of programmable switches in data centers, the performance of the
existing large-scale HLB can be effortlessly improved.

To achieve the SlimeMold, we first present a new HLB paradigm
that serves as a fundamental building block of the entire HLB sys-
tem. To this end, we have chosen the Ragile Smart Switch with the
Broadcom 56788 SmartToR chip [2], which is designed for next-gen
ToR switches. It can support millions of flow entries [3] and support
Network Programming Language (NPL) [6]. NPL is a high-level
language for high-performance, feature-rich networking platforms.
We deploy the building block by replacing the existing switches in
the topology. Given the high market share of Broadcom chips in
data centers, it is possible to use other existing switches that sup-
port NPL programming but have fewer table entries as additional
building blocks. Apart from providing basic LB features like packet
rewrite, encapsulation, and state learning, we have also designed
and implemented a methodology for building blocks to create and
fetch states remotely from another building block via the data plane,
thus enabling each building block to work collaboratively.

Secondly, to distribute the HLB at scale, we have decoupled the
role of an HLB and designed a two-level mapping mechanism to
organize all building block connection tables as a unified resource
pool. The two mechanisms separate the functions of a stateful load
balancer into forwarding and state management and also overcome
the capacity limitations of a single building block by distribut-
ing the substantial load of an entire LB system across multiple
building blocks. Each building block can simultaneously serve as
a Forwarder, State Owner, and Secondary Lookup. The Forwarder
broadcasts the VIPs and forwards packets to the State Owner. The
State Owner maintains the mapping state between VIP and DIP
for each flow and can forward packets to their DIP. The Secondary
Lookup serves as an intermediate point to build a two-level lookup
structure which reduces the size of flow to State Owner table.

Finally, to further optimize the system, we have designed two
mechanisms, ConnTable cache on Forwarders and flow table balanc-
ing on State Owners, aimed at minimizing traffic between building
blocks and maximizing resource utilization within each block.

To summarize, the main contributions of our work are:

e We design and implement a real building block with Broad-
com 56788 SmartToR chip, which can serve as a basic load
balancer and also achieve flow states write and fetch re-
motely.

o We have accomplished a scalable design for building blocks
by separating load balancing into forwarding and state man-
agement and designed a two-level state owner mapping
mechanism to effectively organize flow states.

o Additionally, we introduce cache and flow table balancing
mechanisms to further optimize efficiency.

o We have conducted a real evaluation of the building block. Its
performance can reach more than 1 million operations per
second (MOps) for state writing and line rate for state reading
via the data plane. Additionally, we have simulated the entire
system for large-scale topology. The results demonstrate that
it is fully scalable, and when using 512 State Owners, it can
support 454 million concurrent flows.

Z. Liu et al.

2 BACKGROUND AND RELATED WORK

Most production load balancers are stateful load balancers [4, 12, 17].
Compared to stateless load balancers, stateful load balancers can
achieve Per-connection Consistency (PCC) by utilizing Connection
Table (ConnTable), which stores the flow-to-server mappings and
can support server churn naturally. PCC is a crucial requirement
for load balancers, as it ensures that all packets from a flow are
delivered to the same server since only that server can correctly
handle the connection once it is established.

The workflow of stateful LBs can be divided into two steps: DIP
decision, and forwarding. In the DIP decision process, when a flow
reaches an LB to access a VIP, the LB assigns a real server which is
the DIP to the flow based on specific policies (e.g., hash or round-
robin) and inserts an entry for the flow into the ConnTable. In the
forwarding process, the LB forwards all packets of a flow according
to the DIP recorded in its ConnTable entry to maintain PCC.

Modern LBs are predominantly implemented in software [4, 12,
17], which offers flexibility to accommodate the numerous emerging
features demanded by data center operators. However, software-
based load balancers also contribute to increased operational ex-
penses, which is undesirable for data centers. To mitigate this cost,
recent works have explored leveraging switches to accelerate state-
ful LBs. Duet [14] and Rubik [13] enhance traffic scalability by
offloading VIPs with stable DIP pools onto switches, using software-
based LBs as backups to handle complex corner cases. SilkRoad [16]
employs a programmable switch to fully offload the LB logic onto
hardware, further improving scalability and DIP update frequency.
Tiara [19] combines programmable switches, FPGAs, and servers
to create a hybrid load balancer solution boasting high bandwidth,
a large ConnTable, and increased CPS.

As single node performance of both SLB and HLB still cannot
meet the overall requirement of data center LB service, data center
operators need scale-out LBs. However, scaling out stateful LB
while keeping PCC is non-trivial. Existing scale-out load balancer
solutions use ECMP to distribute flow table entries among multiple
LB nodes. However, as the system scale changes, ECMP may direct
a flow to an LB node that does not own its flow table entry thus
causing PCC violation. Resilient ECMP [5] is proposed to mitigate
the issue and it can direct a flow to the same LB node provided that
it is not affected when removing an LB node. However, when adding
an LB node, Resilient ECMP can still direct a flow to a different LB
node. In this case, though Consistent Hashing can be applied to
increase the chance to assign the same DIP to a flow, PCC is still not
guaranteed. This issue is well recognized by researchers [12, 17].

Distinct from the aforementioned works, SlimeMold focuses on
utilizing simple HLB units and breaking the boundaries of individ-
ual HLBs, enabling HLBs within cloud data centers to collaborate
and function as a unified, large-scale HLB providing services for
the data center while preserving PCC. It can be used as a stand
alone load balancer if the available hardware capacity can support
data center load balancer requirements, or it can be used as an
enhancement to existing load balancer systems. Consequently, as
more programmable switches, particularly those with SmartToR
chips that function as programmable ToR switches, are deployed in
data centers, they can seamlessly enhance the performance of the
existing large-scale HLB.

SlimeMold: Hardware Load Balancer at Scale in Datacenter

Forwarder Secondary Lookup State Owner
SlimeMold
Rt Rt Rt Rt
Ty . 5 R T N
RtA RTA Rt Rta
g -
1 4
| co— o | | co— [o
SRC =3 | co— 3 DIP 2
{ o o { co— | [o

Figure 1: SlimeMold Overview

3 DESIGN

We present the design of SlimeMold in this section. In our discussion,
we will address the following questions:
o What is the structure of a large-scale distributed HLB at the
data center scale? (§3.1)
e How can we make the distributed HLBs a giant LB? (§3.2)
e How do we design the building block to meet the require-
ments of a large-scale HLB? (§3.3)
e How can such a large-scale system be further optimized (§3.4,
and §3.5)
We also discuss the remained open questions of SlimeMold
briefly in §3.6

3.1 Overview

In stateful layer-4 LB systems, forwarding is more resource-consuming
because LB needs to look up ConnTable and modify packets us-
ing NAT/tunneling for every packet. While the DIP decision only
happens at the first packet of a flow, the computation and memory
overhead are both small compared to forwarding. In SlimeMold,
we focus on scaling out forwarding only. Implementing the DIP
decision on each switch node or connecting x86 server to each
node like Tiara [19] are two possible solutions, but not all possible
solutions. We leave it for future work.

To build a distributed and dynamic load-balancer system while
preserving PCC, in SlimeMold, we rethink the functionalities of a
load balancer and separate it into two roles: Forwarder and State
Owner. Briefly, to a flow, a Forwarder stores a table that can forward
any flow to the State Owner that holds the flow’s state. Therefore,
no matter which Forwarder is reached by a flow, or how we dynam-
ically distribute flow states, a flow can always get its ConnTable
entry and thus preserve PCC.

For each Forwarder, it should know which State Owner hosts
a flow’s states. Direct map between flows and State Owners is
meaningless since storing such a table requires the same number
of table entries as storing all flow states. Thus we should arrange
flows into groups with simple and stateless calculations, and then
store mapping between groups of flows and State Owners. We call
such a group a segment. A segment is also the unit that we can
use to balance the load among State Owners. A large data center
would have up to O(10K) switches [18]. Moreover, the number of

APNET 2023, June 29-30, 2023, Hong Kong, China

Normal Switch Function SlimeMold Function
Classification ConnTable Pack. Gen.
Prefix Lookup
POSt. Extra Info. Routing
Processing

Figure 2: SlimeMold Building Block

segments should be large enough (e.g., 10x) to enable fine-grained
load adjusting between State Owners. The State Owner table on
each Forwarder should have at least O(100K) entries which is a
burden to Forwarder table resource. Thus we introduce a two-level
table to reduce the required table size and put the second-level table
on another logical node called Secondary Lookup.

An example workflow is shown in Figure 1. (1) A packet of a
flow from the source first reaches a Forwarder (the blue box with
orange border) by data center routing and enters SlimeMold system.
(2) As the Forwarder does not have the flow’s ConnTable entry,
it directs the packet to a Secondary Lookup. (3) Then Secondary
Lookup forwards the packet to its State Owner (the green box with
orange border). (4) As the State Owner has the flow’s entry, it directs
the packet to the DIP and the packet exits SlimeMold. The PCC
is guaranteed because no matter at which Forwarder the flow’s
packets enter SlimeMold, they can always be forwarded to its State
Owner to get the corresponding DIP.

3.2 2-Level State Owner Mapping

To group flows into segments, we need simple stateless calculations.
Address prefix is the easiest way to divide flows into segments. How-
ever, the flow address in a data center has non-uniform distribution,
simply using prefix causes serious load imbalance between State
Owners. Thus, we use hash to map a flow to a group. We use CRC32
to hash the 5-tuple of flows and use the prefix of the hash result to
distinguish a flow belongs to which segment. We define the prefix
as the first p bits of the hash result. Thus the number of segments is
2P Please note that by this design, the number of segments should
be a power of 2.

To divide the State Owner mapping into two levels, we divide
the prefix into two parts, prefix 1 (the first p; bits of the prefix) and
prefix 2 (the remaining py bits of the prefix). Prefix 1 is used on
Forwarder to find the Secondary Lookup. Prefix 2 is for Secondary
Lookup to find the State Owner. We call the mapping table from
prefix 1 to Secondary Lookup address Secondary Lookup table.
Similarly, Secondary Lookup uses State Owner table to map prefix
2 to State Owner. Please note that we do not carry the 5-tuple hash
in the packet, thus Secondary Lookup needs to recalculate it to get
prefix 2.

3.3 Single Building Block

A single building block is a logically basic unit that can be config-
ured as a specific role (Forwarder, Secondary Lookup, and State

APNET 2023, June 29-30, 2023, Hong Kong, China

Owner) in SlimeMold. In this section, we describe all functionali-
ties required by different SlimeMold roles and summarize what a
SlimeMold building blocks should support. The pipeline of SlimeM-
old building block’s functions are shown in Figure 2. Specifically, the
functions required are: 1) packet classification: distinguish different
types of packets in SlimeMold; 2) ConnTable; 3) packet generation:
generate an extra packet to other roles (e.g., cache refresh packet
from Forwarder to State Owner, and cache update packet from State
Owner to Forwarder); 4) prefix lookup; 5) routing; 6) extra infor-
mation addition; 7) packet post-processing (e.g., NAT/tunneling to
DIP). When assigned one or some specific roles, the pipeline may
be simplified if some features are not used.

ConnTable. There are four operations required by ConnTable
management: insert, query, delete, and aging. Insert, query, and
delete of a specific ConnTable entry are triggered by packets which
means they are data plane operations. Aging is an operation to
prevent dead entries due to abnormal flow close. It removes a Con-
nTable entry after an aging period if no queries access it. We design
it as another operation other than delete since it needs to closely
rely on switch firmware to manage the timer for each entry. The
ability to manage ConnTable is mandatory for State Owner and
optional for Forwarder (as ConnTable cache, see §3.4). A physical
switch can serve as a State Owner and a Forwarder simultaneously.
We let them share the ConnTable to improve efficiency. We divide
ConnTable entries into two types: normal entry and cache entry. A
normal entry can swap out a cache entry, but not vice versa. Such
table sharing is an optional feature and should be only enabled if a
physical switch plays as both State Owner and Forwarder.

Prefix Lookup. It is required by Forwarder and Secondary
Lookup because they need to find other roles in SlimeMold based
on flow hash. A single building block should be able to use a key
obtained by part of the packets to perform a lookup whose result
may be one or a set of addresses of the next logical hop. The build-
ing block should be able to use the address returned by the lookup
to perform routing as a normal switch.

Carry Extra Information. A single building block should be
able to modify packets to append/remove additional headers which
carry extra information to the next logical hop. The ability to ap-
pend/remove additional headers is required by Forwarder and State
Owner because they need to carry SlimeMold’s internal informa-
tion (e.g., packet type, whether to update the cache of a Forwarder,
and the address of the Forwarder) to other roles.

3.4 ConnTable Cache

Instead of going directly to the DIP from a load balancer node in tra-
ditional systems, a flow will be detoured in SlimeMold. Specifically,
a flow will be transmitted from a Forwarder to its State Owner to
query its ConnTable entry, which will increase the traffic volume
in the network and may lead to congestion. This also adds network
latency which may downgrade application performance, especially
for those latency-intensive applications. To alleviate the problem,
we add a ConnTable cache on each Forwarder: If a flow finds its
entry in Forwarder, it will go to DIP directly; Otherwise, it will go
to State Owner to get its DIP.

To avoid unnecessary traffic, in SlimeMold, we let the cache
be managed by Forwarder. If the cache misses for a packet on a

Z. Liu et al.

Forwarder, it will send the packet to State Owner with a mark that
indicates if it needs to get the flow state to update its cache. To
update the cache, State Owner should send an additional packet
carrying the ConnTable entry back to the Forwarder. We use this
design instead of letting the original packet piggyback states to
avoid extra packet detour and possible out-of-order caused by the
detour.

According to switches’ limit programmability, they can only im-
plement simple cache policies i.e., direct-mapped cache (associates
a flow to one specific cache line using hash). Hash collision is easy
to happen in a direct-mapped cache. To avoid frequent cache update
which causes flow path changes, we do not allow cache eviction
on hash collision. This means that a flow will be admitted into the
cache only if the corresponding entry is empty. Our results in §4.2.1
show this simple cache policy already has good performance gain.

Load balancers usually delete a flow table entry if no traffic uses it
for a fixed period which is called aging. To invalidate an entry in the
cache, a Forwarder uses the same aging timer value as State Owner.
This causes an issue in our design: if a flow hits a Forwarder’s cache
for a duration longer than the aging threshold, its State Owner
will delete the entry since no packet arrives from this flow. Thus
in SlimeMold, a Forwarder should refresh State Owner before the
aging timer expires if a flow entry is cached. We let Forwarder send
an extra packet to a flow’s State Owner to refresh the aging timer of
this flow on State Owner. To avoid failed refresh caused by network
latency and packet loss, the refresh timer is set to 1/4 of the aging
timer to balance robust considerations and network overhead. As
the typical aging threshold is usually seconds level, this won’t add
much network traffic overhead.

3.5 Table Entry Balance

A flow’s ConnTable entry is managed by a specific State Owner
according to its flow hash. Because of different flow sizes and live
time, the load of State Owners may vary, in terms of traffic volume
served and the number of concurrent ConnTable entries. Without
load balancing between State Owners, resource utilization will be
affected since the system load depends on the switch with the
maximum load.

Simply moving existing entries to a new switch and then modify-
ing the 2-level State Owner mapping will cause PCC violation dur-
ing the moving process. SlimeMold introduces an elegant segment
migration scheme to balance load among State Owners. Specifically,
we partition the segment transfer into three phases: mirroring, mod-
ification, and recycling. In the mirroring phase, the queries to a
transferred segment are still served by the original State Owner
and mirrored to the new State Owner. To achieve this, SlimeMold
controller configures the original State Owner to forward packets
that will change a ConnTable entry (e.g., a packet may trigger the
creation or deletion of an entry, refresh the aging timer) to the new
State Owner. After at least one complete aging period, all valid en-
tries have been mirrored to the new State Owner and the execution
goes to the modification phase. In this phase, SlimeMold controller
first lets the original State Owner give the ownership of this seg-
ment by forwarding all packets belonging to this segment to the
new State Owner instead of mirroring operations. Then, it modifies
the segment’s State Owner in all related Secondary Lookup’s State

SlimeMold: Hardware Load Balancer at Scale in Datacenter

Owner table. After the State Owner mapping update, migration
enters the last phase where SlimeMold controller stops the for-
warding from the original State Owner to the new State Owner by
deleting the related table entry. SlimeMold controller also recycles
the related table entries on the original State Owner.

SlimeMold controller collects load metrics from all switches
it managed and uses them to balance table entry. Choosing load
metrics and adjusting algorithms are out of this paper’s scope. Here
we give a simple load-adjusting algorithm as a baseline. The load
adjusting algorithm has a parameter called load imbalance threshold
r and will adjust loads based on State Owners’ ConnTable utilization
ratio. If the algorithm finds that the ratio of the minimal to maximal
ConnTable usage among all State Owners is less than r, it will
transfer one segment from the most utilized State Owner to the
least utilized State Owner. The process will be repeated several
times until the ratio of the minimal to maximal is greater than r.
Because the maximal ConnTable usage should not exceed a State
Owner’s physical capacity, the peak resource utilization which can
be achieved by SlimeMold is average/maximal, i.e. (1+7)/2.

3.6 Open Questions

There are still open questions we have not solved in the current
SlimeMold design. Here we list and briefly discuss them.

Role Placement. Current SlimeMold design only contains the
logical relation between roles but does not include how to place
them physically in a data center. Different placements may influence
SlimeMold’s performance as the number of physical hops between
two nodes differs. A good placement algorithm should minimize
packet detour caused by SlimeMold.

Routing between Roles. Different roles in SlimeMold may not
be physically connected in the data center. We need to route packets
to the destination role through the existing data center network.
How to work with the underlying network architecture efficiently
remains a question.

Decide the Number of Segments. A large number of segments
can provide fine-grained ConnTable balance but causes high prefix
lookup table overhead. We need further investigations on the proper
number of segments.

Table Entry Balance Algorithms. SlimeMold provides a frame-
work and is open to using advanced algorithms to balance the load
between State Owners. How to design such an algorithm and what
is the potential trade-off is one of our future works.

Heterogeneous Switches. Data center may use different types
of switches, and available resources on different types or even the
same type of switch may differ. How to make SlimeMold be aware
of heterogeneous switches and consider them when taking actions
requires further investigations.

Failure Detection and Handling. As a distributed system, sin-
gle point of failure and network failure will cause serious problems.
How to detect failures? How to avoid state loss if State Owner
fails? How to route packets to avoid failure nodes and links? These
questions are valuable to consider to make SlimeMold robust.

DIP Decision. Current SlimeMold only focuses on scale-out of
forwarding in load-balancer. Efficiently scaling out DIP decision
and eflicient interactions between these two components are still
open questions.

APNET 2023, June 29-30, 2023, Hong Kong, China

Throughtput P99 lat. CT entries
SlimeMold BB 8Tbps < 2us 1M
Table 1: Performance of SlimeMold Building Block

Query Insert Delete
OPS line rate 1.485M ~ 0.6M
Latency < 2us 167ns < 140ms

Table 2: Performance of ConnTable Operations

4 EVALUATION

We build an Ethernet switch using Broadcom SmartToR [8] pro-
grammable switch chip which is an 8T switch device with support
of 25G, 100G, 200G, and 400G ports. We implement basic features
of SlimeMold including Classification, ConnTable, Prefix Lookup,
and Carrying Extra Information on our testbed. We use Spirent
FX3-100GQ-T2 test module [7] to evaluate the prototype’s charac-
teristics.

We also implement a flow-level simulator in C++ for large-scale
simulation. We use Fat-Tree topology [9] with size parameter K
set to 32 (8192 servers, and 512, 512, 256 for ToR, Aggregation, and
Core switches, respectively). We use two widely used realistic work-
loads web search [10] and data mining [15] as the size distribu-
tion of generated traffic. We set the number of VIPs as 10x of the
number of servers, and randomly choose them from 172.0.0.1 to
172.255.255.255. We assign server IP sequentially from 10.0.0.1, and
the sender and DIP are chosen from all servers uniformly. By default,
SlimeMold uses all ToR and Aggregation switches in the topology.
Each ToR switch acts as both a Forwarder and a State Owner. Each
Aggregation switch acts as a Secondary Lookup. The number of
available CAM table entries in each switch is 1.5 million. 2/3 of
a switch’s available table resource is intended for State Owner’s
ConnTable, and the rest 1/3 is intended for Forwarder’s cache. As
the number of segments is only up to 8192 (> 10 X 512), we omit
the table resource overhead of 2-level State Owner mapping in the
calculation. The flow hash function is CRC32. We use the example
table entry balance algorithm described in §3.5, and the imbalance
ratio r is set to 0.8.

4.1 Building Block Performance

We measure the performance of a SlimeMold building block using
traffic generated by multiple Spirent test modules. One Spirent test
module is connected to two ports and sends bidirectional traffic
to test the bandwidth and latency between these ports. We first
insert 50% flow entries to ConnTable. Then we generate 1500B sized
packets whose destination address is in the ConnTable and measure
the performance. The results are shown in Table 1. The throughput
reaches 8Tbps which is the line rate of the test switch. The latency
has little variation but all results are less than 2us. We also show
the total ConnTable capacity we support in the table which is 1
million.

We also measure each ConnTable operation performance and
list the results in Table 2. Because we have not implemented aging,
we do not evaluate it. We use the same method as bandwidth to test
query performance under various packet sizes. Its OPS can reach
the theoretical bound and latency is up to 2us. To measure insert

APNET 2023, June 29-30, 2023, Hong Kong, China

1.0 I
0.8

0.6

CDF

0.4

0.2 —— w/o cache

0ol —1

1 2 3 4 5 6
Normalized Traffic Volume
Figure 3: Normalized traffic volume distribution

w/ cache

OPS, we program the chip to record the first insert time and last
time during inserting 0.1M, 0.2M, ..., 1M entries into ConnTable.
To measure the latency of an insert, we program the chip to set a bit
in the packet to one if ConnTable hits and set it to zero otherwise,
and measure the time difference between the first sent packet and
the first packet with the bit set on the receiver. The method to
measure deletion is similar. The insert speed is much higher than
control plane based method as mentioned in Silkroad [16] as all
hash computation and hash table management are done in hard-
ware provided by Broadcom SmartToR chip [2]. Unlike the insert
operation, the delete operation speed shows a slightly increasing
trend ([0.587M, 0.612M]) if there are more used entries in the table.
The latency of deletion is longer as we implement it in batch due to
the hardware’s characteristics. Specifically, a delete operation will
set a bit in a bitmap to indicate that an entry should be deleted, and
we use the R5 ARM core on the chip to scan the bitmap periodically
and execute deletions. Because the latency variation is large due to
batch, we only provide an upper bound. This long deletion latency
makes the table occupancy higher than ideal, thus may affect total
CPS and the number of concurrent flows. We leave the detailed
impact to future evaluation.

4.2 Large Scale Simulation

4.2.1 Extra Traffic Overhead. As SlimeMold routes a flow passes
Forwarder and State Owner (if cache misses) which may not be on
the optimal path between the source and DIP, the traffic volume in
the data center network is enlarged as the hops of a flow increase.
Here we define the traffic volume of a flow as the number of hops
multiples the total bytes in a flow. Please note that a flow may
change its path due to a cache hit or miss. The actual calculation is
more complex. Let b; denote each byte in a flow and n; denote the
number of hops b; passes. The traffic volume of this flow is)’ n;.

To show how much extra traffic SlimeMold will add to the data
center network, we conduct a simulation and get the number of
hops each flow passes. We use the web search traffic pattern to
generate flows. We normalize the traffic volume of each flow as its
optimal path and plot the CDF in Figure 3. From the result, we can
see that without cache, about 90% flows will have at least 2x hops
compared with the optimal. While, even with the simplest cache
policy, over 70% flows can be cached and go through the shortest
path between the source and DIP.

4.2.2 Table Entry Balance. In this experiment, we show SlimeMold
can effectively avoid hot spots which can improve the overall table

Z. Liu et al.

w/o Balance w/ Balance

Web Search 1.2 1.13
Data Mining 1.22 1.128

Table 3: Imbalance (max load / avg load) before / after apply-
ing table entry balance algorithm

W
(=3
(=]

—— Ideal (y = Xx)
=== Target (y = 0.9x)
Actual

IS
=
S

Flow Concurrency (Millions)

0 100 200 300 400 500
Number of Switches

Figure 4: Scalability

utilization. We measure the imbalance index (defined as the maxi-
mum load divided by the average load of the State Owner table) of
SlimeMold switches with and without the table entry balance algo-
rithm under two traces. The results are shown in Table 3. Without
table entry balance, the imbalance index is over 1.2. If we enable
table entry balance, the imbalance index drops to about 1.13. As we
set the imbalance ratio r to 0.8, the average load among all switches
is expected to be about 0.9 of the max load, and the ideal imbalance
index should be about 1/0.9 = 1.11. In conclusion, SlimeMold table
entry balance algorithm can effectively balance table entries close
to the target.

4.2.3 Scalability. In this experiment, we run simulations to eval-
uate SlimeMold’s scalability. We vary the size parameter K =
4,8, 16, 32 of Fat-Tree topology (having 8, 32, 128, 512 ToR/Aggrega-
tion switches, respectively), and adjust the traffic load to achieve
the maximum flow concurrency supported by SlimeMold while
not exceeding any State Owner’s physical capacity. The results are
shown in Figure 4. We can see that SlimeMold can scale linearly as
the number of switches in the system increases, and can achieve
about 0.89 flow state table utilization under the setting. The re-
source utilization is quite close to the theoretical value which is
(1+0.8)/2=0.9.

5 CONCLUSION

In this paper, we have presented SlimeMold, a scalable hardware
load balancer for data centers. Our approach distinguishes itself
from existing ones by promoting collaborative HLBs to enhance
overall HLB performance, rather than focusing solely on improving
individual LBs. In this architecture, each LB on a programmable
switch serves as a building block for the entire HLB. Consequently,
the total capacity of the load balancer is proportional to the number
of building blocks in our design. We implement a real HLB building
block using the Broadcom 56788 SmartToR chip, which achieves
line rate for state read and >1M OPS for flow write operations. In
large-scale experiments, our simulation demonstrates full scalabil-
ity, supporting 454 million concurrent flows with 512 State Owner
nodes.

SlimeMold: Hardware Load Balancer at Scale in Datacenter

REFERENCES

(1]

[2

[

[10]

[11]

2018. Unveiling the Networks behind the 2018 Double 11 Global Shopping
Festival. https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996
646101.searchclickresult.289b2f0575gg5Z.

2023. BCM56780 Series. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56780.

2023. Broadcom Breaks New Ground with Trident SmartToR, Converging Switch-
ing, Routing, and L4-L7 Services. https://investors.broadcom.com/news-
releases/news-release-details/broadcom-breaks-new-ground-trident-
smarttor-converging- switching.

2023. DPVS is a high performance Layer-4 load balancer based on DPDK. https:
//github.com/iqiyi/dpvs.

2023. Equal Cost Multipath Load Sharing - Hardware ECMP. https://docs.nvidia.
com/networking-ethernet-software/cumulus-linux-43/Layer-3/Routing/Equal-
Cost-Multipath-Load-Sharing-Hardware-ECMP/.

2023. NPL - Open, High-Level language for developing feature-rich solutions
for programmable networking platforms. https://nplang.org/.

2023. Spirent FX3 2-Port Quint-Speed QSFP28 Modules. https://www.spirent.co
m/assets/u/spirent_fx3_hse_module_datasheet.

2023. Trident SmartToR. https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/smarttor.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. ACM SIGCOMM computer
communication review 38, 4 (2008), 63-74.

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
center tcp (dctep). In ACM SIGCOMM (2010).

Tom Barbette, Chen Tang, Haoran Yao, Dejan Kosti¢, Gerald Q Maguire Jr, Panagi-
otis Papadimitratos, and Marco Chiesa. 2020. A high-speed load-balancer design
with guaranteed per-connection-consistency. In USENIX NSDI (2020).

[12

(13

[14

[16

[17

(18]

[19

N
=

APNET 2023, June 29-30, 2023, Hong Kong, China

Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-
nah Dylan Hosein. 2016. Maglev: A fast and reliable software network load
balancer. In USENIX NSDI (2016).

Rohan Gandhi, Y Charlie Hu, Cheng-kok Koh, Hongqiang Harry Liu, and Ming
Zhang. 2015. Rubik: Unlocking the power of locality and end-point flexibility in
cloud scale load balancing. In USENIX ATC (2015).

Rohan Gandhi, Honggiang Harry Liu, Y Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud scale load balancing with
hardware and software. ACM SIGCOMM Computer Communication Review (2014).

Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A scalable and flexible data center network. In Proceedings
of the ACM SIGCOMM 2009 conference on Data communication. 51-62.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In ACM SIGCOMM (2017).

Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, et al.
2013. Ananta: Cloud scale load balancing. ACM SIGCOMM Comput. Commun.
Rev 43, 4 (2013), 207-218.

Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active Device and Link Failure
Localization in Data Center Networks.. In USENIX NSDI (2019).

Chaoliang Zeng, Layong Luo, Teng Zhang, Zilong Wang, Luyang Li, Wenchen
Han, Nan Chen, Lebing Wan, Lichao Liu, Zhipeng Ding, et al. 2022. Tiara: A
scalable and efficient hardware acceleration architecture for stateful layer-4 load
balancing. In USENIX NSDI (2022).

Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok Kim, Shir Landau-Feibish, Idit
Keidar, Arik Rinberg, Alon Rashelbach, Igor De-Paula, and Mark Silberstein. 2022.
{SwiSh}: Distributed Shared State Abstractions for Programmable Switches. In
USENIX NSDI (2022).

https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.alibabacloud.com/blog/594167?spm=a2c5t.11065265.1996646101.searchclickresult.289b2f0575gg5Z
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56780
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56780
https://investors.broadcom.com/news-releases/news-release-details/broadcom-breaks-new-ground-trident-smarttor-converging-switching
https://investors.broadcom.com/news-releases/news-release-details/broadcom-breaks-new-ground-trident-smarttor-converging-switching
https://investors.broadcom.com/news-releases/news-release-details/broadcom-breaks-new-ground-trident-smarttor-converging-switching
https://github.com/iqiyi/dpvs
https://github.com/iqiyi/dpvs
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-43/Layer-3/Routing/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-43/Layer-3/Routing/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux-43/Layer-3/Routing/Equal-Cost-Multipath-Load-Sharing-Hardware-ECMP/
https://nplang.org/
https://www.spirent.com/assets/u/spirent_fx3_hse_module_datasheet
https://www.spirent.com/assets/u/spirent_fx3_hse_module_datasheet
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/smarttor
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/smarttor

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Design
	3.1 Overview
	3.2 2-Level State Owner Mapping
	3.3 Single Building Block
	3.4 ConnTable Cache
	3.5 Table Entry Balance
	3.6 Open Questions

	4 Evaluation
	4.1 Building Block Performance
	4.2 Large Scale Simulation

	5 Conclusion
	References

