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ABSTRACT
This paper presents Solar, a system for automatic synthesis of
adversarial contracts that exploit vulnerabilities in a victim smart
contract. To make the synthesis tractable, we introduce a query
language as well as summary-based symbolic evaluation, which sig-
nificantly reduces the number of instructions that our synthesizer
needs to evaluate symbolically, without compromising the preci-
sion of the vulnerability query. We encoded common vulnerabilities
of smart contracts and evaluated Solar on the entire data set from
Etherscan. Our experiments demonstrate the benefits of summary-
based symbolic evaluation and show that Solar outperforms state-
of-the-art smart contracts analyzers, teether, Mythril, and Con-
tractFuzzer, in terms of running time and precision.
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1 INTRODUCTION
Smart contracts are programs running on top of blockchain plat-
forms such as Bitcoin [19] and Ethereum [20]. They interact with
each other to perform effective financial transactions in a dis-
tributed system without the intervention from trusted third parties
(e.g., banks). A smart contract is written in a high-level program-
ming language (e.g., Solidity [23]), and it is typically comprised of
a unique address, persistent storage holding a certain amount of
cryptocurrency (i.e., Ether in Ethereum), and a set of functions that
manipulate the persistent storage to fulfill credible transactions
without trusted parties. For contract-to-contract interaction, some
functions are public and callable by other contracts. Thanks to the
expressiveness afforded by the high-level programming languages
and the security guarantees from the underlying consensus proto-
col, smart contracts have shownmany attractive use cases, and their
number has skyrocketed, with over 45 million [11] instances cov-
ering financial products, online gaming, real estate [15], shipping,
and logistics [16].

Because all smart contracts deployed on a blockchain are freely
accessible through their public methods, any functional bugs or
vulnerabilities inside the contracts can lead to disastrous losses,
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as demonstrated by recent attacks [2, 4, 6, 27]. For instance, the
code (simplified) in Figure 1 illustrates the notorious Reentrancy
attack [6]. When the victim program (3) issues a money transac-
tion to the attacker (2), it implicitly triggers the attacker’s callback
method, which invokes the victim’s method (i.e., withdraw) again
to make another transaction without updating the victim’s balance.
The attack maliciously extracted tokens from the victim and led
to a financial loss of $150M in 2016. To make things worse, smart
contracts are immutable—once they are deployed, fixing their bugs
is extremely difficult due to the design of the consensus protocol.

Improving robustness of smart contracts is thus a pressing prac-
tical problem. Unsurprisingly, a complex vulnerability like Reen-
trancy typically involves interactions between multiple contracts,
which requires an analyzer to model the inter-contracts commu-
nication and reason about the execution in a precise and scalable

way. But existing tools either aggressively overapproximate the
execution a smart contract and report warnings [34, 48] that do
not correspond to feasible paths and therefore cannot be exploited,
or they precisely enumerate [39, 42, 43] concrete traces of a smart
contract, so cannot scale to large programs with many paths.

This paper presents Solar, a new point in the design space of
smart contract analysis tools that achieves an effective trade-off
among expressiveness, precision, and scalability. Solar provides
the security analyst with a query language for expressing vulner-
ability patterns that can be exploited in an attack, as well as an
automatic engine for synthesizing an attack program (if one exists)
that exploits the given vulnerability. Our key insight is based on
the observation that an attacker typically exploits the vulnerability
by making a sequence of transitions (calls over public methods of
the victim), in which storage states are preserved across different
transitions. Because most types of vulnerabilities can be overap-
proximated through assertions over storage variables (Section 4.2),
this insight motivates an effective summary-based symbolic evalua-
tion technique where the summary of a method soundly models its
side-effect over storage variables, which dramatically reduces the
number of instructions that Solar has to re-evaluate symbolically.
As a result, Solar is able to scale reasoning with better precision
to large contracts that are out of reach of existing symbolic exe-
cution [42, 43] and fuzzing [39] tools. Furthermore, previous sum-
marization techniques [26, 33] rely on symbolic execution and can
therefore lead to summaries that are exponential in program size.
Our technique relies on Rosette [47], a hybrid symbolic evaluator
that combines symbolic execution and bounded model checking, to
compute compact (i.e., polynomially-sized) and precise (i.e., encod-
ing all feasible bounded paths) summaries at the procedure level.
Using these summaries, Solar can perform precise all-paths anal-
ysis of a given contract while symbolically executing significantly
fewer paths than Rosette alone.
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Figure 1: Sample contracts to show the Reentrancy attack.

To use our tool, a security analyst expresses a target vulnerability
query (e.g., the reentrancy vulnerability) as a declarative speci�ca-
tion. Solar then synthesizesan attack program that exploits the
victim's public interface to satisfy the vulnerability query. Given
this problem, a naive approach is to enumerate all possible can-
didate programs and then symbolically evaluate each of them to
check if it satis�es the query. While precise, the naive approach
fails to scale to realistic contracts.

Even with summarization, the search space is still too large for
brute-force enumeration. To address this issue, we partition the
search space by case splitting on the range of symbolic variables,
which allows us to simultaneously explore multiple attack programs
using Rosette's SMT-based symbolic evaluation engine [47].

We have evaluatedSolar on the entire data set (¡ 25K) from
Etherscan [11], showing that our tool is expressive, e�cient, and
e�ective. Solar 's query speci�cation language is expressive in that
it is rich enough to encode common vulnerabilities found in the lit-
erature (such as the Reentrancy attack [6], Time manipulation [17],
and malicious access control [42]), Security Best Practices [10], as
well as the recentBatchOverflow Bug [13] (CVE-2018�10299),
which allows the attacker to create an arbitrary amount of cryp-
tocurrency.Solar is e�cient: on average it takes only 8 seconds to
analyze a smart contract fromEtherscan , which is four times faster
than teether [42] and two orders of magnitude faster thanCon-
tractFuzzer [39]. Solar is also e�ective in that it signi�cantly
outperforms state-of-the-art smart contracts analyzers, namely,
teether , Mythril , andContractFuzzer , in terms of false posi-
tive and false negative rates. The approximate queries also enable
Solar to generate compact summaries and explore deeper vulnera-
bilities in exchange for a minor loss in precision.

In summary, this paper makes the following contributions:

� We formalize the problem of exploit generation as a program
synthesis problem and provide a query language for express-
ing common vulnerabilities in smart contracts as declarative
speci�cations (Section 4.2).

� We propose a new summary-based symbolic evaluation tech-
nique for smart contracts that signi�cantly reduces the num-
ber of paths thatSolar has to execute symbolically (Sec-
tion 5).

� We develop an e�cient attack synthesizer based on the
summary-based symbolic evaluation, which incorporates
a novel combination of search space partitioning and paral-
lel symbolic execution based on the semantics of candidate
programs (Section 6.2).

� We perform a systematic evaluation ofSolar on the entire
data set fromEtherscan . Our experiments demonstrate the
substantial bene�ts of our technique and show thatSolar
outperforms three state-of-the-art smart contracts analyzers
in terms of running time and precision. (Section 7).

2 BACKGROUND
We �rst review necessary background on smart contracts.

Smart Contract.Smart contracts are programs that are stored
and executed on the blockchain. They are created through the trans-
action system on the blockchain and are immutable once deployed.
Each smart contract is associated with a unique 160-bit address;
a private persistent storage; a certain amount of cryptocurrency,
expressed as a balance (i.e., Ether in Ethereum) held by the contract;
and a piece of executable code that ful�lls complex computations to
manipulate the storage and balance. The code is typically written
in a high-level Turing-complete programming language such as
Serpent [22], Vyper [24], and Solidity [23], and then compiled to the
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Ethereum Virtual Machine (EVM) bytecode [21], a low-level stack-
based language. For instance, Figure 1 shows two smart contracts
written in the Solidity programming language [23].

Application Binary Interface.In the Ethereum ecosystem, smart
contracts communicate with each other using the Contract Ap-
plication Binary Interface (ABI), which de�nes the signatures of
public functions provided by the hosted contract. While ABI o�ers
a �exible mechanism for communication, it also creates an attack
surface for exploits that use the ABI of a given smart contract.

Threat Model.To synthesize an adversarial contract, we assume
that the attacker can obtain the victim contract's bytecode and
the ABI specifying its public methods. To con�rm an adversarial
contract is indeed an exploit, we must also be able to invoke public
methods by submitting transactions over the Ethereum Blockchain.
These requirements are easy to satisfy in practice.

3 OVERVIEW
In this section, we give an overview of our approach with the aid
of a motivating example.

3.1 Smart Contract Vulnerabilities
A security analyst, Alice, can specify various types of vulnerabil-
ities that may appear in a smart contract. For instance, Figure 1
shows a simpli�ed example of aReentrancy attack. Thewithdraw
function does two steps:1 send a given amount of Ether to the
caller, and2 update the storage state to re�ect the new balance. At
any point, the total amount of balances of the victim and attacker
should remain the same (i.e.,� E ¸ � 0 = � ). However, since1 hap-
pens before updating the state in2 , an attacker can re-enter the
withdraw function again through the anonymous callback function
triggered by 1 . As a result, the execution of the attack program
can lead to an inconsistent state (i.e.,� 0

E ¸ � 0
0 ¡ � ), which enables

the attacker to extract a large amount of Ether from the victim.1

To automatically generate exploits for theReentrancy vulnera-
bility, Alice �rst speci�es a querythat characterizesthe semantics
of Reentrancy . As shown in the lower part of Figure 1, the attack
can be summarized using a sequence of key statements between the
victim and the attacker, i.e., two or moretransfer 2 instructions
followed by astore operation, which can be expressed using the
�rst-order formula 3 in Figure 1.

Once Alice expresses theReentrancy vulnerability, the next
step is to construct an attack to con�rm that the vulnerability indeed
exists in the victim contract. Alice can leverage existing symbolic
execution tools [12, 42, 43] to generate exploits for simple proper-
ties such as attack-control [42]) in a single contract. But for complex
vulnerabilities that require reasoning about interactions among
multiple contracts (e.g., attacker versus victim inReentrancy or
caller versus callee in Parity Multisig [14]), existing tools provide
either no support [42] or very limited support that leads to high
rates [43] of false positives and negatives (as shown in Section 7.1).
Yet Alice can easily initialize the boilerplate code for basic interac-
tions, like the �attack template" on the left hand side of Figure 1.
1Ethereum's gas mechanism ensures that this callback loop terminates.
2We usetransfer to denote thecall instruction in EVM.
3Solar converts a query into its corresponding FOL formulas through a syntax-directed
translation.

Figure 2: An example to show the BatchOverflow attack.

What she needs is an e�cient way to �ll in the details of the attack
program, which involves exploring the space of all programs that
can be obtained by completing the template with the methods from
the victim's interface.

3.2 Solar
Solar helps automate this process by searching for attacks that
exploit a given vulnerability in a victim contract. The tool takes
as input a potential vulnerabilityV expressed as a declarative
speci�cation. IfV exists in the victim contract,Solar automatically
synthesizes anattack programthat exploitsV . An attacker interacts
with a vulnerable contract through its public methods de�ned in
the ABI. Therefore, our goal is to construct an attack program that
exploits the victim's ABI and that contains at least one concrete
trace whereV holds.

To achieve this goal,Solar models the executions of a smart
contract asstate transitionsover registers, memory, and storage. The
vulnerability V is expressed in Racket [5] as a boolean predicate
over these state transitions. The technical challenge addressed by
Solar is to e�ciently search for an attack program whereV holds.

To illustrate the di�culty of this task, consider the problem of
synthesizing an attack program that exploits theBatchOverflow
vulnerability (CVE-2018�10299) [13] in Figure 2. The attack pro-
gram performs a complex three-step interaction with the victim
contract. First, the attacker must set the storage variableflag to
true to pass the check at line 11. Next, it needs to assign a large
number tov that leads to an over�ow at line 10. Finally, it speci�es
the attacker's address as the bene�ciary of the transaction (line
16). Synthesizing this attack program involves discovering which
methods to call, in what order, and with what arguments.

The naive approach to solving this problem is to generate all
possibleconcrete programsand explore the space of theirconcrete
traces. This approach su�ers from two sources of exponential ex-
plosion. First, there are$ ¹=: º concrete programs of length: for
a victim contract with= public methods. Second, the number of
concrete traces in each of these programs is exponential in the size
of the program's global control-�ow graph obtained by inlining all
method calls.

To address the trace explosion challenge,Solar employs a novel
summary-based symbolic evaluation technique presented in Sec-
tion 5. Intuitively, this technique enablesSolar to preserve only
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hvari ::= def-sym id g whereg 2 fboolean•number g
hpci ::= hconsti | hvari
hexpri ::= hconsti | hvari | hexpri � h expri

(� 2 f¸ •� •� •••_•^ • ”””g)
hstmti ::= hvari := hexpri

| hvari := mload hvari | mstore hvari hvari
| hvari := sload hvari | sstore hvari hvari
| hvari := {balance, gas, address}

hstmtsi ::= hstmti | hstmti ; hstmtsi | sha3 hvari hvari
| jumpI hpci hexpri | jump hpci | no-op
| transfer hvari hvari h...i | selfdestruct hvari

hparami ::= hvari
hparamsi ::= hparami | hparami , hparamsi
hprogi ::= _hparamsi . hstmtsi

Figure 3: Intermediate language for smart contract

those state transitions that are persistent across di�erent transac-
tions and aresu�cient to answer the vulnerability query.

To address the program explosion challenge, Section 6 introduces
two additional optimizations. First, instead of exploring the space of
concrete programs, we leverageRosette [47] to partition this space
into a small set ofsymbolic programs(Section 6.1). Second, instead
of executing each symbolic programsequentially, we partition the
search space by case splitting on the range of symbolic variables,
which enablesSolar to simultaneously explore multiple symbolic
candidates (Section 6.2).

4 PROBLEM FORMULATION
This section formalizes the semantics of smart contracts, shows
how to express smart contract vulnerabilities inSolar , and de�nes
the problem of synthesizing an attack contract that exploits a given
vulnerability.

4.1 Smart Contract Language
Figure 3 shows the core features of our intermediate language for
smart contracts. This language is a superset of the EVM language.
It includes standard EVM bytecode instructions such as assignment
(x := e), memory operations (mstore,mload), storage operations
(sstore,sload ), hash operation (sha3), sequential composition
(B1;B2), conditional (jumpi ) and unconditional jump (jump). It also
includes the EVM instructions speci�c to smart contracts:transfer
denotes all functions that send tokens between di�erent addresses,
balance accesses the current account balance, andselfdestruct
terminates a contract and transfers its balance to a given address.
Finally, our language extends EVM with features that facilitate
symbolic evaluation, includingsymbolic variables(introduced by
def-sym) andsymbolic expressions(obtained by operating on sym-
bolic variables) whose concrete values will be determined by an
o�-the-shelf SMT solver [44].

We de�ne the operational semantics of each statement in Figure 3
based on the standard de�ned by the EVM yellow paper [7]. The
semantics is lifted to work on symbolic values in the standard
way [47]. The meaning of a statement is given by astate transition
rule that speci�es the statement's e�ect on theprogram state. We
de�ne states and transitions as follows.

De�nition 4.1. (Program State) TheProgram State� consists of
a stack� , memory" , persistent storage( , global properties (e.g.,

(a) Solidity program
1 require (_amount > 0) ;
2 vesting .amount = _amount .sub (1) ;
3 transfer (msg .sender ,_to , vesting .amount ) ;
4 uint256 v1 = _amount - 15;
5 uint256 wei = v1;
6 uint t1 = vesting . startTime ;
7 emit VestTransfer (msg .sender , _to , wei , t1 , _);

(b) Symbolic evaluation
1 assert ( _amount > 0) ;
2 r1 := _amount - 1;
3 sstore ( vesting .amount , _amount - 1) ;
4 transfer (msg .sender , _to , _amount - 1) ;
5 r2 := amount - 15;
6 r3 := amount - 15;
7 r4 := sload (vesting . startTime );
8 no-op;

(c) Summary extraction
1 BBC>A4¹vesting ”amount•� ( »_amount¼ �1º@¹� ( »_amount¼¡ 0º ;

2 CA0=B5 4A¹� ( »msg”sender¼•� ( »_to ¼•� ( »_amount¼ �1º@¹� ( »_amount¼¡ 0º
;

(d) Summary interpretation
1 if ( � »_amount¼¡ 0) sstore ¹vesting ”amount•� »_amount¼ �1º ;
2 if ( � »_amount¼¡ 0) transfer ¹� »msg”sender¼•� »_to ¼•� »_amount¼ �1º ;

Figure 4: From Standard to Summary-Based Symbolic Evaluation

balance, address, timestamp) of a smart contract, and the program
counterpc. We use48,< 8, and`8 to denote variables from the stack,
memory, and storage, respectively.

A program state also includes a model of the gas system in EVM,
but we omit this part of the semantics to simplify the presentation.
If a state maps a variable to a symbolic expression, we call it a
symbolic state.

De�nition 4.2. (State transition over statement B) A State Tran-
sitionT over a statementBis denoted by a judgment of the form
� ` B: � 0• E. The meaning of this judgment is the following: assum-
ing we successfully executeBunder program state� , it will result
in valueEand the new state is� 0.

Example 4.3.Figure 4a shows a smart contract written in Solidity.
To analyze this contract,Solar �rst translates it to the program in
Figure 4b, using the intermediate language in Figure 3. The result-
ing program is then evaluated symbolically in an environment�
that binds_amountto a fresh symbolic number. For instance, after
executing line 2 in Figure 4b, registerr1 holds a symbolic value
represented by� »_amount¼ �1. SinceSolar does not model the
event system in Solidity, we turn the corresponding instructions
(e.g., line 7 in Figure 4b) intono-ops.

De�nition 4.4. (Abstract execution trace) An abstract execu-
tion traceR contains a list of events (i.e., statements) that are of
interest. Each event has an event type representing the type of
statement, and a list of attributes.
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4.2 Smart Contract Vulnerabilities
We now describe how to express smart contract vulnerabilities in
Solar and what it means for a vulnerability to appear in a program.

Figure 5 shows our query language over program traces. A query
consists of three parts. Theuses block declares typed variables,
which are matched against variables or statements appearing in the
program. Thematches block speci�es a sequence of statements
that are matched against the program trace. Thewhere clause
further re�nes the search criteria by imposing constraints over the
matched statements.

Query variables.Query variables in theusesblock correspond
to variables or statements in the program trace. Common variables
include statements, storage variables, arguments, etc.

Statements.Statements in the query language correspond to
events in the execution trace discussed in Section 4. In particular,
an event is of type record whose �elds are properties of that event.
Table 1 lists the �elds of some representative statements appearing
in the query. Furthermore, aseqStmt such asa;b speci�es that
the eventa happens beforeb. Finally, the exclusion operator �� � is
used to prohibit an event from appearing in the trace.

Conditional clauses.The criteria of a query can be further re�ned
using theconditional clausesin the where block. In particular, a
conditional clause is a boolean expression whose sub-expressions
are constants, query variables, �elds of query variables, or custom
predicate likeinterfere which we introduce later.

hqueryi ::= huses declList;i
| hmatches {seqStmt}i
| hwhere condi

hdeclListi ::= htypeName id (,id)*i
htypeNamei ::= hidi
hstmti ::= htransferi | hsstorei | hjumpi | hbinaryExpi | h~stmti ...
hseqStmti ::= hstmti | hstmt;stmti
hcondi ::= hEi � h Ei (� 2 f¸ •� •¡ •<•_•^ • ”””g)
hEi ::= hconsti | [[var]] | hvari

| h�eldAccessi | (interfere?hEi hEi )
hvari ::= hlocali | hargumenti
h�eldAccessi ::= hid.idi
hidi ::= hA-Za-zi *

Figure 5: Query language for Solar

Compilation of query. Solar converts query into correspond-
ing FOL formulas through a syntax-directed translation. For queries
that contain quanti�ers, we use skolemization to make them quanti�er-
free (or reject them if they cannot be skolemized).

The rest of this section introduces a few representative vulnera-
bilities, and shows how they are encoded as formulas inSolar . But
�rst, we introduce an auxiliary functioninterfere? which will be
used by several vulnerabilities.

De�nition 4.5. (Interference) A symbolic variableEinterferes
with a symbolic expression4 if they satisfy the following constraint:
9E0• E1” 4»E0•E¼< 4»E1•E¼ ^ ¹E0 < E1º

Fields of transfer statement

sender sender's address
recipient target's address
loc program counter of the statement
gas gas budget for the transfer
amount amount of tokens
ret return value of the statement

Fields of jump statement

condVar condition variable of jump statement
target target address

Fields of sstore statement

name name of storage variable
value new value that is used

Fields of binary statement

lhs variable that is assigned
opcode opcode of the binary statement
oprand1 the �rst operand
oprand2 the second operand

Table 1: Fields of core statements appearing in the query lan-
guage

Intuitively, changingE's value will also a�ect4's output, which is
denoted as �(interfere?E 4)". Interference precisely captures the
data- and control-dependencies between two expressions and turns
out to be thenecessary conditionof many exploits.

Section 3 describes theBatchOverflow vulnerability, which
enables an attacker to perform a multiplication that over�ows and
transfers a large amount of tokens on the attacker's behalf. This
vulnerability can be formalized as follows:

Vulnerability 1. BatchOverflow

uses Transfer C1; BinaryExp e; Argument 01• 02;
matches {e; C1;} where
( 4”>?2>34== " � " ^ »»4”>?A0=31¼¼¡ »»4”;�B¼¼
^ ( interfere ? 4”>?A0=31 C1”0<>D=C)
^ ( interfere ? 01 C1”A428?84=C) ^ ( interfere ? 02 C1”0<>D=C) )

The query speci�es that the victim program contains atransfer
instruction whose bene�ciary and value can be controlled by the
attacker. Furthermore, the transaction value is also in�uenced by a
variable from an arithmetic operation that over�ows.

An Unchecked-send Vulnerabilityoccurs when the programmer
fails to check the return values of critical instructions such as
delegatecall and call . If these instructions result in runtime
errors, the programmer is responsible for manually checking their
return values and restoring the program state. Failing to do so can
lead to unexpected behavior [18]. We formalize the absence of this
check as follows:

Vulnerability 2. Unchecked-send (Gasless-send)

uses Transfer C; Jump j;
matches { t ; ~j ;} where (( interfere ? C”A4C 9”2>=3+0A) )



ASE '20, September 21�25, 2020, Virtual Event, Australia Yu Feng, Emina Torlak, and Rastislav Bodik

Here, the return value of atransfer instruction does notinterfere
with the conditional variables of anyconditional jumpstatements.
In other words, this return value is not checked.

TheReentrancy vulnerability (introduced in Section 1) occurs
when an attacker's call is allowed to repeatedly make new calls to
the same victim contract without updating the victim's balance. It
can be overapproximated as follows:

Vulnerability 3. Reentrancy
uses Transfer C1, C2; Store s; Argument a;
matches { C1; ~s; C2;} where ( C1”;>2== C2”;>2^ C2”60B¡ 2300

^ ( interfere ? a C2”A428?84=C) )

In other words, let traceR contains a sequence instructions that
include multipletransfer statements that share the same program
counter, if there is nostore statement between the twotransfer
functions that has the minimum gas (i.e., 2300), then there may
exist a Reentrancy vulnerability.

4.3 Attack Synthesis
Given a vulnerability query, we are interested in synthesizing an at-
tack program that can exploit this vulnerability in a victim contract.
The basic building blocks of an attack program are calledcom-
ponents, and each componentC corresponds to a public method
provided by the victim contract. We use� to denote the union of
all publicly available methods.

De�nition 4.6. (Component) A ComponentC from an ABI con-
�guration is a pair ¹5 •gº where: 1)5 is C's name, and 2)g is the
type signature ofC.

Example 4.7.Consider the ABI con�guration in Figure 2. Its �rst
element declares a component for the problematicbatchTransfer
method. This component takes inputs as an array ofaddress and
a 256-bit integer (uint256 ).

We represent a set of candidate attack programs as asymbolic
program, which is a sequence ofholesto be �lled with components
from � . The synthesizer �lls these holes to obtain aconcrete program
that exploits a given vulnerability.

De�nition 4.8. (Symbolic Attack Program) Given a set of com-
ponents� = f¹ 51•g1º• ” ” ” •¹5# •g# ºg, asymbolic attack programS
for � is a sequence ofstatement holesof the form

choose¹51¹®Eg1º• ” ” ” • 5# ¹®Eg# ºº;

where58¹®Eg8º stands for the application of the8-th component to
fresh symbolic values of types speci�ed byg8.

De�nition 4.9. (Concrete Attack Program) A concrete attack
programfor a symbolic programS replaces each hole inS with
one of the speci�ed function calls, and each symbolic argument to
a function call is replaced with a concrete value.

Example 4.10.Here is a symbolic program that captures the
attack candidate in Fig 2:
choose (makeFlag (G1) , batchTransfer ( ~1, I 1) ) ;
choose (makeFlag (G2) , batchTransfer ( ~2, I 2) ) ;

And here is a concrete attack program for this symbolic attack:
makeFlag ( true );
batchTransfer ([0 x123 ,0 x345 ], 2256 � 1) ;

1 (define (get - summary s q )
2 (match s

3 [ transfer (x , y , z) CA0=B5 4A( � ( ¹Gº , � ( »~¼, � ( »I ¼)@q ]
4 [ sstore (x , y) BBC>A4(x , � ( »~¼)@q ]
5 [_ #f ]) )

Figure 6: Procedure for summary generation.

Thechooseconstruct is a notational shorthand for a conditional
statement that guards the speci�ed choices with fresh symbolic
booleans. For example,choose¹41• 42º stands for the statement
if 11 then 41 else 42, where11 is a fresh symbolic boolean value.
A concrete attack program therefore substitutes concrete values for
the implicit chooseguards and the explicit function arguments of
a symbolic attack program.

The goal of attack synthesis is to �nd a concrete program%for
a given symbolic programS such that%reaches a state satisfying
a desired vulnerability query.

De�nition 4.11.(Problem Speci�cation) The speci�cation for
our attack synthesisproblem is a tuple (� 0, V , S) where:

� S is a symbolic attack program for the set of components�
of a victim contract+ .

� � 0 is the initial state of the symbolic attack program, obtained
by executing the victim's initialization code.

� V is a �rst-order formula over the (symbolic) program state
»»S¼¼� reachable from� 0 by the attack programS.

De�nition 4.12. (Attack Synthesis) Given a speci�cation (� 0,V ,
S), theAttack Synthesis problemis to �nd a concrete attack program
%for S such that: 1)»»%¼¼� 0

= � , and 2)� j= V . In other words,
executing%from the initial state� 0 results in a program state�
that satis�esV .

5 SUMMARY-BASED SYMBOLIC
EVALUATION

Solving the attack synthesis problem involves searching for a con-
crete program%in the space of candidate attacks de�ned by a
symbolic programS. Solar delegates this search to an o�-the-
shelf SMT solver, by using symbolic evaluation to reduce the attack
synthesis problem to a satis�ability query. Given a speci�cation
¹� 0•V •Sº, Solar evaluatesS on the state� 0 to obtain the state
»»S¼¼� 0

, and then uses the solver to check the satis�ability of the for-
mula9®E”V¹»»S¼¼� 0

º, where®Edenotes the symbolic variables inS. A
model of this formula, if it exists, binds every variable in®Eto a con-
crete value, and so represents a concrete attack program%for S that
triggers the vulnerabilityV . But computing»»S¼¼� 0

is expensive
as it relies on symbolic evaluation [47]. In particular, evaluating a
choosestatement inS involves symbolically evaluating each func-
tion call in that statement. So, for a symbolic program of length ,
every public function in the victim contract must be symbolically
executed times on di�erent symbolic arguments. As we will see in
section 7, this direct approach to evaluatingS does not scale to real
contracts that contain a large number of complex public functions.
To mitigate this issue, we use a summary-based symbolic evaluation
that performs symbolic execution of each public method only once.
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Our approach is based on the following insight. An attack pro-
gram performs a sequence of transactions�i.e., method invocations�
that manipulate the victim's persistent storage and global properties.
The transactions that comprise an attack exchange data and in�u-
ence each other's control �ow exclusively through these two parts
of the program state. So, if we can faithfully summarize the e�ects
of a public method on the persistent storage and global properties,
evaluating this summary on the symbolic arguments passed to the
method is equivalent to symbolically executing the method itself.

De�nition 5.1. A summaryM in our system is a pairB@q where
Brepresents a statement that has a side e�ect on the persistent
state (i.e., storage and global properties) of a smart contract, andq
denotes the path condition under whichBis executed.

We generate such faithful method summaries in two steps. First,
we evaluate the method on a program state� ( that maps every
state variable (i.e., persistent storage location, global property, etc.)
to a fresh symbolic variable of the right type. This step produces
a path condition and symbolic inputs for each instruction that
capture every possible way to reach and execute the instruction
within the given method. Next, we use the procedure in Figure 6
to generate the method summary.4 Given a storage-store instruc-
tion sstore(x,y) and its path condition, we generate a �summary
sstore" statement (i.e.,BBC>A4) that takes as input the name of the
storage variable (i.e.,G) and the symbolic expression� ( »~¼held in
the register~. Similarly, given acall(gas,addr,value) instruc-
tion and path condition, we emit its �summary call" statement (i.e.,
20;;) that takes as input the symbolic expressions of the instruction's
gas consumption, recipient address, and amount of cryptocurrency,
respectively. All other instructions are omitted from the summary
since they have no e�ect on the persistent state. By construction,
our summary therefore precisely captures all of the method's e�ects
on the persistent state, and the summaries are polynomially-sized
as guaranteed by Rosette's symbolic evaluator [47].

Example 5.2.Recall that we introduce the following code snippet
in Figure 4b:

1 assert ( _amount > 0) ;
2 r1 := _amount - 1;
3 sstore ( vesting .amount , _amount - 1) ;
4 transfer (msg .sender , _to , _amount - 1) ;
5 r2 := amount - 15;
6 r3 := amount - 15;
7 r4 := sload (vesting . startTime );
8 no-op;

Then using the rule in Figure 6,Solar generates the following
summary:

BBC>A4¹vesting ”amount•� ( »_amount¼ �1º@¹� ( »_amount¼¡ 0º ;

CA0=B5 4A¹� ( »msg”sender¼•� ( »_to ¼•� ( »_amount¼ �1º@¹� ( »_amount¼¡ 0º ;

In particular, our tool summarizes the side e�ects of thetransfer
andsstore instructions at lines 2 and 3 in Figure 4b, respectively.
The remaining instructions (e.g., statements from line 5 to 8) are
omitted from the summary because they have no persistent side
e�ects.

OnceSolar generates the summary for each procedure, we still
need to adjust the symbolic evaluation engine to take advantage
4We omit the details of other side-e�ecting instructions for simplicity.

1 (define ( interpret - summary B@q � )
2 (define B� @q � ( substi tute B@q � ) )
3 (match B�

4 [ CA0=B5 4A¹G� • ~� • I � º (when q � transfer ( G� , ~� , I � ) ) ]
5 [ BBC>A4¹G• ~� º (when q � sstore (x , ~� ) ) ]
6 [_ no -op ]) )

Figure 7: Procedure for summary interpretation

1 (define (solar V �  )
2 (define program ( for / l ist ([ i K ]) ( apply choose* � ) ) )
3 (define i - pstate (get - initial - state � ) )
4 (define o-pstate ( interpret program i- state ))
5 (define binding (solve (assert ( V o-pstate ))))
6 (evaluate program binding ))

Figure 8: Solar implementation in Rosette .

of the summaries. Given a method summary and a program state
� , we use the procedure in Figure 7 to reproduce the e�ects of
executing the method symbolically on� as follows. Recall that we
generate the summary by executing the method on a fully symbolic
state� ( = fG1 7! E1• ” ” ” • G= 7! E=g, so every path condition and
symbolic expression in the summary is given in terms of the sym-
bolic variablesE1• ” ” ” • E=. Our summary interpretation procedure
works by substituting eachE8 in an instruction's path condition
and inputs with its corresponding value in� , i.e.,� »G8¼. The result-
ing instruction summaryB� @q� is therefore expressed in terms
of � , so applying its side e�ectsB� under the path conditionq� is
equivalent to executing the instructionBin the original method on
the state� . Since we interpret every instruction in the summary in
this way, the combined e�ect on the persistent state is equivalent
to executing the original method symbolically on� .

Example 5.3.Figure 4d shows an example for interpreting the
summary in Figure 4c by applying the procedure in Figure 7. Specif-
ically, given an environment� and thetransfer summary at line
2 in Figure 4c, we �rst generate anif statement guarded by the
path conditionq in � , then in the body of theif statement, we
symbolically evaluate thetransfer statement in the environment
� .

6 IMPLEMENTATION
This section discusses the design and implementation ofSolar , as
well as two key optimizations that enable our tool to e�ciently
solve the synthesis attack problem.

6.1 Symbolic Computation Using Rosette
Solar leveragesRosette [47] to symbolically search for attack pro-
grams.Rosette is a programming language that provides facilities
for symbolic evaluation.Rosette programs use assertions and sym-
bolic values to formulate queries about program behavior, which
are then solved with o�-the-shelf SMT solvers. For example, the
(solve expr) query searches for a binding of symbolic variables
to concrete values that satis�es the assertions encountered during
the symbolic evaluation of the program expressionexpr. Solar
uses thesolve query to search for a concrete attack program.

Figure 8 shows the implementation ofSolar in Rosette. The tool
takes as input a vulnerability speci�cationV , the components� of a
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victim program, and a bound on the length of the attack program.
Given these inputs, line 2 uses� to construct a symbolic attack
programof length . Next, lines 3 runs the victim's initialization
code to obtain the initial program state,i-pstate , for the attack.
Then, line 4 evaluates the symbolic attackprogramon the initial
state to obtain a symbolic output state,o-pstate . Finally, lines 5-6
use thesolve query to search for a concrete attack program that
satis�es the vulnerability assertion.

The core of our tool is theinterpreterfor our smart contract
language (Figure 3), which implements the semantics from the
EVM yellow paper [7]. We use this interpreter to compute the
symbolic summaries of the victim's public methods (Section 5)
and to evaluate symbolic attack programs. The interpreter itself
does not implement symbolic execution; instead, it usesRosette 's
symbolic evaluation engine to execute programs in our language
on symbolic values.

Another key component ofSolar is thetranslatorthat converts
EVM bytecode into our language (Figure 3). The translator lever-
ages the Vandal Decompiler [34] to soundly convert the stack-based
EVM bytecode into its corresponding three-address format in our
language. The jump targets are resolved through abstract interpre-
tation [32]. We use the translator to convert victim contracts to
the Solar language for attack synthesis. Both the translator and
the interpreter support all the instructions de�ned in the Ethereum
speci�cation [21].

6.2 Parallel Synthesis using Hoisting
Solar uses summary-based symbolic evaluation to e�ciently re-
duce attack synthesis problems to satis�ability queries. But the
resulting queries can still be too di�cult to solve in practice, espe-
cially when the victim contract has many public methods. To further
improve performance,Solar exploits the structure of symbolic at-
tack programs (De�nition 4.8) to decompose the singlesolve query
in Figure 8 into multiple smaller queries that can be solved quickly
and in parallel, without missing any concrete attacks.

The basic idea is as follows. Given a set of# components and
a bound on the length of the attack, line 2 creates a symbolic
attack program of the following form:

choose1( 51¹ ®E1g1º• ” ” ” • 5# ¹ ®E1g# º ) ;

”””
choose ( 51¹ ®E g1º• ” ” ” • 5# ¹ ®E g# º ) ;

This symbolic attack encodes a set of concrete attacks that can also
be expressed using#  symbolic programs that �x the choice of the
method to call at each line, but leave the arguments symbolic. So,
we can enumerate these#  programs and solve the vulnerability
query for each of them, instead of solving the single query at line
5. This approach essentiallyhoiststhe symbolic boolean guards
out of thechoosestatements in the original query, andSolar ex-
plores all possible values for these guards explicitly, rather than via
SMT solving.5 As we show in Section 7, hoisting the guards leads
to signi�cantly faster synthesis, both because it enables parallel
solving of the smaller queries, and because the smaller queries can
be solved quickly.

5For practical e�ciency, our implementation hoists the guards to generate#  •2
symbolic programs, where2 is the number of available cores.

6.3 Practical EVM fragment
In this section, we brie�y illustrate howSolar handles other chal-
lenging features of EVM.

Loops.Similarly to other analyzers based on symbolic execution,
Solar unrolls all potentially unbounded loops times. We use
 = 2 as the default bound for unrolling.

SHA and Storage access.In the EVM bytecode, the address of an
array or map element is determined by the following function:

0»8¼:= SHA-256(id(a))̧ = � 8

Here,SHA-256(id(a))stands for the SHA-256 hash of the array's
identi�er, = is the size of the elements stored in the array, and8is the
array index. Reasoning about this function directly is intractable
for solvers.Solar circumvents this problem by leveraging uninter-
preted functions to soundly model both the SHA-256 hash and the
address computation function. That is, two addresses are the same
if they share the same array identi�er, index, and element size.

Gas consumption.Solar 's program state tacks gas usage by
accumulating the cost of instructions during symbolic evaluation. If
a transaction runs out of gas in the middle of the evaluation,Solar
terminates it with an �out of gas� assertion failure.

7 EVALUATION
We evaluatedSolar by conducting a set of experiments that are
designed to answer the following questions:

� RQ1:E�ectiveness: How doesSolar compare against state-
of-the-art analyzers for smart contracts?

� RQ2:E�ciency: How much does summary-based symbolic
evaluation improve the performance ofSolar ?

To answer these questions, we perform a systematic evaluation
by running Solar on the entire set of smart contracts fromEther-
scan [11]. Using a snapshot from Feb 13 2019, we obtained a total of
25,983 smart contracts (duplicate contracts were removed) with pub-
licly available source code.Solar starts from attack programs of size
one and gradually increases the size until �nding the exploit or run-
ning out of time. All experiments in this section are conducted on a
t3.2xlarge machine on Amazon EC2 with an Intel Xeon Platinum
8000 CPU and 32G of memory, running the Ubuntu 18.04 operating
system and using a timeout of 10 minutes for each smart contract.

7.1 Comparison with Existing Tools
To show the advantages of our proposed approach, we compare
Solar against three state-of-the-art analyzers for exploits gener-
ation: Mythril andteether , based on symbolic execution, and
ContractFuzzer , based on dynamic random testing.

Comparison withMythril . We �rst compare withMythril [12] 6

by generating exploits for the reentrancy vulnerability.Mythril
takes as input a smart contract and checks whether there are con-
crete traces that match the tool's prede�ned security properties. If
so, the tool returns a counterexample as the exploit. We evaluate

6Since bothSolar andMythril are general-purpose analyzers for common vulnera-
bilities in smart contracts, for fair comparison, we only enable the relevant queries in
the evaluation.



Summary-Based Symbolic Evaluation for Smart Contracts ASE '20, September 21�25, 2020, Virtual Event, Australia

FN FP
0

10

20

30

40
P

er
ce

nt
ag

e
%

Solar Mythril

Figure 9: Comparing Solar against Mythril

Mythril andSolar on theEtherscan data set, and both systems
use a timeout of 10 minutes.

Summary of results.For 156 contracts �agged asReentrancy
vulnerablity by at least one tool, we manually determine the ground
truth and summarize the results in Figure 9. The false negative (FN)
and false positive (FP) rates ofSolar are 7% and 3%, while the FN
and FP rates ofMythril are 26% and 12%.

Performance. Mythril takes an average of 23 seconds to ana-
lyze a contract, whileSolar takes an average of 8 seconds for this
data set.

Discussion.The high false negative rate inMythril is caused by
low coverage on the corresponding benchmarks. In the presence
of large and complex methods,Mythril fails to generate traces
that trigger the vulnerability. Moreover,Mythril does not sup-
port cross-function re-entrancy�i.e., re-entrancy attacks that span
multiple functions of the victim contract.

We also investigated the cause of false positives reported by
Solar . It turns out that the false positives are caused by the im-
precision of our queries. In particular, we use a speci�c pattern of
traces tooverapproximatethe behavior of the Reentrancy attack.
While e�ective and e�cient in practice, our query may generate
spurious exploits that are infeasible. To mitigate this limitation, one
compelling approach for developing secure smart contracts is to
ask the developers to provide invariants that the tool can use to
rule out infeasible attacks.

Comparison with teether . We next compareSolar against
teether [42], the most recent tool using dynamic symbolic execu-
tion for generating exploits that would enable the attacker to control
the money transactions of a victim contract. In particular,teether
looks for so-calledcritical instructions(i.e.,call , selfdestruct ,
etc.) that include recipients' addresses, which can be manipulated
by the attacker to withdraw tokens from a vulnerable contract.

Summary of results.In total, there are 198 contracts that are
marked asattack-controlvulnerability by at least one tool. While
Solar covers all exploits generated byteether , Solar also �nds
21extraexploits that cannot be generated byteether .

Performance. teether takes an average of 31 seconds to ana-
lyze a contract in theEtherscan data set, whileSolar takes an
average of 8 seconds per contract.

Vulnerability
Solar ContractFuzzer
No. FP FN No. FP FN

Timestamp 16 0 1 13 3 7
Gasless Send 17 0 0 14 3 6
Bad Random 9 0 0 5 1 5

Table 2: Comparing Solar against ContractFuzzer

Discussion.The missing exploits inteether are caused by low
coverage on the corresponding benchmarks. For the 21 benchmarks
with exploits that cannot be generated byteether , 14 involve at-
tack programs with four method calls, and each of the remaining 7
benchmarks contains over 3000 lines of source code with complex
control �ow. As a result,teether fails to explore su�ciently many
concrete tracesto �nd the exploits, even if we increase the timeout
from 10 minutes to 1 hour.

Comparison with ContractFuzzer . We further comparedSo-
lar againstContractFuzzer [39], a recent smart contract analyzer
based on dynamic fuzzing.ContractFuzzer takes as input the
ABI interfaces of smart contracts andrandomlygenerates inputs
invoking the public methods provided by the ABI. To verify the
correctness of the exploits,ContractFuzzer implements oracles
for di�erent vulnerabilities by instrumenting the Ethereum Virtual
Machine (EVM) with extra assertions.

We use the docker image [8] provided by the author ofCon-
tractFuzzer . The original paper does not discuss the performance
of the tool, but from our experience,ContractFuzzer is slow,
taking more than 10 mins to fuzz a smart contract. Since it would
be time-consuming to runContractFuzzer on theEtherscan
data set, we evaluate both tools on the 33 benchmarks from the
ContractFuzzer artifact [9] plus another 67 random samples from
Etherscan for which we know the ground truth.

Summary of results.The results of our evaluation are summa-
rized in Table 2. For the timestamp dependency,ContractFuzzer
�ags 13 benchmarks as vulnerable. However, 3 of them are false
alarms, andContractFuzzer fails to detect 7 vulnerable bench-
marks. On the other hand,Solar detects most of the benchmarks
with only one false negative, which is caused by a timeout of the
Vandal decompiler [34].

Similarly, for the Gasless-send vulnerability, 14 benchmarks are
�agged by ContractFuzzer . However, 3 of them are false posi-
tives, and 6 vulnerable benchmarks can not be detected within 10
minutes. In contrast,Solar successfully generates exploits for all
the vulnerable benchmarks.

Performance.On average,ContractFuzzer takes 10 mins to
analyze a smart contract.Solar takes an average of 11 seconds on
this data set.

Discussion.The cause of false negatives inContractFuzzer is
easy to understand as it is based on random, rather than exhaus-
tive, exploration of an extremely large search space. So if there are
relatively few inputs in this space that lead to an attack,Contract-
Fuzzer is unlikely to �nd one in reasonable time. The false positives
in ContractFuzzer are caused by the limited expressiveness of its
assertion language. For instance, the Time Dependency is de�ned
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( y-mean ( � -mean
# of Benchmarks Timeout

( y ^ ( � ( y � ( � ( � � ( y

8s 35s 1846 548 17454
Table 3: Comparison between summary-based ( ( y) and non-
summary ( ( � ). ( y ^ ( � , ( y � ( � •and ( � � ( y represent number
of benchmarks timeout on both, ( y only, and ( � only, respec-
tively.

as the following assertion inContractFuzzer :

TimestampOp ^ ¹ SendCall _ EtherTransfer º

The assertion raises a Time Dependency vulnerability if the smart
contract contains thetimestampandcall instructions. It is easy
to raise false alarms with this assertion if thecall instruction does
not depend ontimestamp.

Result for RQ1: Solar outperforms three state-of-the-art
analyzers in terms of running time, false positives, and false
negatives.

7.2 Impact of Summary-based Symbolic
Evaluation

To understand the impact of our summary-based symbolic evalua-
tion described in Section 5, we use theReentrancy vulnerability as
the client and runSolar on theEtherscan data set with (( y) and
without (( � ) computing the summary. To speed up the evaluation,
for both settings, we enable the parallel synthesis optimizations
discussed in Section 6.

Figure 10 shows the results of runningSolar with di�erent set-
tings and a time limit of 10 minutes. Each dot in the �gure represents
the pairwise running time of a speci�c benchmark under di�erent
settings; a dot near the diagonal indicates that the performance of
two settings is similar. Our summary-based symbolic evaluation
signi�cantly outperforms the baseline (i.e., non-summary) in the
vast majority of benchmarks. As shown in Table 3, if we exclude
the benchmarks that timeout in 10 minutes, the mean time of our
summary-based symbolic evaluation is only 8 seconds, while it takes
35 seconds without computing the summary. Furthermore, 1846
benchmarks time out for both settings, and only 548 benchmarks
time out on( y but not on( � . However, without computing the sum-
mary, 17454 (i.e., 69.8%) benchmarks time out. The result con�rms
that the summary-based technique is key to the e�ciency ofSolar .

Result for RQ2: Our summary-based technique is key to
the e�ciency of Solar .

8 RELATED WORK
Smart contract security has been extensively studied in recent years.
This section brie�y discusses prior closely related work.

Smart Contract Analysis.Many popular security analyzers for
smart contracts are based on symbolic execution [41]. Well-known
tools include Oyente [43], Mythril [ 12] and Manticore [3]. Their
key idea is to �nd an execution path that satis�es a given property
or assertion. WhileSolar also uses symbolic evaluation to search

Figure 10: Comparison of run times (in seconds) between
non-summary (x-axis) and summary-based (y-axis) (log-
scale).

for attack programs, our system di�ers from these tools in two
ways. First, the prior tools adopt symbolic execution forbug �nding.
Our tool can be used not only for bug �nding but also forexploit
generation. Second, while symbolic execution is a powerful and
precise technique for �nding security vulnerabilities, it does not
guarantee to explore all possible paths, which leads to false nega-
tive rates as shown in Section 7.1. In contrast,Solar analyzes all
(bounded) paths through a contract using summary-based symbolic
evaluation, which signi�cantly reduces the number of paths that
the underlying Rosette engine has to execute symbolically while
maintaining the same precision.

To address the scalability and path explosion problems in sym-
bolic execution, researchers developed sound and scalable static
analyzers [34, 36, 40, 48]. Both Securify [48] and Madmax [34] are
based on abstract interpretation [32], which soundly overapprox-
imates and merges execution paths to avoid path explosion. The
ZEUS [40] system takes the source code of a smart contract and a
policy as inputs, and then compiles them into LLVM IRs that will
be checked by an o�-the-shelf veri�er [46]. The ECF [36] system
is designed to detect the DAO vulnerability. Similar to our tool,
Securify also provides a query language to specify the patterns of
common vulnerabilities. Unlike our tool, none of these systems can
generate exploits. We could not directly compareSolar with Zeus
as the tool and benchmarks are not publicly available. However, we
note that our system is complementary to existing static analyzers
such as Securify: in particular, we can use Securify to �lter out
safe smart contracts and leverageSolar to generate exploits for
vulnerable ones.

Some systems [35, 38, 45] for reasoning about smart contracts
rely on formal veri�cation. These systems prove security properties
of smart contracts using existing interactive theorem provers [1].
They typically o�er strong guarantees that are crucial to smart con-
tracts. However, unlike our system, all of them require signi�cant
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