
Richard Segal & Oren Etzioni

Dept. of Comp. Sci. & Eng.

University of Washington

Seattle, WA 98195

Patricia Riddle*

Boeing Computer Services

MS 7L-66

P.O. Box 24346

Seattle, WA 98124-0346

Appears in Applied Artificial Intelligence, 8:125-147, 1994

Abstract

We applied inductive classification techniques to data collected in a Boeing plant
with the goal of uncovering possible flaws in the manufacturing process. This applica-
tion led us to explore two aspects of classical decision- tree induction: (1) Preprocessing
and postprocessing and (2) brute-force induction. For preprocessing and postprocess-
ing, much of our effort was focused on the pre-processing of raw data to make it
suitable for induction and the post-processing of learned rules to make them useful
to factory personnel. For brute-force induction, in contrast with standard methods,
which perform a greedy search of the space of decision trees, we formulated an algo-
rithm that conducts an exhaustive, depth-bounded search for accurate predictive rules.
We demonstrate the efficacy of our approach with specific examples of learned rules
and by quantitative comparisons with decision-tree algorithms (C4 and CART).

*This research was funded in part by a Boeing Computer Services contract with the University of Wash-
ington, by Office of Naval Research Grant 92-J-1946, and by National Science Foundation Grants IRI-
9211045 and IRI-9357772 (NYI Award to Etzioni). Richard Segal is supported, in part, by a GTE fellow-
ship. The C routines, implementing the Brute and Gold-digger algorithms, are available by sending mail
to segal(Qcs .washington. edu. We are grateful to Wray Buntine for distributing his IND package, which
contains re-implementations of C4 and CART. IND greatly facilitated our research. Thanks are due to
Ruth Etzioni for her expert advice on statistical testing, to Usama Fayyad and Jeff Schlimmer for helpful
suggestions, and to Mike Barley for many fruitful discussions and reviews of drafts of this paper. Finally,
we acknowledge the other members of the Boeing project: Mike Healy, Dave Newman, and Carl Pearson.

1

Introduction1

Continuous quality improvement in a manufacturing environment is a major challenge. The
environment constantly changes because machines break down, vendors change, and new
machines are added. We are exploring using inductive learning techniques to make process
improvements in a Hoeing manufacturing facility. We chose induction algorithms for our
task for several reasons. These techniques have had many successes in real-world domains,
they can focus on learning a single concept, and their results can be validated using test
data and cross validation.

In this paper we will focus on the steps involved in applying induction algorithms to real-
world data. We will discuss the obstacles involved in preprocessing the data {e.g., tuning the
representation) and postprocessing the results {e.g., filtering out uninteresting patterns). We
will discuss an example of this process where rules for process improvement were learned for
a Hoeing manufacturing environment. Initially we used IND {Huntine and Caruana, 1991)
for inductive learning but later developed two new algorithms which are better suited to our
domain.

The paper is organized as follows. In section 2 we discuss the Hoeing manufacturing
domain. Section 3 discusses the methodology we used for applying induction to our real-
world domain. Section 4 discusses the new induction algorithms which we developed. Section
5 describes some of the useful rules we found using our methodology. In section 6 we discuss
the related work. Section 7 discusses the future research. We are attempting to create a
semi-automated toolbox which will allow factory personnel not familiar with induction to
find patterns in manufacturing data. Section 8 concludes.

Domain2

In today's factories, more and more of the manufacturing process is being handled by semi-
automated cells. A semi-automated cell consists of multiple automated workstations. A nest
of parts is automatically routed through a sequence of workstations. Operator intervention
is only required in the case of a problem or in some designated manual operations (e.g.,
inspection). A semi-automated cell is controlled by a computer, the cell controller. When
the cell encounters a problem, an alarm is sounded. The problem must then be fixed by the
cell's operator. As alarm handling often involves processing delays, the cost of the recovery
can add to product costs.

We are investigating patterns in operations records from a semi-automated work cell in a
new Hoeing plant. Examples of the types of patterns we would like to discover are "alarm H
sounds thirty minutes after alarm A,"l "alarm C is twice as likely to sound on material X,"
and alarm cascades. An alarm cascade is when one problem may cause a chain reaction of
related alarms. Another type of pattern we are exploring is predicting rejection tags, parts

1 We can only provide a limited amount of concrete detail regarding the learning task due to Boeing's

non-disclosure requirements.

2

which do not pass quality inspection. For example, we want to find patterns of the form "a
rejection tag is four times as likelyon parts made of batch C of material X." This information
can be used to reduce the number of rejected parts; thus, saving money in wasted materials
and manufacturing delays.

These patterns can be used to improve the manufacturing processes used in the factory.
If a certain alarm is highly correlated with rejected parts, the factory might concentrate
on preventing that alarm. If a certain batch of material is associated with several rejected
parts, the factory might switch suppliers. This is important in our situation where the cell
configuration is new because a significant portion of expertise for this cell configuration will
be developed only during actual production. Even in more established situations where there
exists a good base of expert knowledge, the factory changes rapidly; therefore, the knowledge
about the factory must change to remain current. Learning is not required in real-time but
can be done using an off-line analysis. The learned r1fles must be interpretable by the factory
personnel so that they can implement changes to the factory process.

We prepared the data available for this domain using the methodology presented in
Section 3. Two of the data sets we designed are as follows:

.Failed part: in the hope of increasing the factory's yield, we looked for patterns that

predict when a manufactured part will fail inspection.

.Occupancy time: in the hope of increasing the factory's throughput, we searched for
patterns that predict unusually long delays at the different machines.

The data set characteristics are shown below:

Continuous attributes are real valued; all other attributes are discrete valued. Tests are the
total number of comparisons tested. For discrete attributes, there are two tests (equal and
not equal) for each attribute value. For continuous attributes, there are two tests (greater
than or less than) for each unique value for this attribute which appears in the data set.
How these data sets were designed is the subject of the following section.

3

Despite the success of induction algorithms in real-world domains, there are several dif-
ficulties to overcome to produce good results with induction algorithms. The successful
application of inductive algorithms requires three steps. The first step is deciding how to
represent the data and how to configure the induction algorithm. The second step is run-
ning the induction algorithm. The third step is to process and analyze the results. In the
following sections, we describe the preprocessing and postprocessing steps of the induction

3

process. The second step, running an induction algorithm, is usually not a problem when
the other steps have been adequately addressed.

3.1 Preprocessing for Induction

Before an induction algorithm can be run, it is necessary to decide how to represent the
data and how to configure the induction algorithm. Section 3.1.1 discusses the importance
of choosing a good instance space. In section 3.1.2 we discuss how to determine relevant
attributes. Section 3.1.3 discusses how the representation of the attributes affects learning. In
section 3.1.4 we discuss how to represent time. Section 3.1.5 discusses setting the parameters
of the induction algorithms.

Choosing Instances

In most traditional machine learning domains, the definition of an instance falls naturally
out of the domain. One of the traditional machine learning data sets is the Cancer data
set {Breiman et at., 1984) .An instance could be a person and all his symptoms and test
results over the entire year, or an instance could be all the symptoms and test results
performed during a particular day over all people. These two instance representations have
the same content {i.e., the sets of exemplars are isomorphic), but they will result in radically
different learned rules. For example, we could learn which symptoms are related to which
diseases using the former representation, while we could learn whether certain symptoms or
tests occurred more frequently during certain times of the year {e.g., expensive diagnostic
tests are frequently run in the weeks preceding April 15th when income taxes are due) using
the latter. In this particular example it is easy to see which representation is the better
choice for each purpose, but in a new domain, designing the representation is not always

straightforward.
In our domain it was unclear how to define an instance. For example, should a nest or a

part be an instance? Should a single alarm or a set of alarms be an instance? The appropriate
instance representation is largely determined by the goal of learning. We mainly used the
two instance representations described in Section 2. The first representation records whether
a part was rejected and the factory history of this part. The second representation records
the occupancy time at a station for a part and the factory history of this part. We also used
other instance representations such as an alarm occurrence and the events associated with it
{i.e., those events which occur within a time window). Each of these instance representations
was designed around its class attribute.

We are presently using statistical tests and clustering techniques to suggest which at-
tributes would be successful class attributes. For instance, we tried different levels of ab-
stractions for the value of the attribute RejectedPart {e.g. "Rejected vs. Non-Rejected",
"TypeX Rejected vs. TypeY Rejected vs. Non-Rejected"). Trial learning runs were then
used to determine which level of abstraction produced the best learned rules. Of course,
the level of abstraction which produces the best rule might change over time as the data
changes. We also tried different discretizations of time based on its distribution curve. For

4

instance, when trying to predict length of time at a particular cell station, we discretized
the amount of time spent at each cell. To choose an appropriate discretization, we used the
distribution curve of actual values to determine what ranges should be used.

3.1.2 Relevant Attributes

In traditional domains such as medical diagnosis, the appropriate attributes are known.
These domains have been explored by people for many years, and a set of relevant attributes
have been devised. It was unclear in our domain which attributes would be important.
We have large amounts of data from multiple sources. If all this data were represented as
attribute value pairs, the resulting data file would contain tens of thousands of attributes.
The inclusion of many irrelevant attributes may cause problems for induction. The number
of attributes is the biggest factor in the computational cost of most induction algorithms. In
the presence of noisy data, large numbers of irrelevant attributes can produce overly complex
trees, requiring very good pruning methods or stopping criteria.

We devised a method to focus on only those attributes which are useful for determin-
ing class membership. We ran our inductive algorithms using all the available attributes.
Attributes which were never used in a rule were left out of subsequent runs. We also left
out attributes which dominated the rules but were deemed to be uninteresting correlations.
Uninteresting correlations take one of two forms: correlations of which the factory personnel
are already aware or correlations which are novel but unhelpful. For instance, an unhelpful
correlation is that more parts are rejected on Wednesdays. This type of finding usually indi-
cates that more data is needed to eliminate poor correlations. Until additional data can be
collected, the attribute Day-of-the-Week can be removed. Subsequent learned rules may not
be as highly rated as those containing Day-of-the-Week = Wednesday but they will be more
useful to the factory personnel. Since which attributes are useful will change over time, the
full set of attributes should be returned to on a periodic basis.

3.1.3 Representation Tuning

Attribute representation has an effect on what types of patterns can be learned. For example,
the chess domain can be represented in one of two ways. We could store for each square
the piece it contains (e.g., a3=White-King or c2=Null), or we could store for each piece its
position on the chess board (e.g., White-King=a3). The information content of an exemplar
is the same in both formulations (i.e., they are isomorphic). These seemingly small alterations
in our representation of a chess board will affect the kinds of patterns that can be learned.
For instance, the concept square X is empty is easily represented in the :first formulation,
while in the second formulation it is difficult to represent.

We have experimented with several different attribute representations. The represen-
tation of our attributes, including the class attribute, is fairly complex. We use derived
attributes (e.g. , generalization hierarchies and sets) which are combinations of other prim-
itive attributes. These data structures can be employed either to speed up the induction
algorithm or to allow the algorithm to learn results otherwise unobtainable. For instance,

5

Figure 1: A sample knowledge base using set attributes.

in the rejected part abstraction hierarchy stated earlier, if no good rules are learned for
the class RejectedPart, the user can specify a lower level of abstraction and learn rules for
TypeX-RejectedPart and TypeY-RejectedPart. There are correlations which appear only at
specific levels of abstraction. Learning at multiple levels of abstraction makes it possible to
combine results found at different levels. This creates additional learned rules and therefore
a better chance of finding useful results.

We extended the basic decision-tree algorithms to handle set-valued attributes. An exam-
ple of a set-valued attribute is AlarmsOccurred which contains the set of alarms that occurred
while processing a specific nest. The AlarmsOccurred attribute may contain a value such
as {alarm2, alarmB, alarmS}. We consider tests on set-valued attributes which use sub-
set membership as a splitting criterion. For example, we could test the AlarmsOccurred
attribute using the test {alarm2, alarmS} ~ AlarmsOccurred.

Without our extension, it is necessary to represent set attributes using a separate binary
attribute for each element in the set's domain. The binary attribute would indicate for
a given instance whether or not that element appears in the instance's set value for the
given attribute. With this representation, testing whether an instance's value contains a
subset causes a separate test to be added to the tree for each element in the subset. Since
decision-tree algorithms prefer small trees, this representation is biased toward testing on
small subsets. Our extension allows all subsets of alarms to be treated equally.

Our method for handling sets is to reformulate set-valued attributes using several new
binary attributes. We generate one test for every subset of a set which actually appears in
the data. That is for each example, we generate one test for each subset of its value. Any set
X that is not a direct subset of a set appearing in the data is necessarily not a subset of any
of the instances. Therefore, the test "X C AlarmsOccurred" will not be true for any example.
For this reason, the tests produced by this algorithm are complete and do not leave out any
meaningful tests. We will now show an example of this technique being applied. Figure 1
shows a data set with three examples. The values of AlarmsOccurred for these instances are
{1,2}, {2,3,4}, and {5} respectively. We generated three tests using the first example: {1}
~ Alarms Occurred, {2} ~ Alarms Occurred, and {1,2} ~ A larmsOccurred. Each of these
tests are converted to the new attributes 1, 2, and 1,2 respectively. These attributes are
true when the test associated with the attribute is true and false otherwise. This process is
repeated for each example. The result is the new set of attributes shown in Figure 2.

This algorithm is efficient when the size of the largest set appearing in the data is small.

6

Figure 2: .The knowledge base of Figure 1 reformulated using our set conversion algorithm
to a representation using binary attributes.

The number of tests added by this algorithm is exponential in the size of the biggest set
appearing in the data and linear in the number of examples. Because of similar patterns
appearing in the data, the actual number of tests generated is usually significantly smaller .
Since decision-tree style algorithms are linear in the number of tests, when this efficiency
criterion is met, it is also practical to apply decision-tree algorithms to the newly reformulated

representation.

3.1.4 Representing Time

Traditional machine-learning domains do not contain time series data. Treating time as a
discrete attribute is usually inappropriate. Treating time as a continuous attribute can also
cause problems. When time is treated as a continuous attribute, as the data covers a larger
and larger time range, instances which are further and further apart will have time values
close enough to match. For example, if data was collected for a year, two instances which
occurred during the same week would not match on time; but if we collected data for ten
years they would. Another simple approach is to use time differences (i.e., time since a
certain alarm last was generated) instead of actual time values. This solves the problem of
learning that alarm A sounds every five hours. However, the use of time differences does
not allow the system to learn that alarm A was generated at 5:00 A.M. every day. We use
a combination of exact times and time differences which gives us the advantages of both

representations.

3.1.5 Setting Inductive Parameters

The INn decision tree package has several parameters which allow it to mimic CART, C4,
Hayes Trees, and MnL Trees. These parameters affect the speed of the algorithm and the
accuracy of the resulting decision tree. We tested different settings of the parameters to
determine which performed best on our data. The C4 setting performed best, but the per-
formance depended on the class, the attributes, and the training set we chose. Therefore, the
parameter settings cannot be determined a priori but must be chosen via experimentation.

7

3.2 Postprocessing of Induction

Induction algorithms are general, industrial strength tools that have been successfully used
for related tasks in the past. There is good reason to expect that, when properly tuned,
the algorithms will detect a host of useful patterns. However, past experience also indicates
the limitations of these methods. For example, when used to detect errors in DEC's XCON
database, the C4 algorithm generated 78 predictions that were classified by human experts
as follows: 26 useful, 45 useless, 7 unknown (Schlimmer, 1991a).

We want to provide guidance to the user as to which rules are best. Once the induction
process delivers a likely rule, we statistically verify this rule for two reasons. We must
know the precise effect of the antecedent of the rule on the consequent (i.e., is it two times
as likely?). Quantifying our results helps to focus on those results whose possible remedies
could have the greatest impact. Secondly, we do statistical tests (e.g., X2 tests) to verify that
the pattern detected is statistically meaningful given the entire set of data. This allows us
to avoid presenting those rules which have a high accuracy but have a low level of statistical
significance. A rule can be 100% accurate when the only exemplar satisfying the antecedent
also satisfies the consequent. But this rule will have a low level of statistical significance.
We use a X2 test to order the learned rules by their statistical significance. This will relegate
at least some of the uninteresting rules to the bottom of the list.

4

Decision-tree algorithms were developed to produce good decision trees. Decision trees are
used to determine the class of new examples given their attribute values. For instance, a
decision tree can be used to determine whether a patient should be placed in a cardiac
intensive care unit given his vital signs. Or, a decision tree can be used to determine if
a mushroom is edible given its physical description. But in our domain, the goal is not
classification. We are seeking rules that predict when a manufactured part is likely to fail
inspection or when a delay will occur at a particular machine. Such rules do not provide
a comprehensive characterization of the manufacturing process. Instead, they facilitate the
identification of relatively rare, but potentially important, anomalies. Since predictive rules
of this sort are rare, but potentially valuable, we refer to them informally as nuggets.

We need to extract a few good branches from a decision tree or set of decision trees
which a human can understand. This is an important change of focus. All the metrics used
in decision-tree algorithms (e.g. Gini index, information gain) are focused on producing the
best overall tree, whereas we would be happy with a poor tree with one really great branch.
We would also like to iterate on the data and get another great branch. In addition, the
statistics presently computed on trees, including any cross-validated pruning, are based on
the accuracy or predictive ability of the whole tree. We are more interested in the accuracy
or predictive ability of individual branches.

We have developed two new inductive algorithms that are better suited to finding the
nuggets. Gold-digger is a modification of the standard decision-tree algorithm designed to

8

remove its bias for finding high-coverage rules. Brute expands on Gold-digger by replacing
Gold-digger's greedy search with an exhaustive search. The ideas behind Gold-digger and
Brute are best understood by considering why decision trees fail to find good nuggets. The
main reason is that the classical test selection functions used to grow decision trees are
inappropriate for finding nuggets. Classical test selection functions, such as the Gini index
or ID3's information gain measure, have the following form:

/v(t) ~P(i)

L IEI
i=l

max (
tET \

T

E

v(t)

Pi

ni

P(i)

The set of possible tests.
The set of examples at the node with cardinality IEI.
The number of possible values of the test i.
The number of positive examples that satisfy the ith value of i.
The number of negative examples that satisfy the ith value of i.
A measure of the purity of the examples that satisfy the value i.

To evaluate each test, this function averages the purity of each branch, weighted by the
number of examples that satisfy the test value at the branch. Although the exact measure
of purity varies from one algorithm to another, standard measures exhibit fairly similar
behavior in practice (Breiman et at., 1984, Mingers, 1989) .

Test selection functions of this form can lead decision-tree algorithms to overlook valuable
nuggets for several reasons. Due to the weighted average, the function will prefer a test that
results in a balanced tree, where purity is increased for most of the instances, over a test that
yields high purity for a relatively small subset of the data, but low purity for the rest. Yet,
a single high-purity branch might yield a critical nugget. An example of this bias is shown
in Figure 3. In the figure, p and N denote the number of positive and negative examples
respectively that satisfy the indicated test. Adding the test Ti = True appears to be a
good choice because it yields a nugget with 100% accuracy on the training data. However,
standard selection functions weight the purity of each branch of the test. Since the Ti =
False branch has very low purity, the overall score for test Ti is low. In fact, standard
selection functions tend to prefer test T2 because it has better then average purity for both
of its branches.

To avoid missing valuable branches, we prefer a test selection function that computes the
maximum of the branch scores rather than their weighted average:

max (. max P(i)
tET \ '=l..v(t) .

The maximum focuses on only one of the (potentially many) branches of the test and ignores
the number of examples at each branch, considering only its purity.

The tests chosen near the root of a decision tree affect a large number of leaves. In order
to develop compact trees, it makes sense to weight purity by the number of examples. Our

9

T1

~e

P: 100 P: 450

N: 0 N: 450

T2

~e

P: 175 P: 375
N: 325 N: 125

Figure 3: A numerical example illustrating how standard test selection functions can overlook
nuggets. Both the Gini Index and the information gain function prefer T2 over TI, whereas
our selection function prefers TI.

preferred function allows a test that achieves purity of 0.80, on a small subset of the data,
to obscure a different test that achieves purity of 0.75 on the entire data set. However, such
considerations arise because decision-tree algorithms build a single classifier for the entire
data set. Gold-digger and Brute generate multiple, completely distinct, predictive rules.
Thus, choosing the test with the maximal-purity branch to classify a small subset of the
data does not commit us to use that test when classifying the rest of the data.

Another limitation of standard purity functions is that they treat negative and positive
examples symmetrically. In many applications, the positive (or, equivalently, negative) ex-
amples represent some surprising occurrence or anomaly we wish to monitor. In our Boeing
application, for example, we are interested in anticipating when manufactured parts will fail
inspection. A rule predicting that a part will not fail inspection could be very accurate but
quite useless. Thus, instead of treating negative and positive examples symmetrically, we
prefer a function that selects the test with maximal purity relative to the positive examples
and ignores the purity of negative examples altogether. The following purity function, which
simply computes the proportion of positive examples, has the desired behavior:

P(i) = :-:'-:-Pi

Note that although our choice for P(i) could be approximated by introducing the appropri-
ate priors or misclassification costs into classical selection functions (Breiman et al., 1984),
choosing the test with the maximal accuracy branch cannot be approximated.

In summary, we believe that, when searching for nuggets, the max-accuracy test-selection
function shown below is preferable to standard functions.2

(1)max-accuracy(T, E) = max
tET

This function is equivalent to the select-literal function employed by GREEDY3 (Pagallo
and Haussler, 1990, page 85). We make one modification. The function in Eq. 1 runs the

2Note that the function applies readily to multi-outcome tests and to multi-class data sets. It merely
requires labeling some subset of the classes as positive.

10

GoldDigger(trainEGS,pruneEGS):rule-set
rule-set := empty;

REPEAT

rule := GoldDigger-GrowRule(trainEGS);

PrunedRule := GoldDigger-PruneRule(rule,pruneEGS);

trainEGS := RemovePositives-ThatMatchRule(PrunedRule,trainEGS);
rule-set := rule-set + PrunedRule;

UNTIL (positives(trainEGS) < MinPositives) or empty(PrunedRule);

RETURN rule-set;

END

GoldDigger-GrowRule(T,EGS):rule;
IF AIIPositive(EGS) THEN RETURN MakeLeaf();

BestTest := max-accuracy(T,EGS);

EGS := match-test(EGS, BestTest);

RETURN MakeNode(BestTest, GoldDigger-MakeRule(T,EGS));

END

Table Gold-digger's algorithm. The max-accuracy function is defined in Eq. 1

risk of picking a test that covers very few examples. In the extreme, the test could have a
branch that contains exactly one example -a positive one. In this case, the accuracy of
the branch will be 100% and it will be chosen. To avoid this problem, Gold-digger ignores
branches that contain fewer than MinPositives positive examples, where MinPositives is
a constant that is set by the user. In our experiments with Gold-digger, MinPositives was
set to 20% of the total number of positive examples. The addition of the MinPositives
parameter had a significant impact on the function's success in practice.

Gold-Digger4.1

Gold-digger is a greedy algorithm that aggressively searches for nuggets using the
max-accuracy function. Gold-digger was derived from classical decision-tree algorithms
by addressing the problems described in the previous section. The main difference between
Gold-digger and a standard decision-tree algorithm is that Gold-digger expands only one
branch of the decision tree, the branch that appears to contain the best predictive rule as
measured by the max-accuracy function. By only expanding one branch, Gold-digger avoids
the pitfalls associated with trying to build a balanced tree. Finally, Gold-digger utilizes a
pruning method very similar to that used by CART (Breiman et al., 1984). A pseudo-code
description of Gold-digger appears in Table 1.

As described thus far, Gold-digger would only find a single predictive rule. This is
unsatisfactory since there may be multiple nuggets to be uncovered in the data. The obvious

11

solution is to run Gold-digger multiple times. However, if Gold-digger is repeatedly run
on the same training and pruning data, it will produce the exact same rule. We solve this

problem by running Gold-digger multiple times, each time removing the positive examples
covered by the learned rule from the training data. This practice guarantees that when we run
Gold-digger again, it will attempt to find a pattern in a different subset of the initial training
data. In essence, this iteration procedure learns a disjunctive-normal form description of the
target concept, one disjunct at a time. When the number of positive examples drops below
MinPositives or when the last learned rule is pruned away, further iterations would fail to
produce additional rules, so the algorithm terminates.

In essence, a single Gold-digger iteration corresponds to a hill-climbing search through the
space of conjunctive rules. The limitations of hill-climbing are well documented; Gold-digger
may find itself in a local maximum and overlook critical nuggets. For illustration, consider
the nugget "IF Material=material-l AND Location=machine-3 THEN Status=alarm." For
Gold-digger to learn this nugget, it must greedily choose to start a rule either with the test
Material=material-l or with the test Location=machine-3. Gold-digger will choose one of
these tests to start a rule only if one of them has the highest accuracy of any test that
Gold-digger considers. When this condition is not met, the above nugget will be missed.

4.1.1 Experimental Results

We tested Gold-digger on the two data sets discussed in Section 2. To test the different
algorithms, we split the data into two subsets: 70% for training and 30% for testing. Each
algorithm used its own method for picking a subset of the training data for pruning. In each
experimental run, the algorithms were given the same training and test data. To reduce bias
due to the data split, we repeated the runs ten times, randomly selecting different examples
for training and testing. The results shown in Table 2 are averaged over each run. The base
rate is the percentage of the test data that is positive.3

The accuracy of a rule is the percentage of test examples matched by the rule that are
correctly classified. For instance, if a rule matches ten examples and four of them are positive,
then the rule's accuracy is 40%.4 The positive coverage of a rule is the percentage of the
positive test data it covers. The accuracy and coverage columns figures are averaged over
each algorithm's rule set. The cumulative positive coverage column shows the total positive
coverage of each algorithm's rule set. The rules column shows the number of rules found by
each algorithm. The statistically significant rules column shows the number of rules deemed
statistically significant by a X2 test at the level of p = 0.005. Finally, the percent collapse
column shows, for each algorithm, the percentage of runs which failed to produce any rules.

3Using the positive training examples directly as predictive rules performed far worse than the base rate
and worse than any of the inductive algorithms tested. This demonstrates that our data sets are non-trivial,
and the overlap between training and test data is very small.

40ur rules invariably predict a positive classification. The decision-tree output of C4 or CART is auto-
matically converted to the equivalent rule set. Due to the nature of the application, we only consider rules
that predict a positive classification. Note that C4 and CART refer to the IND (Buntine and Caruana, 1991)
re-implementations of these algorithms.

12

The results shown are averaged over the runs that did not collapse.
Gold-digger performed better than either CART or C4 on the occupancy data. Gold-

digger's rules were more accurate and had higher coverage than those produced by CART
and C4. The higher coverage of Gold-digger's rules is particularly interesting because Gold-
digger's selection function was designed to eliminate the high-coverage bias of standard
selection functions. Although decision-tree algorithms prefer to add tests with high coverage,
the cumulative effect of adding several tests to a branch can result in a rule with low positive

coverage.
On the failed-part data, with exception of one run (CART on seed 6), both CART and C4

were unable to produce any rules. Most of the time, Gold-digger collapsed on this difficult
data set. When Gold-digger did not collapse, it was only able to produce a single rule per
run. Of the three rules found, only one was effective with 37.5% accuracy.

Gold-digger's difficulties with this data set indicate that its biggest limitation is how it
iterates to find additional rules. Gold-digger iterates to find additional rules by removing
the positive examples covered by the current rule and recursing on the remaining examples.
If the current rule collapses during pruning, Gold-digger has no examples to remove and
thus cannot learn additional rules. Therefore, a single poor rule found by Gold-digger can
prevent it from finding any additional rules. Another problem with Gold-digger is its practice
of discarding (scarce!) positive training examples at each iteration. As a result, Gold-digger
can underestimate the number of positive examples covered by a new nugget and fail to
learn it as a consequence. This occurs when the set of examples covered by the new nugget
overlaps with the examples covered by previous nuggets. Furthermore, as positive data is
repeatedly discarded, the algorithm finds itself with less and less grist for its inductive mill.
In our experiments, Gold-digger was unable to find more than seven nuggets per run. We
considered several possible improvements to Gold-digger's iterative procedure. However, the
Brute algorithm (which dispenses with Gold-digger's iterations) appeared to be superior, so
we did not pursue improvements to Gold-digger .

4.2 Brute

We devised Brute to address the limitations of the greedy, hill-climbing search and the ad
hoc iterative procedure employed by Gold-digger. Brute performs a massive, brute-force
search for accurate predictive rules. As demonstrated by the success of chess-playing ma-
chines such as Deep-thought, judicious application of brute-force search can yield impressive
results. Is brute-force induction practical, though, in the absence of the special-purpose
search hardware found in Deep-thought? We describe Brute's algorithm and then use both
analytic calculations and experimental results to show that brute-force induction is feasible
and yields valuable nuggets in practice.

In essence, Brute conducts an exhaustive depth-bounded search for accurate conjunctive
rules. Brute's use of a depth bound was motivated by the observation that accurate predictive
rules tend to be short and by the need to make the exhaustive search tractable. Brute avoids
redundant search by considering conjuncts in a canonical order. This optimization guarantees

13

OCCUPANCY-TIME DATA (Base rate = 11.1%)

7.2%)FAILED-PART DATA (Base rate

Table 2: Comparison of Brute, Gold-digger, CART, and C4 on the Hoeing data sets. In the
table, d refers to Brute's search depth, and b refers to the size of Beam-Brute's search beam.

14

BruteSearch(trainEGS, rule)
IF NumConjuncts(rule) < MaxDepth THEN

FORALL test in tests DO

NewRule := AddConjunct(rule, test);

IF PositivesCovered(NewRule) > MinPositives THEN

IF DifferentThanParents(NewRule)

THEN HeapInsert(BestRules, NewRule);

Brute(trainEGS, NewRule);
END

END

END

END.

Brute(trainEGS. rule)
rule := EmptyRule();

BruteSearch(trainEGS. rule);
FOR the best R rules in BestRules DO

Output(rule);
END

END.

Table 3: A simplified version of the Brute algorithm for searching the space of predictive
rules. BestRules stores the R best rules encountered, ranked according to their accuracy.
MaxDepth, MinPositives, and R are set by the user.

that Brute will consider each rule, whose length is smaller than the depth bound, exactly
once.5 Brute retains the R rules found to be most accurate on the training data. In our
experiments, R was set to 50. A pseudo-code description of Brute appears in Table 3.

As described above, Brute would learn many variations of a single rule. Often, when the
rule A I\ B is very accurate, the rule A I\ B I\ C is also quite accurate, particularly when C
rules out very few of the instances covered by the original rule. When this occurs, variations
on a single rule can crowd out other useful rules from the limited rule set retained by Brute.
Left unchecked, this problem would reduce the number of useful nuggets found by Brute.
Our solution is only to keep the rule A I\ B I\ C when it is significantly more accurate than
its parents: A I\ B, A I\ C, and B I\ C. We test for a significant increase in accuracy using a
X2 test at the level of p = 0.1.

Brute would also learn many variations of rules that use continuous attributes if it were
left unchecked. Often a rule containing a test of the form val < y will have similar perfor-

5 A voiding redundant search is referred to as systematicity in the planning literature (McAllester and

Rosenblitt, 1991). Brute is systematic in this sense.

15

fiance to the same rule with this test replaced with val < Z, where Z is numerically close
to Y. To alleviate this problem, Brute only stores the rule with the test val < y such that
for all other Z, val < y performs better than val < Z .

Brute uses two techniques to reduce its search time. First, it does not expand rules
which do not cover enough positive examples to meet the MinPositives requirement. Any
specialization of a rule that does not meet the MinPosi t i ves requirement will itself not
meet the requirement and therefore does not need to be considered. Pruning rules with too
few positive examples greatly reduces the search space. Second, Brute stops when it has
found R rules with 100% accuracy. Since 100% accuracy is the highest possible value of
Brute's scoring function, once it has found R rules with this score, no other rules need to be
considered.

For the sake of tractability, Brute can reduce its branching factor to a fixed-width beam
b. We refer to this variant of Brute as Beam-Brute. Beam-Brute uses Gold-digger's test-
selection function to choose the b most promising tests at each branching point in its search.
Beam- Brute dispenses with Brute's canonical ordering of tests, which results in some redun-
dant search, but provides Beam-Brute with multiple paths to the same rule. This change
is important. Since Beam-Brute does not carry out an exhaustive search, an inappropriate
canonical ordering could interfere with Beam-Brute's ability to find valuable rules.

4.2.1 Experimental Results

Due to the large number of tests in the failed-part data set, Brute was only able to search
nugget space to depth two. Even so, it did not collapse on any run and yielded quite a
few nuggets, outperforming all other algorithms including Beam-Brute. Brute appears to be
much less prone to collapse than the other algorithms including Gold-digger .

On the occupancy-time data set, Brute was able to search to depth four and outperform
both C4 and CAR1'. Beam-Brute was able to find slightly more accurate rules on average,
but the difference is not statistically significant. Brute's average accuracy was 38.4% com-
pared with only 21.6% for CART and 29.9% for C4.6 Arguably, our comparison actually
understates the quality of Brute's rule set because Brute outputs far more rules than C4 or
CART. If we only consider Brute's top ten rules, its average accuracy increases from 38.4%
to 50.8%. C4 found less than ten rules, and the average accuracy for CART's top ten rules
was 21.7%.

Finally, both variants of Brute found far more statistically significant rules than C4 or
CART on this data set. This is important since each statistically significant rule represents
a potentially useful nugget. By generating many more statistically significant rules, Brute
provides more opportunities to improve Boeing's manufacturing processes.

While Brute outperforms classical decision-tree algorithms on the Boeing data, we need
to also consider its running time. Table 4 compares the running times of the different algo-
rithms. We see that Brute's running time is acceptable and that Beam-Brute is exceedingly

6The difference in accuracy between Brute and C4 is statistically significant. Using a one-tailed, paired
T-test we found p=O.OI.

16

RUNNING TIME

Failed-part data Occupancy data
0:49

33:31

0:18

0:02

0:22

0:03

2:22

0:14

21:34

1:17

Brute (d=2)
Brute (d=4)
Beam-Brute (d=5, b=10)

Gold-digger
CART
C4

Table 4: A comparison of the running time of each algorithm on the two data-sets. All times
are in minutes:seconds of CPU time.

fast (less than thirty seconds on the occupancy-time data and about two and one-half minutes
on the failed-part data).

We conclude that Brute is the algorithm of choice for finding nuggets in data similar to
the Boeing data. \i\lTill Brute or Beam-Brute be tractable on larger data sets? To answer this
question, we turn to a complexity analysis of the algorithm.

4.2.2 Complexity Analysis

The number of decision trees is doubly exponential in the number of tests T. T can exceed
1,000 in real-world applications, implying that any straightforward enumeration of decision
trees is impractical (Quinlan, 1986, page 87). However, we are seeking concise conjunctive
rules. The number of conjunctive rules is singly exponential in T, and the number of concise
conjunctive rules is even smaller. The number of rules of length d is the number of subsets
of T of size d, which is (~) (read as "T choose d"). Thus, the number of rules of length d or
smaller is as follows:

d ~ T) d TI

R(T,d)=L ' =L,, (T -') ' . 1 Z . 1 Z, Z ,.= .=

R(T,d) is considerably smaller than Td, Yet, for any fixed d, Td is polynomial in T. It
follows that when d is small, Brute's search space is manageable, even for very large T .

Brute evaluates each rule by counting how many training examples it covers. In the
worst case, each evaluation takes time linear in the number of training examples E. Thus,
the overall complexity of Brute is O(R(T, d)E). We can calculate an upper bound for Brute's
running time as a function of s, the machines speed, using the following formula:

CPU seconds::::; ~ E

s

On a SPARC-lO workstation, Brute can evaluate approximately 75,000 rules per second
when learning with 500 training examples. Therefore, on a SPARC-lO, s = 3. 75xl07 .We

17

can use this information to choose an appropriate depth bound for Brute. For example,
given the occupancy-time data set, which contains 421 tests and 752 training examples, the
formula predicts that a search to depth four will take no more than 7 hours. Brute's actual
performance is significantly better at 33 minutes because it prunes a significant portion of
the search space. Nevertheless, the estimate indicates that searching to depth four is in the
realm of possibility.

We see that when the number of tests is large, Brute can only perform a shallow search.
However, if the depth reached by Brute is not sufficient (and faster machines or more CPU
time are not available!), Beam-Brute can be used to carry out deeper searches. On the failed-
part data, Brute would take about 700 years to conduct a search to depth five, assuming it
did not find enough 100% accurate rules to terminate early. However, Beam-Brute ,using a
fixed-width beam of 10, requires less than three minutes and still produces good results. In
general, the complexity of Beam-Brute is O(bd-1T E). Since the running time of both Brute
and Beam-Brute is linear in the number of examples, both algorithms are able to process the
large data sets often found in practical applications. Beam-Brute is particularly attractive
for very large applications since both the depth bound and the branching factor of the search
can be set by the user .

Discussion4.3

While the number of decision trees appears to preclude any kind of exhaustive search, the
number of concise conjunctive rules is much smaller. The number of concise conjunctive
rules is polynomial in the number of tests, given any fixed bound on rule length. The
complexity of an exhaustive search is still only linear in the number of training examples.
These observations, coupled with the calculations in Section 4.2.2, led us to consider brute-
force induction as a, feasible option. Instead of creating decision trees and converting them
into rules, we decided to conduct a massive (but direct) search for the rules.

As it turned out, thirty-five CPU minutes on a SPARC-10 workstation enabled us to con-
duct extensive searches in the context of our Boeing application. As shown in Section 4.1.1,
this search uncovered sets of predictive rules with higher accuracy and superior coverage
compared with the rules produced by standard decision-tree algorithms. Brute-force induc-
tion may not be feasible in cases which require full coverage of the data set or deep searches
of the hypothesis space. However, our experimental results and complexity analysis sug-
gest, that when seeking concise predictive rules, brute-force induction is an option worth

considering.
The limitations of Gold-digger are that it is a greedy algorithm and so can always miss

good rules when a combination of attributes does well while any single attribute of that
combination does poorly. Since it has no coverage component, it can also focus in on rules
which cover too small of a set to be considered statistically significant.

The limitations of Brute are obviously its computational complexity. As the feature space
gets too large, it becomes infeasible to run brute without limiting its beam. Whether Beam-
Brute is a better choice than other approximate algorithms depends mostly on the size of the

18

domain and how many conjuncts the rules must contain to be effective. Recent work (Holte,
1993) has suggested that many domains are adequately represented by surprisingly short
rules.

5

Figure 4 shows the rules we found applying our methodology to the Hoeing data. A rule
of the form "If W, then it is N times more likely to Y," means that when W is true, y
is N times more likely to occur than the unconditional frequency of Y. These rules were
used by factory personnel as clues on how to improve the factory. For instance, the first
rule in Figure 4 led the factory personnel to examine the results of the material acceptance
tests for batch B. Apparently, batch B had just barely passed the acceptance tests. As a
result, they have implemented a new system for tracking batches and are currently working
with the vendor of this material to improve quality. The second rule is interesting because
stationA and stationH were supposedly identical machines. Their different roles in rejected
parts led factory personnel to examine the equipment and scheduled maintenance in more
detail to determine what changes could be made to bring stationH up to the high standards
of stationA. The third rule led the factory personnel to examine how delays before stationH
could cause rejected parts. This gives a sense of the type of rules which were derived and
how they were used to improve the factory.

Several important aspects of this work for a manufacturing environment are: 1) the
rules can be discovered automatically without much intervention from the factory personnel,
2) the rules are statistically validated both in terms of their statistical significance and in
terms of their potential value for improving the manufacturing process, and 3) as the factory
environment changes over time the techniques can easily be re-applied to derive new rules
which reflect the new state of the factory.

6 Related Work

There is scant related work to report in the area of representation design. In (Evans and
Fisher, In press), Evans and Fisher discuss how they determined the class attributes Banded
and NotBanded. They also discuss the iterative process they used for attribute selection.
(Fayyad et al., 1992) discusses the use of derived attributes. In their domain, adding two user
defined attributes increased accuracy so significantly that they chose to automate the process.
They derived new attributes by applying induction recursively. (Buntine and Stirling, 1991)
discusses altering inductively learned rules to make them more acceptable to human experts.
In particular, they discuss the importance of generating statistics concerning the applicability
and confidence in each rule.

Rivest describes an algorithm for P AC (Probably Almost Correct) learning decision lists
in (Rivest, 1987) that has similarities to both Brute and Gold-digger. Rivest's algorithm
uses the same iterative structure as Gold-digger, but replaces Gold-digger's greedy search

19

If the nest's material is A and it is from batch B, then it is 4 times as likely to
have a TypeC reject.

A nest which goes through station B is 2 times as likely to be rejected as a nest

which goes through station A.

If a nest is at station A before station B for over 32 minutes, then it is 4.5 times
as likely to be a TypeC reject.

If a nest is at station X over 51 minutes, then it is 3 times as likely to be rejected

If the nest's material is X and it is at station y before it goes to station Z, then
it is 2 times as likely to be a TypeW reject.

A nest is 2 times as likely to get a TypeZ reject on a Friday.

Part A is 1.5 times as likely to get a TypeX reject

A nest which spends less than 9 minutes in station X is 6 times more likely to be

OCC3 than a nest which spends more than 9 minutes in station x. OCC3 means
that a nest spent 6 to 21 minutes in station Z.

If the nest's material is A, then the probability of alarm X reduces by 25%.

Alarm y is almost 2 times as likely not to occur in the first five days of the
month.

Figure 4: Rules learned in the Hoeing factory domain.

20

algorithm with one that does exhaustive search. Since Rivest's algorithm is designed for
PAC learning, it only searches for 100% accurate rules and assumes its data is noise free.
Gold-digger can be viewed as an extension of Rivest's algorithm to perform a greedy rather
than exhaustive search, to handle noisy data, and to find less than 100% accurate rules.
Gold-digger provides two mechanisms to handle noisy data. First, it only considers rules
which cover a minimum number of positive examples. Second, Gold-digger prunes its rules
using independent pruning data. The change to greedy search from exhaustive search seems
questionable in light of Brute's success. However, adding exhaustive search to Gold-digger
would provide little benefit for finding nuggets. First, adding exhaustive search does nothing
to alleviate Gold-digger's central problem of frequently collapsing. Second, as Brute illus-
trates, it is possible to search for multiple nuggets using a single exhaustive search. However ,
a single exhaustive search would not work for learning decision lists because the performance
of each rule must be considered in relation to its position in the decision list.

GREEDY3, developed by Pagallo and Haussler, also extends Rivest's algorithm to do
greedy rather than exhaustive search (Pagallo and Haussler, 1990). The result is very much
like Gold-digger. GREEDY3 uses the same iterative structure as Gold-digger and uses a
selection function very similar to max-accuracy. GREEDY3's selection function differs from
Gold-digger's in that it does not have a MinPositives parameter. Like Rivest's algorithm,
GREEDY3 only searches for 100% accurate rules and does not handle noisy data. GREEDY3
does have a pruning algorithm, but it is not designed to handle noise. GREEDY3's pruning
algorithm is designed to eliminate crossover terms which can increase the size of a decision
list.

Schlimmer's CARPER system (Schlimmer, 1991b) also pursues a branch rather than
building an entire tree. However, CARPER does this as an efficiency optimization, not as a
means of improving the classification accuracy of the algorithm. CARPER does not share
Gold-digger's iterative structure or the max-accuracy function.

One of the first systems to apply massive search to learning is Weiss, Galen, and Tade-
palli's PVM system (Weiss et at., 1990). PVM uses a beam search and pruning heuristics
to do a semi-exhaustive search for short classification rules. PVM differs from Brute in
that PVM is designed to find classification rules rather than predictive rules and because
its search is not complete. Since PVM is interested in classification rules, PVM considers
rules containing both conjunction and disjunction. Brute only considers conjunctive rules.
This difference arises from the slightly different learning tasks they address. For learning
nuggets each disjunct in a disjunctive rule would have to be verified independently of the
other disjuncts to determine whether the pattern it identifies is justified. For classification, it
is necessary to consider how the individual disjuncts interact to form a classifier; thus, they
cannot be considered independently. Brute's restriction to purely conjunctive rules greatly
reduces the search space, allowing greater depths to be pursued.

Smyth and Goodman also recognized that exhaustive search of conjunctive rules can
effectively be used for searching for nuggets (Smyth and Goodman, 1991). Their sys-
tem, ITRULE, also performs a depth bounded exhaustive search for good predictive rules.
ITRULE uses an evaluation function based on information theory that has a greater bias

21

towards finding high-coverage rules than our max-accuracy function. Brute's biggest im-
provement over the basic ITRULE algorithm is its ability to prevent syntactically similar
rules from appearing in the final rule set. Brute does this by removing rules statistically
similar to their parent rules and by removing rules that perform worse than the same rule
with different values for their numeric comparisons.

Finally, a recent paper by Schlimmer uses exhaustive depth-bounded search to find deter-
minations {Schlimmer, 1993). A determination for an attribute is a set of attributes which
are relevant for determining the attribute's value. Although not directly useful for finding
nuggets, this work does further illustrate that exhaustive search can be a valuable tool.

7 Future Directions

While induction has been credited with many successes, much work must be performed
before an induction algorithm can be used. Applying induction requires careful tuning and
analysis by a machine learning engineer. This is similar to the part played in the past by the
knowledge engineer for expert systems. As expert systems developed, the field of knowledge
acquisition formed to alleviate reliance on a knowledge engineer and to allow domain experts
to build expert systems themselves. Similarly, it is now time for the field of inductive learning
to allow domain experts to take charge of induction.

We are attempting to create a semi-automated toolbox which will allow factory personnel,
who are not familiar with machine learning, to look for patterns in their own data. This paper
discusses the steps we believe are involved and how these steps can be applied manually. We
believe that automating this process as much as possible is the necessary next step for getting
induction algorithms into everyday use in industrial settings.

A semi-automated toolbox must be able to be used directly by factory personnel. It would
have to allow factory personnel to choose the algorithm parameters and data representation.
Since the factory personnel are not machine learning specialists, the tuning of the inductive
algorithm and the data representation must be automated. Since the output of the toolbox
would go directly to the factory personnel, we would have to avoid producing uninteresting
patterns. Since statistics are often misconstrued by non-statisticians, it is equally important
that statistical information be clearly explained.

Here is a sketch of our current design for a semi-automated toolbox. Exploratory statisti-
cal tests and visualization techniques will be used to choose instances. Statistical techniques
will be used to produce derived attributes from the primitive data, which can then be used
by the induction algorithm. A set of complex data types such as sets and generalization
hierarchies will be provided which will be automatically reformulated into attribute-value

representations.
We will partially automate the process of setting induction parameters. Different param-

eters will favor rules with higher accuracies or greater statistical significance. A combination
of heuristic rules (e.g., in Brute always use a low beam value if the number of attributes
is very high) and experimentation (i.e., running the algorithm with a number of different
parameter settings and returning the cumulative non-redundant best rules) should be used.

22

Conclusion8

Induction has been credited with many successes over the past few years, but the difficulties
encountered in applying these techniques to real-world domains have not been addressed. In
this paper we discuss the various challenges to applying induction algorithms to real-world
domains. We emphasize practical techniques for overcoming these challenges. We use a
success story of applying induction algorithms to a Boeing factory domain as a case study.
The Boeing application led us to seek concise predictive rules which cover small subsets of
the data, instead of full-blown decision trees. We developed two new induction algorithms
which were focused on finding nuggets.

For induction algorithms to have an impact on real-world problems, we need a method-
ology for handling these challenges. We believe it is time to analyze and to document the
process of applying induction algorithms so that we can start automating it. We propose
building a semi-automated toolbox to help non-specialists to apply induction effectively.

References

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., 1984
Regression Trees. Wadsworth.

Classification and

Buntine, W. and Caruana, R., 1991. Introduction to IND and recursive partitioning. NASA
Ames Research Center, Mail Stop 269-2 Moffet Field, CA 94035.

Buntine, W. and Stirling, D. 1991. Interactive induction. Machine Intelligence, 12:121-137

Evans, B. and Fisher, D. Process delay analysis using decision tree induction. To appear
in IEEE Expert.

Fayyad, U., Doyle, R., Weir, W. N., and Djorgovski, S., 1992. Applying machine learning
classification techniques to automate sky object cataloguing. In Proceedings of International
Space Year Conference on Earth & Space Science Information Systems.

Holte, R. C., 1993. Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 11(1):63-90.

McAllester, D. and Rosenblitt, D., 1991
AAAI-91, pages 634-639.

Systematic nonlinear planning. In Proceedings of

Mingers, J ., 1989. An empirical comparison of selection measures for decision-tree induction
Machine Learning, 3(4):319-342.

Pagallo, G. and Haussler, D., 1990. Boolean feature discovery in empirical learning. Machine

Learning,5(1):71-100.

Quinlan, J R., 1986. Induction of decision trees. Machine Learning, 1(1):81-106.

23

Rivest, R. 1987. Learning decision trees. Machine Learning, 2:229-246

Schlimmer, J. C., 1991. Database consistency via inductive learning. In Birnbaum,
Lawrence A. and Collins, Gregg C., editors, Proceedings olthe Eighth International Machine
Learning Workshop, pages 640-644.

Schlimmer, J. C., 1991. Learning meta-knowledge for database checking. In Proceedings of
AAAI-91, pages 335-340.

Schlimmer, J. C., 1993. Efficiently inducing determinations: A complete and systematic
search algorithm that uses optimal pruning. In Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA.

Smyth, P. and Goodman, R. M., 1991. Rule induction using information theory. In Knowl-
edge Discovery in Databases, pages 159-176. MIT Press, Cambridge, MA.

Weiss, S. M., Galen, R. S., and Tadepalli, P. V ., 1990. Maximizing the predictive value of
production rules. Artificial Intelligence, 45:47-71.

24

