Adaptive Web Sites:
Automatically Synthesizing Web Pages

Mike Perkowitz

Oren Etzioni*

Department of Computer Science and Engineering, Box 352350

University of Washington,

Seattle, WA 98195

{map, etzioni}@cs.washington.edu

(206) 616-1845

Fax: (206) 543-2969

Content Areas: data mining, machine learning, applications, user interfaces

Abstract

The creation of a complex web site is a thorny problem
in user interface design. In IJCAI 97, we challenged
the AT community to address this problem by creating
adaptive web sites: sites that automatically improve
their organization and presentation by mining visitor
access data collected in Web server logs. In this paper
we introduce our own approach to this broad challenge.
Specifically, we investigate the problem of inder page
synthesis — the automatic creation of pages that facil-
itate a visitor’s navigation of a Web site.

First, we formalize this problem as a clustering problem
and introduce a novel approach to clustering, which we
call cluster mining: Instead of attempting to partition
the entire data space into disjoint clusters, we search
for a small number of cohesive (and possibly overlap-
ping) clusters. Next, we present PageGather, a cluster
mining algorithm that takes Web server logs as input
and outputs the contents of candidate index pages. Fi-
nally, we show experimentally that PageGather is both
faster (by a factor of three) and more effective than
traditional clustering algorithms on this task. Our ex-
periment relies on access logs collected over a month
from an actual web site.

Adaptive Web Sites

Designing a rich web site so that it readily yields its
information can be tricky. The problem of good web
design is compounded by several factors. First, differ-
ent visitors have distinct goals. Second, the same vis-
itor may seek different information at different times.
Third, many sites outgrow their original design, accu-
mulating links and pages in unlikely places. Fourth, a
site may be designed for a particular kind of use, but be
used in many different ways in practice; the designer’s
a priori expectations may be violated. Too often web
site designs are fossils cast in HTML, while web naviga-
tion is dynamic, time-dependent, and idiosyncratic. In
(Perkowitz & Etzioni 1997a), we challenged the AI com-
munity to address this problem by creating adaptive
web sites: web sites that automatically improve their
organization and presentation by learning from visitor

*Copyright (c) 1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

access patterns. In this paper we report on our own
progress.

Sites may be adaptive in two basic ways. Customiza-
tion is adapting the site’s presentation to the needs of
individual visitors, based on information about those
individuals. In order to specialize itself to individ-
ual users, the site must maintain multiple copies of it-
self and gather quite a bit of information from users.
Providing such information to the site can be time-
consuming and may be an invasion of privacy. Opti-
mization is improving the site’s structure based on in-
teractions with all visitors. Instead of making changes
for each individual, the site learns from numerous past
visitors to make the site easier to use for all, including
those who have never used it before.

While previous work has focused on customizing web
sites, we chose to investigate web site optimization
through the automatic synthesis of index pages. In
the next section, we discuss our general approach and
present the index page synthesis problem. We then
present our technique, which we call cluster mining, and
its instantiation in the PageGather algorithm; Page-
Gather solves the subproblem of automatically synthe-
sizing the set of links that comprises an index page.
Following, we present the results of experiments run
using our implemented system. Finally, we discuss re-
lated work and future directions.

The Index Page Synthesis Problem

Our approach to adaptive web sites is motivated by four
goals: (1) avoiding additional work for visitors (e.g. fill-
ing out questionnaires); (2) making the web site easier
to use for everyone, not just specific individuals; (3)
using web sites as they are, without relying on meta-
information not currently available (e.g., XML annota-
tions); and (4) protecting the site’s original design from
destructive changes. When creating a web site, a hu-
man meticulously designs the look and feel of the site,
the structure of the information, and the kinds of inter-
actions available. When making automatic changes to
such a site, we wish to avoid damaging the site.

Our approach, therefore, is to apply only nondestruc-
tive transformations: changes to the site that leave ex-



isting structure intact. We may add links but not re-
move them, create pages but not destroy them, add new
structures but not scramble existing ones. Such trans-
formations may include highlighting links, promoting
links to the front page, cross-linking related pages, and
creating new pages of related links. Based on the access
log, the site decides when and where to perform these
transformations. In (Perkowitz & Etzioni 1997b), we
sketched several such transformations. In this paper,
we focus on a single, novel transformation: the creation
of new index pages — pages consisting of links to pages
at the site relating to a particular topic. We illustrate
this transformation with a simple real-world example.

The Music Machines web site contains information
about various kinds of electronic musical equipment
(see http://www.hyperreal.org/music/machines/).
The information is primarily grouped by manufacturer.
For each manufacturer, there may be multiple entries
for the different instrument models available — key-
boards, electric guitars, amplifiers, etc. For each model,
there may be pictures, reviews, user manuals, and audio
samples of how the instrument sounds. We might notice
that, when exploring the site, visitors comparing elec-
tric guitars from many different manufacturers tend to
download the audio samples of each guitar. A compre-
hensive page of “Electric Guitar Audio Samples” would
facilitate this comparison; this is the kind of page we
would like our system to generate automatically.

Page synthesis is the automatic creation of web pages.
An index page is a page consisting of links to a set of
pages that cover a particular topic (e.g., electric gui-
tars). Given this terminology we define the index page
synthesis problem: given a web site and a visitor ac-
cess log, create new index pages containing collections
of links to related but currently unlinked pages. A web
site is restricted to a collection of HTML documents re-
siding at a single server — we are not yet able to handle
dynamically-generated pages or multiple servers. An
access log is a document containing one entry for each
request answered by the web server. Each request lists
at least the origin (IP address) of the request, the URL
requested, and the time of the request. Related but un-
linked pages are pages that share a common topic but
are not currently linked at the site; two pages are con-
sidered linked if there exists a link from one to the other
or if there exists a page that links to both of them.

In synthesizing a new index page, we must solve sev-
eral subproblems.

What are the contents of the index page?
How are the contents ordered?

What is the title of the page?

How are the hyperlinks on the page labeled?

oLk W o=

Is the page consistent with the site’s overall graphical
style?

6. Is it appropriate to add the page the site? If so,
where?

In this paper, we focus on the first subprob-
lem—generating the contents of the new web page. The
remaining subproblems are topics for future work. We
note that some subproblems, particularly the last one,
are quite difficult and may be solved in collaboration
with the human webmaster.

Rather than attempting to understand the content
of every page at our site and to figure out which are
related, our approach is based on the analysis of each
“visit”. We define a wisit to be an ordered sequence of
pages accessed by a single visitor in a single session. We
make the visit-coherence assumption: the pages a
user visits during one interaction with the site tend to be
conceptually related. We do not assume that all pages
in a single visit are related. After all, the information
we glean from individual visits is noisy; for example,
a visitor may pursue multiple distinct tasks in a single
visit. To overcome noise, we accumulate statistics over
many visits by numerous users and search for overall
trends.

The PageGather Algorithm

In this section, we present a novel approach to cluster-
ing, called cluster mining, that was motivated by our
task; in addition, we introduce PageGather — the first
index page-contents synthesis algorithm. Given a large
access log, our task is to find collections of pages that
tend to co-occur in visits. Clustering (see (Voorhees
1986; Rasmussen 1992; Willet 1988)) is a natural tech-
nique for this task. In clustering, documents are rep-
resented in an N-dimensional space (for example, as
word vectors). Roughly, a cluster is a collection of doc-
uments close to each other and relatively distant from
other clusters. Standard clustering algorithms partition
the documents into a set of mutually exclusive clusters.

Cluster mining is a variation on traditional clustering
that is well suited for our task. Instead of attempting
to partition the entire space of documents, we try to
find a small number of high quality clusters. Further-
more, whereas traditional clustering is concerned with
placing each document in exactly one cluster, cluster
mining may place a single document in multiple over-
lapping clusters. The relationship between traditional
clustering and cluster mining is parallel to that between
classification and data mining as described in (Segal
1996). Segal contrasts mining “nuggets” — finding
high-accuracy rules that capture patterns in the data
— with traditional classification — classifying all ex-
amples as positive or negative — and shows that tra-
ditional classification algorithms do not make the best
mining algorithms.

The PageGather algorithm uses cluster mining to find
collections of related pages at a web site, relying on
the visit-coherence assumption. In essence, PageGather
takes a web server access log as input and maps it into a
form ready for clustering; it then applies cluster mining
to the data and produces candidate index-page contents
as output. The algorithm has four basic steps:



1. Process the access log into visits.

2. Compute the co-occurrence frequencies between
pages and create a similarity matrix.

3. Create the graph corresponding to the matrix, and
find cliques (or connected components) in the graph.

4. For each cluster found, create a web page consisting
of links to the documents in the cluster.

We discuss each step in turn.

1. Process the access log into visits. As de-
fined above, a visit is an ordered sequence of pages ac-
cessed by a single user in a single session. An access log,
however, is a sequence of hits, or requests made to the
web server. Each request typically includes the time of
the request, the URL requested, and the machine from
which the request originated. For our purposes, how-
ever, we need to be able to view the log as containing
a number of discrete visits. We first assume that each
originating machine corresponds to a single visitor.! A
series of hits in a day’s log from one visitor, ordered
by their time-stamps, corresponds to a single session
for that visitor. Furthermore, we make sure that we log
every access to every page by disabling caching — every
page contains a header saying that it expires immedi-
ately; browsers will therefore load a new copy every
time a user views that page.

2. Compute the co-occurrence frequencies be-
tween pages and create a similarity matrix. For
each pair of pages P, and P», we compute P(P;|Pz),
the probability of a visitor visiting P; if she has already
visited P, and P(P»|P;), the probability of a visitor vis-
iting P, if she has already visited P;. The co-occurrence
frequency between P; and P, is the minimum of these
values.

We use the minimum of the two conditional proba-
bilities to avoid mistaking an asymmetrical relationship
for a true case of similarity. For example, a popular
page P, might be on the most common path to a more
obscure page P». In such a case P(P;|P>) will be high,
perhaps leading us to think the pages similar. How-
ever, P(P,|P;) could be quite low, as P is on the path
to many pages and P is relatively obscure.

As stated above, our goal is to find clusters of related
but currently unlinked pages. Therefore, we wish to
avoid finding clusters of pages that are already linked
together. We prevent this by setting the matrix cell
for two pages to zero if they are already linked in the
site. Essentially, we create a matrix corresponding to
existing connections and subtract it from the similarity
matrix created from the log.

n fact, this is not necessarily the case. Many Inter-
net service providers channel their users’ HTTP requests
through a small number of gateway machines, and two users
might simultaneously visit the site from the same machine.
Fortunately, such coincidences are too uncommon to affect
the data significantly; if necessary, however, more accurate
logs can be generated with visitor-tracking software such as
WebThreads.

A graph corresponding to the similarity matrix would
be completely (or almost completely) connected. In
order to reduce noise, we apply a threshold and re-
move edges corresponding to low co-occurrence fre-
quency. We treat all remaining arcs as being of equiva-
lent strength.? By creating a sparse graph, we can use
graph algorithms to find clusters, which turn out to be
faster than traditional clustering methods.

3. Create the graph corresponding to the ma-
trix, and find cliques (or connected components)
in the graph. We create a graph in which each page is
a node and each nonzero cell in the matrix is an arc. In
this graph, a cluster corresponds to a set of nodes whose
members are directly connected with arcs. A clique — a
subgraph in which every pair of nodes has an edge be-
tween them — is a cluster in which every pair of pages
co-occurs often. A connected component — a subgraph
in which every pair of nodes has a path of edges be-
tween them — is a cluster in which every node is similar
to at least one other node in the cluster. While cliques
form more coherent clusters, connected components are
larger, faster to compute, and easier to find.

4. For each cluster found, create a web page
comnsisting of links to the documents in the clus-
ter. Our research so far has focused on generating the
content of index pages — the set of links — rather
than the other aspects of the problem. We therefore
use simple solutions which will be improved in future
work. Page titles are generated by the human webmas-
ter. Pages are linked into the site at one particular
location as part of a “helpful tour guide” metaphor.
Links on pages are ordered alphabetically by their ti-
tles. Page layouts are based on a template defined for
all pages at the site.

What is the running time of the PageGather algo-
rithm? Let L be the number of hits in the log, N the
number of pages at the site, £ be the number of edges
in our graph, and C' be the largest cluster we wish to
find.? In step (1), we must group the hits by their orig-
inating machine. We do this by sorting hits by origin
and time, so step (1) requires O(LlogL) time. In step
(2), we must create a matrix of size O(N?) and exam-
ine each cell in the matrix. Step (2) is therefore O(IN?).
In step (3) we may look for either cliques or connected
components. In general, finding maximal cliques in a
graph is NP-complete. However, since we search for
cliques whose size is bounded by a constant C', this
step is a polynomial of order C'. Finding a connected
component requires a depth-first search in the graph.
The complexity of depth-first search is O(E), where E

2While we consider all arcs equivalent for the purpose of
finding clusters, we use the arc strengths for ranking clusters
later.

3Note that we place a maximum size on discovered clus-
ters not only in the interest of performance but because
large clusters are not useful output — we cannot, practi-
cally speaking, create a new web page containing hundreds
of links.



may be O(N?) in the worst case but is less in our sparse
graphs. Note that the asymptotically most expensive
part of PageGather is the creation of the similarity ma-
trix; even a version that did not use our cluster mining
technique would have at least this cost.

Experimental Validation

In this Section, we report on experiments designed to
test the effectiveness of our approach by comparing
it with traditional clustering methods; we also exper-
iment with several PageGather variants to assess the
impact of key facets of the algorithm on its perfor-
mance. Our experiments draw on data collected from
http://www.hyperreal.org/music/machines/. The
site is composed of about 2500 distinct documents and
receives approximately 10,000 hits per day from 1200
different visitors. We have been accumulating access
logs for over a year.

In our experiment, each algorithm chooses a small
number k of high-quality clusters. We then compare the
running time and performance of each algorithm’s top &
clusters. We modified traditional clustering algorithms
to return a small number of clusters (not necessarily
a partition of the space), converting them into cluster
mining algorithms as needed for our task. In all cases,
clusters are ranked by their average pairwise similar-
ity — calculated by averaging the similarity between
all pairs of documents in the cluster — and the top
k clusters are chosen. In our experiment, the training
data is a collection of access logs for an entire month;
each algorithm creates ten clusters based on these logs.
The test data is a set of logs from a subsequent ten-day
period.

There are literally hundreds of clustering algorithms
and variations thereof. To compare PageGather with
traditional methods, we picked two widely used docu-
ment clustering algorithms: hierarchical agglomerative
clustering (HAC)(Voorhees 1986), and K-Means clus-
tering (Rocchio 1966). HAC is probably the most pop-
ular document clustering algorithm, but it proved to
be quite slow. Subsequently, we chose K-Means be-
cause it is a linear time algorithm known for its speed.
Of course, additional experiments are required to com-
pare PageGather with other clustering algorithms be-
fore general conclusions can be drawn. We also com-
pared two versions of PageGather — one using con-
nected components and one using cliques.

Our first experiment compared the speed of the dif-
ferent algorithms as shown in Figure 1. Because all
algorithms share the cost of creating the similarity ma-
trix, we compare only the clustering portion of Page-
Gather. We implemented two of HAC’s many varia-
tions: complete link clustering, in which the distance
between two clusters is the distance between their far-
thest points, and single link, in which the distance be-
tween two clusters is the distance between their nearest
points. To generate k clusters, we had HAC iterate
until it created a small number of clusters (about 2k)

Run time Average
(min:sec) | cluster size

PageGather
Connected Component 1:05 14.9
Clique 1:12 7.0
K-Means 48:38 231.9
K-Means (modified) 3:35 30.0
HAC 48+ hours —

Figure 1: Running time and average cluster size of Page-
Gather and standard clustering algorithms.

and then chose the best k& by average pairwise similar-
ity. We found HAC to be very slow compared to our
algorithm; the algorithm ran for over 48 hours with-
out completing (three orders of magnitude slower than
PageGather).® HAC algorithms, in this domain, are
asymptotically (and practically!) quite slow. We there-
fore decided to investigate a faster clustering algorithm.

In K-Means clustering, a target number of clusters
(the “K”) is chosen. The clusters are seeded with ran-
domly chosen documents and then each document is
placed in the closest cluster. The process is restarted
by seeding new clusters with the centroids of the old
ones. This process is iterated a set number of times,
converging on better clusters. To generate k clusters for
our experiment, we set K-Means to generate 2k clusters
and then chose the top k by average pairwise similarity.
As with the HAC algorithm, the costly similarity mea-
sure in our domain makes K-Means quite slow — the
algorithm takes approximately 48 minutes in our exper-
iment. However, just as we make our clique algorithm
tractable by limiting the size of clusters to 30, we lim-
ited cluster size in the K-Means algorithm to 30 as well.
We compared this modified version to PageGather and
still found it to be slower by a factor of three.

We also compared PageGather using cliques in step
3 with PageGather using connected components. We
found relatively little difference in speed. Finding con-
nected components in a graph is a very fast opera-
tion. Although finding maximal cliques is generally in-
tractable, it too is extremely fast when we limit the
maximum clique size and the graph is sparse; in our
experiment, the graph contained approximately 2500
nodes and only 13,000 edges after applying the thresh-
old.

Next, we compared the algorithms in terms of the
quality of candidate index pages they produce. Mea-
suring cluster quality is a notoriously difficult problem.

*We chose simple implementations of two popular HAC
algorithms; more efficient algorithms exist which may run
faster. Our domain, however, differs from more standard
domains such as document clustering. Documents can be
represented as word vectors; word vectors can be compared
or even averaged to create new centroid vectors. We, how-
ever, have no vectors, but only a similarity matrix. This
limitation makes certain kinds of algorithmic optimizations
impossible.



0.8

0.6 -

0.4 1

0.2

1 2 3 4 5 6 7 8 9 10

\+C0nnected - - Clique --+-- K-Means -x- K-Means (modified)\

Figure 2: Predictive performance of PageGather (using
both connected components and cliques) and K-Means clus-
tering on access data from a web site.

To measure the quality of a cluster as an index page
candidate, we need some measure of whether the clus-
ter captures a set of pages that are viewed by users in
the same visit. If so, then grouping them together on an
index page will save the user the trouble of traversing
the site to find them. Thus, as an approximate measure
we ask: if a user visits any one page in the cluster, how
likely is she to visit more? More formally, if n(7) is the
number of pages in cluster 7 that a person examines dur-
ing one visit to the site, then the quality Q(¢) of a clus-
ter is P(n(:) > 2|n(¢) > 1). The higher this conditional
probability, the more valuable the candidate index page
represented by the cluster. Of course, this measure is
imperfect for a several reasons. Most seriously, the mea-
sure is biased toward larger clusters. We do not penal-
ize a cluster for being overly inclusive or measure how
much of a cluster a user visits. Figure 1 shows aver-
age cluster size for each algorithm. Note that the K-
Means algorithm consistently generates larger clusters
than PageGather. Thus, the bias in the metric works
against PageGather. Although the K-means algorithm
found, on average, larger clusters, it did not find signif-
icantly fewer than PageGather. PageGather, therefore
had no advantage in being able to select the best from
among a larger number of clusters.

Figure 2 shows the performance of four different algo-
rithms. For each algorithm, we show the quality @ of its
chosen ten best clusters. We graph each algorithm’s top
ten ordered by performance. As both K-Means variants
produce significantly larger clusters than PageGather,
we might expect better performance from K-means, but
we see immediately that the PageGather variants per-
form better than either of the K-Means variants. Page-
Gather is both faster and more accurate.

Comparing the two variants of PageGather, we find
that neither is obviously superior. The connected com-
ponent version, however, creates clusters that are, on
average, about twice as large as those found with the
clique approach. The best clique clusters are also some-
what better. The clique approach, we conclude, finds

smaller, more coherent clusters.

To test our hypothesis that creating overlapping clus-
ters is beneficial in this domain, we created a variant
of PageGather that creates mutually exclusive clusters
by forcing each page into exactly one cluster. We com-
pared the performance of PageGather with and with-
out overlapping. For readability, we omit the non-
overlapping version of the clique algorithm in Figure
2, but the performance of the non-overlapping version
drops substantially, though it is still better than either
K-Means variant. The removal of overlapping did not
substantially change the performance of PageGather us-
ing connected components.

Having applied this performance measure, we might
also ask: qualitatively, how good are the clusters we
find? Do they seem to correspond to concepts peo-
ple would understand? We have not yet performed the
kind of user testing necessary to answer this question in
a fully satisfying way. However, a number of the clus-
ters output by PageGather are convincingly coherent.
For example, PageGather created one cluster contain-
ing most of the audio samples found at the site. Other
clusters grouped similar keyboards from various man-
ufacturers and downloadable software from across the
site. Most clusters appear highly coherent — most of
the less useful ones are composed entirely of pages from
a single section of the site and hence do not represent an
interesting “discovery”. However, if PageGather makes
one or two interesting discoveries out of every ten sug-
gestions to the webmaster, it may still be quite useful.

Related Work

Automatic customization has been investigated in a va-
riety of guises. (see (Joachims, Freitag, & Mitchell
1997; Fink, Kobsa, & Nill 1996)). These approaches
tend to share certain characteristics. First, the web
site or agent dynamically presents information — typi-
cally an enhancement of the currently viewed web page
— to the visitor. Second, that information is customized
to that visitor or a class of visitors based on some model
the system has of that individual or class. Third, that
model is based on information gleaned from the visi-
tor and on the actions of previous visitors. In contrast,
our approach makes offline changes to the entire site,
makes those changes visible to all visitors, and need not
request (or gather) information from a particular visitor
in order to help her.

(Perkowitz & Etzioni 1997b) presented the web site
optimization problem in terms of transformations to the
web site which improve its structure. We sketched sev-
eral kinds of transformations and discussed when to au-
tomatically apply them. Index page synthesis may be
viewed as a novel transformation of this sort. Whereas
that work broadly described a range of possible trans-
formations, we have now implemented and tested one
in depth.

Footprints (Wexelblat & Maes 1997) also takes an op-
timizing approach. Their motivating metaphor is that



of travelers creating footpaths in the grass over time.
Visitors to a web site leave their “footprints” behind;
over time, “paths” accumulate in the most heavily trav-
eled areas. New visitors to the site can use these well-
worn paths as indicators of the most interesting pages
to visit. Footprints are left automatically (and anony-
mously), and any visitor to the site may see them; visi-
tors need not provide any information about themselves
in order to take advantage of the system. Footprints is
similar to our approach in that it makes changes to the
site, based on user interactions, that are available to all
visitors. However, Footprints provides essentially lo-
calized information; the user sees only how often links
between adjacent pages are traveled. We allow the site
to create new pages that may link together pages from
across the site.

Future Work and Conclusions

This work is part of an our ongoing research effort; it
is both an example of our approach and a step toward
our long-term goal of creating adaptive web sites. We
list our main contributions toward this goal below.

1. We formulated the novel task of automatic index page
synthesis and decomposed the task into five subprob-
lems, defining an agenda for future work on adaptive
web sites. We focused on the subproblem of page-
contents synthesis and formalized it as a clustering
problem. In the process, we introduced key ideas
including the distinction between optimization and
customization, the visit-coherence assumption, and
the principle of “nondestructive transformations”.

2. We introduced PageGather, the first page-contents
synthesis algorithm, and demonstrated its feasibility;
PageGather takes Web site access logs as input and
appears to produce coherent page contents as output.
This is a proof of concept; in future work we will in-
vestigate its generality and seek to extend it to cover
the full index page synthesis problem.

3. PageGather is based on cluster mining, a novel ap-
proach to clustering that, instead of partitioning the
entire space into a set of mutually exclusive clusters,
attempts to efficiently identify a small set of max-
imally coherent (and possibly overlapping) clusters.
We demonstrated the benefits of cluster mining over
traditional clustering experimentally in our domain.
We believe that cluster mining will also prove bene-
ficial in other domains, but this is a topic for future
work.

Although the PageGather algorithm finds promising
clusters in access logs, it is far from a complete solution
to index page synthesis. Cluster mining is good for
finding clumps of related pages — for example, several
audio samples of guitars — but it has trouble finding
the complete set of pages on a topic — e.g., all the
guitar samples at the site. Yet visitors expect complete
listings — a page titled “Audio Samples” had better list
all of them. One way to create complete clusters is to

use cluster mining to generate the original clusters, but
then use the elements of the cluster as training data for
learning a simple, general rule that defines membership
in the cluster. The index page generated will contain
links to all pages that match the rule.

PageGather could also potentially flatten the site’s
structure by grouping pages from across the web site
onto a single page; important structural and hierarchi-
cal information may be lost, or fundamentally different
kinds of pages might be grouped together. If we have
meta-information about how the site is structured —
for example, a simple ontology of the types of pages
available — we should be able to find more homoge-
neous clusters. The use of meta-information to cus-
tomize or optimize web sites has been explored in a
number of projects (see, for example, (Khare & Rifkin
1997; Fernandez et al. 1997; Luke et al. 1997) and
Apple’s Meta-Content Format).

References

Fernandez, M., Florescu, D., Kang, J., Levy, A., and Suciu,
D. 1997. System Demonstration - Strudel: A Web-site
Management System. In ACM SIGMOD Conference on
Management of Data.

Fink, J., Kobsa, A., and Nill, A. 1996. User-oriented
Adaptivity and Adaptability in the AVANTI Project. In
Designing for the Web: Empirical Studies.

Joachims, T., Freitag, D., and Mitchell, T. 1997. Web-
watcher: A tour guide for the world wide web. In Proc.
15th Int. Joint Conf. AIL 770-775.

Khare, R., and Rifkin, A. 1997. XML: A Door to Au-
tomated Web Applications. IEEE Internet Computing
1(4):78-87.

Luke, S., Spector, L., Rager, D., and Hendler, J. 1997.
Ontology-based web agents. In Proc. First Int. Conf. Au-
tonomous Agents.

Perkowitz, M., and Etzioni, O. 1997a. Adaptive web sites:
an AI challenge. In Proc. 15th Int. Joint Conf. AL

Perkowitz, M., and Etzioni, O. 1997b. Adaptive web sites:
Automatically learning from user access patterns. In Pro-
ceedings of the Sixth Int. WWW Conference.

Rasmussen, E. 1992. Clustering algorithms. In Frakes, W.,
and Baeza-Yates, R., eds., Information Retrieval. Prentice
Hall, Eaglewood Cliffs, N.J. 419-442.

Rocchio, J. 1966. Document Retrieval Systems — Op-
timization and FEvaluation. Ph.D. Dissertation, Harvard
University.

Segal, R. 1996. Data Mining as Massive Search. Ph.D.
Dissertation, University of Washington.
http://www.cs.washington.edu/homes/segal /brute.html.

Voorhees, E. 1986. Implementing agglomerative hierar-
chical clustering algorithms for use in document retrieval.
Information Processing € Management 22:465-476.
Wexelblat, A., and Maes, P. 1997. Footprints: History-rich
web browsing. In Proc. Conf. Computer-Assisted Informa-
tion Retrieval (RIAO), 75-84.

Willet, P. 1988. Recent trends in hierarchical document
clustering: a critical review. Information Processing and
Management 24:577-97.



