
E�cient Information Gathering on the Internet�

(extended abstract)

O. Etzioni y S. Hanks z T. Jiangx R. M. Karp { O. Madani k O. Waarts��

Abstract

The Internet o�ers unprecedented access to information.
At present most of this information is free, but information
providers are likely to start charging for their services in the
near future. With that in mind this paper introduces the fol-
lowing information access problem: given a collection of n
information sources, each of which has a known time delay,
dollar cost and probability of providing the needed informa-
tion, �nd an optimal schedule for querying the information
sources.

We study several variants of the problem which di�er in
the de�nition of an optimal schedule. We �rst consider a
cost model in which the problem is to minimize the expected
total cost (monetary and time) of the schedule, subject to
the requirement that the schedule may terminate only when
the query has been answered or all sources have been queried
unsuccessfully. We develop an approximation algorithm for
this problem and for an extension of the problem in which
more than a single item of information is being sought. We
then develop approximation algorithms for a reward model
in which a constant reward is earned if the information is
successfully provided, and we seek the schedule with the max-
imum expected di�erence between the reward and a measure
of cost. The monetary and time costs may either appear in
the cost measure or be constrained not to exceed a �xed up-
per bound; these options give rise to four di�erent variants
of the reward model.

1. Introduction

The Internet is rapidly becoming the foundation of an
information economy. Valuable information sources include
on-line travel agents, nationwide Yellow Pages, job listing
services, on-line malls, and many more. Currently, most
of this information is available free of charge, and as a re-
sult parallel search tools such as MetaCrawler [12] and Bar-
gainFinder [7] respond to requests by querying numerous
information sources simultaneously to maximize the infor-
mation provided and minimize delay. However, information

�Research supported in part by O�ce of Naval Research grant
92-J-1946, ARPA / Rome Labs grant F30602-95-1-0024, a gift from
Rockwell International Palo Alto Research, National Science Foun-
dation grant IRI-9357772, Natural Science and Engineering Re-
search Council of Canada Research grant OGP0046613, and Canadian
Genome Analysis and Technology Grant GO-12278.

yU. of Washington. etzioni@cs.washington.edu
zU. of Washington. hanks@cs.washington.edu
xOn research leave from Dept. of Comp. Sci., McMaster Univer-

sity, Hamilton, Ont L8S 4K1, Canada. jiang@maccs.mcmaster.ca
{U. of Washington. karp@cs.washington.edu
kU. of Washington. madani@cs.washington.edu
��U. of California at Berkeley. Work supported in part by NSF

postdoctoral fellowship. waarts@cs.berkeley.edu

providers are likely to start charging for their services in the
near future [9]. Billing protocols to support an \information
marketplace" have been announced by large players such as
Visa and Microsoft [11] and by researchers [14].

Once billing mechanisms are in place, Internet users will
have to balance speedy access to information against the cost
of obtaining that information. Clearly, the speediest infor-
mation gathering plan would be to query every potential
information source simultaneously, but that plan may well
be prohibitively expensive. The most frugal alternative|
querying the information sources sequentially|may prove
to be prohibitively slow. This observation suggests the fol-
lowing information access problem: given a collection of n
information sources, each of which has a known time delay,
dollar cost and probability of providing the needed informa-
tion, �nd an optimal schedule for querying the information
sources.

This paper presents several optimization models for the
information access problem that vary according to the ob-
jective function. In all cases there are n information sources.
The ith information source is described by three numbers:
its execution time ti (also referred to as its time cost), its
dollar cost di, and its success probability pi. The failure
probability of source i is 1 � pi, which we denote by qi. A
source is said to succeed if it provides the answer to the
query. The event that a given source succeeds is assumed to
be independent of the success or failure of the other sources.

A schedule can be represented as a partial function from
the set of sources to the nonnegative reals. A source is in the
domain of this function if and only if there is a possibility
of executing it. The function value associated with source
i is denoted si; source i will be initiated at time si unless
some query succeeds at or before time si. Execution of the
schedule is terminated either when some source returns a
correct answer or when all sources in the domain of the func-
tion have completed their execution. Since each source in
a schedule succeeds probabilistically, a schedule generates
a probability distribution over outcomes, where each out-
come is one possible way that the schedule's sources might
respond to the query. We use D(O) and T (O) to denote re-
spectively the total dollar cost and time cost of outcome O.
Within this framework we study two forms for the objective
function, which we call the reward and cost models.

In the cost model, a schedule assigns a start time si to ev-
ery source. The completion time of source i is si+ti. Source
j precedes source i if its completion time is less than or equal
to si. In an execution of the schedule, source i is queried
if and only if no source that precedes it has succeeded. It
follows that the schedule terminates only when the question
has been answered or all sources have been queried. Thus
the probability that source i is queried is the product of the
failure probabilities of all the sources that precede it. The
time cost of a schedule is a random variable which is equal
to the earliest completion time of a source that succeeds,

and the dollar cost of a schedule is a random variable which
is equal to the sum of the dollar costs of the sources that
are queried. The overall cost of a schedule is the sum of its
time cost and its dollar cost. The unit of time can be chosen
appropriately so that the sum obtained is a weighted sum of
dollar cost and time cost. We seek a schedule of minimum
expected overall cost. In this model a schedule will always
include all the sources, and the problem is to determine the
order in which they are queried and which should be run
simultaneously.

In this model, we also study a more general version of this
problem in which the objective is to retrieve m > 1 items
of information. We assume that the ith source has dollar
cost di, time cost ti and, for j = 1; 2; � � � ;m, probability
pi of successfully providing the jth item of information. In
this case we require that pi is bounded away from 1 by a
constant.

In the reward model a schedule may not include all sources
and a schedule may terminate even though the question has
not been answered and not all sources have been queried.
We assume a constant known reward R which is collected
just in case some source returns a correct answer. Let S(O) =
1 if some source in O successfully answers the query, and
S(O) = 0 if none does. The value of an outcome O is R�S(O)
less some function of D(O) and T (O). The expected value
of a schedule P, denoted V (P), is simply the expectation
of the value taken over all the schedule's possible outcomes.
Our objective is to �nd a schedule that maximizes V (P).

We consider four variants of the objective function corre-
sponding to cases where D(O) and T (O) are linear in dollar
cost (time cost) or are threshold constraints on the amount
of money (time) the schedule can consume. In the threshold
cases the problem is to �nd the schedule with the maximum
expected value subject to the constraint that the schedule
never violates the threshold constraint(s). For example, the
TL model (see Figure 1) represents the case where there is
a dollar cost threshold but the objective function is linear in
the schedule's duration. In this case the problem is to �nd
the schedule that maximizes expected reward less expected
duration subject to the constraint that the total dollar cost
of executing the schedule does not exceed the threshold.

Observe that the cost and reward models are concep-
tually distinct in that the reward model must address both
the question of which sources to consult and when to consult
them whereas the cost model addresses only the latter.

Figure 1 summarizes the problems we address within the
reward and cost models. We will hereafter refer to the prob-
lems by their acronyms. The four reward-model problems
are LL for linear in dollar cost and time cost, LT for linear
in dollar cost and threshold in time cost, TL for threshold in
dollar cost and linear in time cost, and TT for threshold in
dollar cost and time. The cost-model problem is CO (cost
only). With suitable scaling of the dollar and time costs, the
objective functions for the models assume the forms given
in Figure 1.

1.1 Our Results

We will �rst summarize the results for the cost model.
We develop an algorithm that runs in time O(n2) and con-
structs a schedule which achieves the approximation ratio
2 � 4 � 4. Each of these factors is the result of a di�er-
ent transformation in the construction of our algorithm, as

described later in the paper. The manner in which we con-
struct our algorithm is a key idea in this part of the paper.

Next, for the cost model, we consider the general case of
the information access problem in which there are m items
of information being sought, and a query to a given source
asks for all the items. In contrast with the case of a single
item of information, in the general case the optimal schedule
may need to be adaptive; i.e., the decisions of the scheduling
algorithm may depend on which items of information have
already been gathered. Despite this complication, we give
an algorithm which runs in polynomial time and gives a
schedule whose expected overall cost is within a constant
factor of the optimal expected overall cost. It is somewhat
surprising that the approximation ratio is independent of m
as well as n.

Turning now to the reward model, we show that �nding
an optimal schedule is NP-hard in each of the four cases.
A fully polynomial time approximation scheme (FPTAS) is
obtained for the model TT, using an extension of the well-
known rounding technique for Knapsack [6]. The FPTAS
also works for the model TL under a weak assumption: that
every source is \pro�table" individually according to the TL
objective function, i.e. for every source i, pi � ti � 0.

The approximation algorithms for the case LT|where
the objective function is linear in total cost subject to a
time threshold|are perhaps the most interesting among the
reward-model problems. For this case we make the simpli-
fying assumption that the duration parameters ti are the
same. This assumption is powerful because it allows us to
consider scheduling sources in simultaneous \batches": all
sources will be scheduled at t = 0; d; 2d; : : :, where d is the
common duration. Although not fully general, this is a rea-
sonable model of the current and probable future state of
information access on the Internet.

We will �rst present an O(n2) time approximation al-
gorithm with ratio 1

2 for optimal single-batch schedules,
then extend it to a polynomial time approximation scheme
(PTAS). For any constant r > 1, the PTAS runs in time
O(nr+1) to achieve an approximation ratio r�1

r+1 . The al-

gorithms are simple and are similar to the ones in [10] for
Knapsack, but the analyses are di�erent and are more so-
phisticated. We then design an approximation algorithm
with ratio 1

6 for optimal k-batch schedules, running in time

O(kn2). The algorithm is based on the ratio- 12 algorithm for
single-batch schedules, but it also involves some new ideas.

Due to lack of space, most proofs are omitted or only
sketched. The proofs for the cost model appear in [2] and
those for the reward model appear in [1].

1.2 Related Work

Scheduling problems have been studied in many contexts
including scheduling on parallel machines, processor alloca-
tion, etc. (see [8] for a survey). Our Internet-inspired query
scheduling problem has a unique
avor, however, due to the
need to balance the competing time and cost constraints on
schedules with unbounded parallelism. In addition, in our
problem, once an answer is obtained, no other queries need
be made.

If we constrain the schedules to be sequential, then an
optimal solution can be found in polynomial time (see sub-
section 3.2 for the LT case). Similar problems have been
addressed in [4, 13] and elsewhere. The di�erence in this

Objective fn linear in time time threshold

linear in cost LL: min E[S(O) �D(O)� T (O)] LT: max E[S(O)�D(O)]
(w/reward) s.t. 8O T (O) � �
cost threshold TL: max E[S(O) � T (O)] TT: max E[S(O)]
(w/reward) s.t. 8O D(O) � & s.t. 8O D(O) � & and T (O) � �
cost linear
(no reward)

CO: min E[D(O) + T (O)]

Figure 1: The �ve objective functions. O denotes a possible outcome of the schedule P to be found.

paper is the ability to query any number of sources in paral-
lel. [3, 5] study scheduling tasks with unlimited parallelism
with some similarity to the LL and CO models, but the
positive results in [3, 5] are limited to an exponential-time
dynamic programming algorithm and some heuristics.

2 The Cost Model

2.1 Batch Schedules for a Single Item of
Information

Issuing the query to information source i is referred to as
performing job i. We de�ne a mathematical notion called a
fraction of a job, or equivalently, a fractional job, as follows:
an �-fraction of job i, where 0 � � � 1, has dollar cost
� � di, time cost ti, and probability of failure q�i . Thus the
dollar cost is assessed in proportion to the fraction �, the
full time cost is charged regardless of the fraction �, and
the failure probability is chosen so that, if a job is broken
into fractional jobs with fractions summing to 1, then the
product of the failure probabilities of the fractional jobs is
equal to the failure probability of the entire job. Note that
each job is also a fractional job, since it is a 1-fraction of
itself. An �-fraction of a job, where � =2 f0; 1g, is also called
a strictly fractional job. Our strategy is to �rst construct a
schedule in which any given job may be split into fractional
jobs with fractions summing to 1, and then to convert this
fractional schedule into one without strictly fractional jobs.

A batch schedule is one in which the sources are parti-
tioned into an ordered sequence of subsets called batches.
The �rst batch is started at time 0 (i.e. all sources in the
�rst batch are queried at time 0), and, in general, batch
i+1 is started upon the completion of the last job in batch
i, provided that no job in the �rst i batches has succeeded.
Batch schedules are not fully general, since they do not al-
low two jobs to overlap unless they start at the same time,
but we show that the restriction to batch schedules costs
only a small constant factor in the expected overall cost.

case putting a job in a batch increases the probability of
execution

A fractional batch schedule is constructed by breaking
some of the jobs into strictly fractional jobs with fractions
summing to 1, and then constructing a batch schedule using
the resulting set of jobs.

Given a (fractional) batch schedule R, denote its ith
batch by Ri. The costs and failure probabilities of the
batches of R are de�ned in a natural way as follows. The
dollar cost of the ith batch, denoted by D(Ri), is de�ned as
the sum of the dollar costs of the jobs (and fractions of jobs)
contained in it. The time cost of the ith batch, denoted by
T (Ri), is de�ned as the maximum time cost among the jobs
and fractional jobs it contains. (Note that the actual time

spent executing a batch may be somewhat smaller than its
de�ned time cost since an answer may be obtained before
all the jobs in the batch have been completed; however, the
above de�nition su�ces for our purposes.) The overall cost
of the ith batch, denoted by OC(Ri), is the sum of its dollar
cost and its time cost. The failure probability of the ith batch,
denoted by Q(Ri), is the product of the failure probabilities
of all jobs (including the strictly fractional ones) contained
in the batch. Its success probability is denoted by P (Ri) =
1�Q(Ri). We de�ne Q(R0) = 1 and C(R0) = T (R0) = 0.
For example, if the ith batch contains jobs i1; : : : ; ik and

an �-fraction of job ik+1, then D(Ri) = �dik+1 +
Pk

j=1 dij ;

T (Ri) = max1�j�k+1ftijg; OC(Ri) = D(Ri) + T (Ri); and

Q(Ri) = 1� P (Ri) = q�ik+1 �
Q

1�j�k
qij .

The expected overall cost of a batch schedule R is the
sum of its expected dollar and time costs.

We refer to jobs whose probability of success is greater
than 1=2 as heavy jobs and to all other jobs as light jobs. A
batch that consists only of fractions of light jobs (recall that
whole jobs are a special case of fractional jobs) is called a
light batch, and a batch that consists of a single whole heavy
job is called a heavy batch. Note that in general a batch may
be neither light nor heavy.

Finally, we call a fractional batch schedule balanced if
each of its batches is either light or heavy, each of its light
batches except the last light batch has failure probability
exactly 1=2, and the last light batch has failure probability
greater than or equal to 1=2.

2.2 The Greedy Schedule

Our schedule is a batch schedule. Its batches are con-
structed in three steps. In the �rst step we put aside the
heavy jobs and construct a balanced fractional batch sched-
ule from the light jobs. In this schedule the last batch has
failure probability greater than or equal to 1=2, and each of
the other batches has failure probability 1=2. We call this
schedule the light fractional greedy schedule and denote it by
LFG. In the second step, we construct a balanced schedule
such that each of its batches is either a batch of LFG or a
single heavy job. We call this schedule the balanced greedy
schedule and denote it by BG. In the third step we convert
BG into a non-fractional batch schedule by combining the
fractions of each strictly fractional job in BG and placing
the resulting whole job in an appropriate batch. This sched-
ule is called the greedy schedule and is denoted by G. The
greedy schedule is our �nal schedule, and our main result in
the single query case is that the expected overall cost of the
greedy schedule is within a constant factor of the optimal
expected overall cost.

The Light Fractional Greedy Schedule The light fractional
greedy schedule uses only the original light jobs. Some of
these jobs may be broken into fractional light jobs with frac-
tions summing to 1. The batches are constructed succes-
sively, starting with batch 1. We now describe the construc-
tion of batch i. Let �ik be the fraction of the kth light job
occurring in batch i. Then the �ik are nonnegative and, for
each k,

P
i
�ik = 1.

In general, given batches 1; 2; � � � ; i � 1, batch i is con-
structed to be of minimum overall cost, such that:

1 for each k, �ik � 1�
Pi�1

j=1 �jk;

2
Q

k
q
�ik
i , the failure probability of batch i, is equal to 1=2;

3 Batch i contains at most one job k such that �ik > 0

and
Pi

j=1
�jk < 1. Such a job is said to be partially

completed in batch i.

It turns out that, among the minimum-cost choices of batch
i satisfying the �rst two conditions, there is one that also
satis�es the third.

An exception to the second condition occurs when the
fractional jobs remaining are not su�cient to yield a failure
probability as small as 1=2. In that case, all the remaining
fractional jobs are placed in a single �nal batch.

In subsection 2.4 we show how the above batches can be
selected e�ciently.

The Balanced Greedy Schedule Each batch of LFG oc-
curs as a batch in BG. In addition, each original heavy job
occurs by itself as a batch in BG. Subject to this require-
ment, BG is constructed to be of minimum expected overall
cost. This is achieved by sorting the two types of batches
(batches of LFG and batches consisting of a single heavy
job) in increasing order of the ratio OC=P , where OC is the
overall cost of the batch and P is its success probability, and
executing the batches in that order, halting as soon as some
fractional job is successful.

The Greedy Schedule We start with the balanced greedy
schedule BG and combine strictly fractional jobs appearing
in it, in order to obtain batches that do not contain strictly
fractional jobs. The combining is done as follows. Let k
be a job that occurs fractionally in more than one batch of
BG. Let �ik be the fraction of job k appearing in batch i
of BG; note that, if batch i is heavy, then �ik = 0. Let
Pi be the probability that batch i of BG is executed. Let
fk =

P1

i=1
�ikPi. Thus, fk is the expected fraction of job

i that is executed in a run of BG. Job k is moved to batch
i, where i is the least index satisfying Pi < 2fk. This move
is motivated by the wish to approximately preserve the ex-
pected overall cost of the schedule.

2.3 Analysis of the Greedy Schedule

The analysis proceeds in three steps. The �rst step shows
that the expected overall cost of the balanced greedy sched-
ule is at most twice the expected overall cost of any bal-
anced schedule. The second step shows that the expected
overall cost of the greedy schedule is at most four times
the expected overall cost of the balanced greedy. The third
step shows that there is a balanced schedule whose expected
overall cost is at most four times the expected overall cost

of the optimal schedule. Combining these results, we �nd
that the expected overall cost of the greedy schedule is at
most 2� 4� 4 times the expected overall cost of an optimal
schedule.

2.3.1 Balanced Greedy is Almost Optimal among
Balanced Schedules

The main result of this subsubsection is the following theo-
rem.

Theorem 2.1 The expected overall cost of the balanced greedy
schedule is at most twice the expected overall cost of any
other balanced schedule.

Let Schedule A be an arbitrary balanced schedule. Let
Ai denote the ith batch of schedule A. We construct from
A a new schedule ALG whose ith batch is denoted ALGi.
ALG is constructed from A by replacing the light batches of
A with the corresponding batches of LFG while leaving the
heavy batches of A unchanged. Thus, if Ai is heavy, then
ALGi = Ai; otherwise, if Ai is light, and it is the jth light
batch in A (i.e. is preceded in A by j � 1 light batches),
then ALGi is the jth batch of LFG.

The following lemma states the key observation of this
subsubsection:

Lemma 2.2 For each i = 1; : : : ;1, OC(ALGi) �Pi

j=1
D(Aj) + maxj=1;::: ;i T (Aj)

Sketch of Proof: For the heavy batches there is nothing
to prove, since they are not changed in passing from A to
ALG. For the light batches, we argue as follows. For each r,
since the �rst r light batches ofA each has failure probability
1=2, and the �rst r � 1 batches of LFG each has failure
probability 1=2, it must be possible to construct an rth light
batch, say batch B, from fractional jobs contained in the
�rst r light batches of A but not in the �rst r� 1 batches of
LFG. The overall cost of such a batch B would not exceedPi

j=1
D(Aj) + maxj=1;::: ;i T (Aj).

On the other hand, by construction of LFG, the rth light
batch of LFG is the light batch of minimum overall cost
which has failure probability 1=2 and can be constructed
from the fractional parts of jobs remaining after the �rst
r�1 batches of LFG have been constructed (the last batch of
LFG is exceptional, as its failure probability may be greater
than 1=2. This complication is easily handled.) Thus the
overall cost of the rth batch of LFG is less than or equal
to the overall cost of batch B, which, as stated above, is
�
Pi

j=1
D(Aj) +maxj=1;:::;i T (Aj).

Lemma 2.3 The expected overall cost of schedule ALG is
at most twice the expected overall cost of A.

Proof. Let Wi be the probability that ALG executes
its ith batch. Then for i > 1,Wi �Wi�1=2, since each batch
of ALG except the last has success probability at least 1=2.
Lemma 2.2 thus implies:

OC(ALG) =

1X
j=1

Wj �OC(ALGj)

�

1X
j=1

Wj �

jX

i=1

D(Ai) + max
i=1;:::;j

T (Ai)

!

�

1X
j=0

2�j �

1X
i=1

(D(Ai) + T (Ai)) �Wi

!

� 2

1X
i=1

OC(Ai) �Wi :

On the other hand, note that it follows from the con-
struction of schedule ALG that the probability of executing
Ai in A is exactly the same as the probability of executing
ALGi in ALG. Thus, OC(A) =

P1

i=1 OC(Ai) �Wi, and the
claim follows.

Next we show:

Lemma 2.4 The expected overall cost of the balanced greedy
schedule BG is not greater than the expected overall cost of
ALG.

Sketch of Proof: Observe that BG can be obtained from
ALG by reordering the batches of ALG in increasing or-
der of their ratios OC=P , where OC is the expected overall
cost of the batch and P is its success probability. An easy
interchange argument shows that this reordering does not
increase the expected overall cost of the schedule.

Lemmas 2.3 and 2.4 immediately imply the above The-
orem 2.1.

2.3.2 Comparing the Greedy Schedule with the Bal-
anced Greedy Schedule

In this subsubsection we show that the expected overall cost
of the greedy schedule is at most four times the expected
overall cost of the balanced greedy schedule.

Let BGi denote the ith batch of BG, and let Gi denote
the ith batch of G.

Lemma 2.5 The probability of executing batch Gi in G is
at most twice the probability of executing batch BGi in BG.

Sketch of Proof: Recall that �ik denotes the fraction of
light job k executed in batch BGi, Pi denotes the execution
probability of BGi, and fk =

P1

i=1 �ikPi denotes the ex-
pected fraction of light job k executed during an execution
of BG. Schedule G assigns light job k to a batch Gj, where
j is the least index satisfying Pj < 2fk. The assignment of
heavy jobs to batches does not change in passing from BG
to G; i.e., a heavy job occurring in BGi is assigned to Gi.

Recall that job k is said to be partially completed in

BGi if �ik > 0 and
Pi

j=1 �jk < 1. Any increase in the

probability of executing batch Gi in G over the probability
of executing batch BGi in BG is accounted for by the move-
ment of some light job that is partially completed in some
light batch BGj of BG, where j < i, but is assigned to some
batch Gr of G, where r � i.

It is enough to consider i > 1. By the construction of BG
each such batch BGj mentioned above contains at most one
partially completed job. Moreover, if a partially completed
job k in BGj is moved to batch Gr, where r � i, then

Pi�1 � 2fk. Since �jkPj � fk it follows that �jk �
Pi�1
2Pj

.

Thus, if j = i � 1, then �jk = �i�1;k � 1=2; otherwise,
suppose there are t light batches in BG with indices greater
than or equal to j but less than i� 1. Then since each light
batch has failure probability 1=2, Pi�1 � 2�tPj, from which
it follows that �jk � 2�t�1.

The probability that the �jk-fraction of job k in BGj

fails is (1 � pk)
�jk � 2��jk . The inequality follows from

the fact that pk � 1=2, since job k is a light job. Hence the
movement of job k from light batch BGj to batch Gr , where
r � i, increases the ratio between the execution probability
of Gi and the execution probability of BGi by at most the
factor 2�jk . It follows that the ratio between the execution
probability of Gi and the execution probability of BGi is at

most
Qi�1

t=1 2
2�t

� 2.

Theorem 2.6 The expected overall cost of G is at most four
times the expected overall cost of BG.

Proof. We �rst compare the expected dollar cost of G
with the expected dollar cost ofBG. A heavy job that occurs
in BGi also occurs in Gi. By Lemma 2.5, its probability of
execution in G is at most twice its probability of execution
in BG, and hence its contribution to the expected dollar cost
of G is at most twice its contribution to the expected dollar
cost of BG. A light job that is executed with probability
fk in BG is assigned to a batch Gr such that Pr < 2fk,
where Pr is the execution probability of batch BGr in BG.
It follows from Lemma 2.5 that the execution probability of
this job in G is at most 2Pr, which is at most 4fk. Hence
the contribution of this job to the expected dollar cost of G
is at most four times its contribution to the expected dollar
cost of BG.

Next we show that the expected time cost of G is at
most four times the expected time cost of BG. Let T (BGi)
denote the time cost of batch BGi, and let T (Gi) denote
the time cost of batch Gi. Let P (Gi) denote the execu-
tion probability of batch Gi and let Pi denote the execution
probability of batch BGi. Then the expected time cost of
BG is

P
i
PiT (BGi) and the expected time cost of G isP

i
P (Gi)T (Gi).
Any increase in T (Gi) over T (BGi) can be accounted

for by the movement of some light job that is partially com-
pleted in some light batch BGj of BG, where j < i, and is
assigned to Gi. Thus,

1X
i=1

P (Gi) � T (Gi) �

1X
i=1

P (Gi) �

iX
j=1

T (BGj) �

1X
j=1

T (BGj) �

1X
i=j

P (Gi) �

1X
j=1

T (BGj) � P (Gj) �

1X
g=0

2�g

� 2 � 2 �

1X
j=1

T (BGj) � Pj :

The third inequality follows from the fact that for i > 1,
Pi � Pi�1=2 (since each batch of BG, except possibly the
last one, has success probability at least 1/2), and the last
inequality follows since Lemma 2.5 tells us that P (Gi) �
2Pi.

2.3.3 Existence of a Low Cost Balanced Schedule

Let Opt denote the (unknown) optimal schedule for the given
set of jobs. Starting with Opt, we construct a balanced
schedule called Bopt whose expected overall cost is at most
four times the expected overall cost of Opt.

We describe the construction of the �rst batch of Bopt.
For any time T , the probability that Opt has an execution

time greater than T is equal to the product of the failure
probabilities of the jobs terminating by time T . Let T1 be
the least T for which this probability is less than 1=2. If
the set of jobs terminating by time T1 contains a heavy job,
then the �rst batch of Bopt consists of the earliest heavy job
to terminate in Opt. If all the jobs terminating by time T1
are light, then the �rst batch of Bopt is constructed as fol-
lows. Let the light jobs terminating by time T1 be arranged
in increasing order of their termination times, and let the
failure probability of the rth light job in this ordering be
qr . Then there exists an index s and a fraction � such thatQs�1

r=1 qr � q�s = 1=2. Then the �rst batch of Bopt is a light
batch consisting of the �rst s � 1 jobs in the ordering plus
an �-fraction of the sth job.

For a general i, the ith batch of Bopt is constructed sim-
ilarly. First, a reduced schedule Opti is constructed from
Opt by deleting the jobs or fractional jobs occurring in the
�rst i � 1 batches of Bopt. If a total fraction � < 1 of
some job k is executed in the �rst i� 1 batches of Bopt (i.e.

� =
Pi�1

j=1
�ik), then job k is replaced in the reduced sched-

ule by a (1��)-fraction of job k having the same start time
and completion time as k. The ith batch of Bopt is then
constructed by applying to this reduced schedule Opti the
same construction that was applied to Opt to obtain the �rst
batch of Bopt.

Lemma 2.7 The expected dollar cost of Bopt is at most
twice the expected dollar cost of Opt.

Lemma 2.8 The expected time cost of Bopt is at most four
times the expected time cost of Opt.

Lemmas 2.7 and 2.8 immediately imply:

Theorem 2.9 The expected overall cost of Bopt is at most
four times the expected overall cost of Opt.

2.4 E�cient Construction of the Light Frac-
tional Greedy Schedule

The batches of LFG are constructed as follows.
Let T1; : : : ; Tg be the distinct time costs among the given

light jobs.
Sort the light jobs in increasing order of di=� ln qi. We

refer to this list as the e�ciency list. For each Th, where
1 � h � g, we de�ne the Th e�ciency list, as the sublist of
the e�ciency list that contains all jobs whose time costs do
not exceed Th.

The batches of LFG are constructed successively. We
describe the construction of a generic batch i. For each light

job k, set �k equal to 1�
Pi�1

j=1 �jk. Thus �k is the fraction

of job k that is not assigned to the �rst i� 1 batches.

If the product over all light jobs k of q�kk is greater than
or equal to 1=2 then assign all the remaining fractional jobs
to batch i and halt; batch i is the �nal batch of the schedule.

Otherwise, for each Th, where 1 � h � g, do the follow-
ing:
Compute

Q
q
�k
k where the product extends over all the frac-

tional jobs on the Th e�ciency list. If this product is less
than or equal to 1=2 then construct a batch called the Th
candidate batch as follows. Consider the jobs on the Th ef-
�ciency list in order. When job k is encountered, assign a
fraction �k of job k to the Th candidate batch, unless do-
ing so would reduce the failure probability of the batch to

a value less than or equal to 1=2. In that case, assign an �
fraction of job k to the batch, where � is chosen to make the
failure probability of the batch exactly 1=2, and terminate
the construction of the batch.

After performing the above procedure for each Th, com-
pute the overall cost of each Th candidate batch, and set the
ith batch equal to a Th candidate batch of minimum overall
cost.

Lemma 2.10 For each i = 1; : : : ;1, for each Th, the set of
fractional jobs selected for the ith batch in the above fashion
has the minimum dollar cost among all possible batches of
failure probability 1=2 that can be constructed subject to the
constraint that each fractional job selected has time cost less
than or equal to Th, and, for each k, at most a �k-fraction
of job k is used.

Corollary 2.11 If batch i in the above construction has a
failure probability equal to 1=2 then it has the minimum over-
all cost among all possible batches of failure probability 1=2
that can be constructed subject to the constraint that, for
each k, at most a �k-fraction of job k is used.

Theorem 2.12 Using appropriate data structures for main-
taining the Th e�ciency lists, the batches of Schedule LFG
can be constructed in time O(n max(g; log n)).

We note that each batch of Schedule LFG contains at
most one partially completed job.

2.4.1 Gathering Many Items of Information

We consider the task of obtaining answers to m questions,
where m may be greater than 1. Job i consists of issuing
a request to information source i for the answers to all m
questions. The information source may provide any subset
of the answers. The schedule terminates as soon as all ques-
tions have been answered or all jobs have been completed.
The paper up to now deals with the case m = 1.

Job i has dollar cost di, time cost ti and probability pi of
succeeding in answering question j. For technical reasons we
require that each pi is less than 1=2 (actually, the constant
1=2 can be replaced by any constant less than 1, at the
expense of an increase in the constant approximation ratio).
We assume that the events \Job i succeeds in answering
question j" are independent.

We have constructed a polynomial-time schedule MG (M
stands for many and G stands for greedy) whose expected
overall cost is within a constant factor of the expected over-
all cost of an optimal schedule. The construction is similar
to the one given form = 1, proceeding through the construc-
tion of a light fractional greedy schedule MLFG. Because
of our assumption that pi < 1=2 for all i, there are no heavy
jobs, and thus, unlike the case m = 1, we can pass directly
from MLFG to MG without the intermediate step of in-
terleaving the batches of MLFG with batches consisting of
single heavy jobs. The construction of MLFG requires the
following further changes:

� Independently for each question j, an �-fraction of job
i has probability q�i of failing to answer question j;

� The failure probability of a set of jobs or fractional
jobs is de�ned as the probability that it fails to answer
all m questions;

� For each j, the failure probability of the set of jobs or
fractional jobs in the �rst j batches of MLFG is 2�j ;

The chief di�culty in showing that schedule MG achieves
a constant-factor approximation arises from the fact that, in
the case m > 1, an optimal schedule may be adaptive; i.e.,
it may not follow a �xed timetable. Instead, its choice of
jobs to schedule at any time may depend on the number of
questions that have already been answered. Consequently,
the analysis of the case m = 1 cannot be extended straight-
forwardly to the case m > 1. We overcome this di�culty
by showing that there is an oblivious schedule (i.e., one that
follows a �xed timetable) for the casem > 1 whose expected
overall cost is within a constant factor of the expected over-
all cost of an optimal adaptive schedule. Starting with this
oblivious schedule, the rest of our analysis for the single-
question case (i.e. subsections 2.3.1, 2.3.2, 2.3.3 and 2.4)
will apply with minor adjustments.

2.4.2 Existence of an Almost Optimal Oblivious
Batch Schedule

Denote the (unknown) optimal schedule for the case m > 1
by Mopt (M stands for many). Mopt can be described as a
rooted tree in which each internal node represents a condi-
tional branch based on the number of questions successfully
answered by a certain time, and each edge represents a se-
quence of actions, each of which is the initiation of a given
job at a given time. It is required that the schedule always
reaches completion; i.e., it either answers all m questions or
executes all n jobs. The probability that a given root-leaf
path is followed is called its execution probability.

The sequence of actions along each root-leaf path of Mopt
constitutes an oblivious schedule. We refer to each such
schedule as an oblivious path of Mopt. Such an oblivious
path need not always reach completion, as certain runs of
Mopt will not satisfy the conditional tests along the path.
The probability that an oblivious path of Mopt reaches com-
pletion will be called its completion probability.

The following lemma is the key observation to our con-
struction of an oblivious schedule from Mopt.

Lemma 2.13 Let S be a subset of the set of all root-leaf
paths occurring in Mopt. Then there is an oblivious schedule
derived from one of the paths in S whose completion prob-
ability is greater than or equal to the sum of the execution
probabilities of the paths in S.

Sketch of Proof: Pick an internal node in S for which all
children are leaves, i.e. no child of this internal node is an
internal node. For each of the paths emanating from this
node compute the probability that all jobs on the path will
fail. Replace the node and the paths emanating from it by
the path of lowest failure probability among these. Repeat
until all internal nodes are removed.

Using the lemma, we construct an oblivious schedule
from Mopt as follows. Let the oblivious schedules corre-
sponding to root-leaf paths of Mopt be arranged in increasing
order of their overall execution costs. Let x be any number
in the interval (0,1). Let Sx be the smallest initial segment
of the ordering of oblivious schedules to have total execu-
tion probability at least x. Let Ax be any oblivious sched-
ule within Sx that has completion probability at least x; by
Lemma 2.13 such an schedule must exist. The batches of
Mopt are constructed successively. Batch i consists of the

jobs in the oblivious schedule A1�2�i , minus any jobs that
occur in previous batches. We refer to the resulting oblivious
schedule by Omopt (the O stands for oblivious).

Theorem 2.14 The expected overall cost of the oblivious
schedule Omopt is at most 4 times the expected overall cost
of Mopt.

Proof. By construction of Omopt, the probability that
all �rst i batches in Omopt fail is at most 2�i. The expected
cost of Omopt is thus at most

P1

i=1
OC(Omopti)2

�i+1.
On the other hand, by construction of Omopt, in at least

2�i runs of Mopt, the overall cost of Mopt is � OC(Omopti).
De�ne OC(Omopt0) = 0. Then, the expected cost of Mopt is
at least:

1X
i=1

2�i(OC(Omopti)�OC(Omopti�1)) �

1X
i=1

2�i�1OC(Omopti) ;

and the claim follows.

3. The Reward Models

3.1 The Complexity of Computing Opti-
mal Schedules

We prove that computing an optimal schedule in any of
the reward models is NP-hard, by reductions from the Par-
tition Problem. The only subtlety is that the constructions
require exponentiation.

Theorem 3.1 Finding an optimal schedule in any of the
variations of the reward model is NP-hard.

3.2 The LT Model

The following simple facts and de�nition will be useful
throughout our discussion of the LTmodel. The �rst lemma
shows the subadditivity of the objective function for batched
schedules.

Lemma 3.2 Let OPT0 be an optimal k-batch schedule. For
any partition of OPT0 into two subschedulesOPT1 andOPT2,
where the sources in OPT1 and OPT2 are scheduled in the
same batches as they are in OPT0, V (OPT0) � V (OPT1)+
V (OPT2).

Lemma 3.3 Suppose that P is any k-batch schedule, i is an
index between 1 and k, and j is a source not appearing in
P. Let P1;P2;P3 denote the subschedules consisting of the
�rst i�1 batches, the i-th batch, and the last k� i batches of
P, respectively. Also denote the expected cost and collective
success probability of the sources in schedulePl asDl and Pl,
l = 1; 2; 3. Then adding source j to the i-th batch of schedule
P increases its expected value by: V (P [fjg) � V (P) =
(1� P1)pj((1 � P2)(1� P3 +D3)� dj=pj)

It follows from the lemma that, without loss of generality,
we can assume pi � di for all i, since a source violating this
condition should never be used.

We say that a source i is pro�table in a set S if i 2 S
and excluding the source from the set S would not increase

the expected value of S. From the above lemma, this is
the case if

Q
j2S;j 6=i(1 � pj) � di=pi: A set S of sources is

irreducible if every element of S is pro�table in S. Clearly, if
S is irreducible, then V (S1) � V (S) for any subset S1 � S.
Every optimal single-batch schedule is irreducible.

We will use the following lemma in our discussion of k-
batch schedules.

Lemma 3.4 For any set of sources, an optimal serial sched-
ule (including all sources in the set) sorts the sources in the
nondecreasing order of their cost to success probability ra-
tios.

3.2.1 Single-Batch schedules

In this subsection we consider schedules that send out all
their queries in a single batch, i.e. all queries are performed
in parallel at time t = 0. We present an algorithm that
approximates the optimal single-batch schedule with ratio
1=2, then develop a PTAS. Recall that a single-batch sched-
ule P is just a set of sources, and our goal is to maximize
V (P) = (1 �

Q
i2P

(1� pi))�
P

i2P
di:

A Ratio 1
2 Approximation Algorithm Our algorithm, Pick-

a-Star, is somewhat similar to the greedy approximation al-
gorithm for Knapsack given in [10], though the analysis of its
performance is more complex. Pick-a-Star sorts the sources
in ascending order of the ratio di=pi. It then goes over each
source i, picks it and then picks the rest from the sorted
list (with i removed) until it reaches a source j such that
the stopping criterion

Q
k=i or k<j

(1� pk) � dj=pj is satis-

�ed. Lemma 3.3 explains the choice of the criterion. Thus
a schedule is generated for each source i, and Pick-a-Star
keeps track of the schedule with the highest expected value
over the iterations. Clearly the running time is O(n2).

Now we analyze the performance of Pick-a-Star and show
that it results in an expected value that is at least half of
the optimum. Let APPR be the schedule obtained by Pick-
a-Star and OPT an optimal single-batch schedule. With-
out loss of generality, we may assume jAPPRj > 1. More-
over, we will consider henceforth the iteration where the �rst
source picked by Pick-a-Star is the \most pro�table" source
in OPT, i.e. some source i with the maximum V (fig) over
all sources in OPT.

De�ne S0 = APPR \OPT, S1 = APPR� S0, and S2 =
OPT�S0. For each i = 0; 1; 2, let Di and Pi be the collective
cost and success probability of the sources in Si. Observe
that

8i 2 S18j 2 S2; di=pi � dj=pj (1)

Let us �rst consider the (easier) case in which S2 = ;.
Let last be the last source picked by Pick-a-Star. Observe
that S1 � f1; : : : ; lastg. Since the collective failure proba-
bility of APPR � flastg is greater than dlast=plast � � � � �
d1=p1, every element of S1 is pro�table in the set APPR �
flastg. By Lemma 3.3, V (APPR � flastg) � V (OPT �
flastg). We also know that V (APPR) � V (APPR�flastg)
by Lemma 3.3. Since V (APPR) � V (flastg) and V (OPT) �
V (OPT� flastg) + V (flastg) by Lemma 3.2,

2V (APPR) � V (OPT� flastg) + V (flastg) � V (OPT):

Now suppose that S2 6= ;. Since OPT is irreducible,
S1 6= ;. We can assume that the collective failure probability

of APPR is at least the ratio dlast=plast, because otherwise
we could modify APPR by decreasing plast while keeping
dlast=plast constant until the collective failure probability of
APPR becomes equal to dlast=plast. This is possible since
the collective failure probability of APPR�flastg is greater
than dlast=plast. By Lemma 3.3, such modi�cation could
only worsen the expected value of APPR. Note that we
may assume that source last is not in OPT, since otherwise
we can replicate last and perform the modi�cation on the
replicated source. The replicated source cannot be in OPT,
since OPT does not contain other sources of S1 with lower
ratios. Note also that this modi�cation does not a�ect the
�rst source picked by Pick-a-Star since jAPPRj > 1. Let
m = jS2j and l = jS1j. Let

�1 = max
i2S1

di
pi(1 � P0)

�
dlast

plast(1 � P0)

�2 = min
i2S2

di
pi(1� P0)

By relation 1, clearly �1 � �2. The next lemma relating
�1; �2 to P1; P2 is a key to our analysis.

Lemma 3.5 (i) �1 � 1 � P1 � �2 and (ii) 1 � P2 >

�
m=(m�1)
2 .

Now we want to �nd a lower bound for the ratio

V (APPR)

V (OPT)
=
P0 �D0 + (1 � P0)P1 �D1

P0 �D0 + (1 � P0)P2 �D2
(2)

Since V (S0) � V (S2)=m by the choice of the �rst source
picked by Pick-a-Star and the fact that S0 is irreducible,

V (OPT) � V (S0) + V (S2) � (m+ 1)V (S0):

This implies

(1� P0)P2 �D2

P0 �D0 + (1� P0)P2 �D2
�

m

m+ 1
:

De�ne r = (1�P0)P1�D1

(1�P0)P2�D2
: To obtain a lower bound of 1=2 for

the ratio in equality 2, we need

1

m + 1
+ r

m

m + 1
�

1

2
; i.e. r �

m� 1

2m
: (3)

The next lemma, whose proof uses Lemma 3.5, gives a
clean lower bound for ratio r.

Lemma 3.6

r � min
�1�1�P1��2

P1 � (l(1� (1� P1)
1=l)�1

(1 � �
m=(m�1)
2)(1 � �2)

:

By simplifying the above lower bound function for ratio
r, we obtain the main theorem.

Theorem 3.7 Pick-a-Star achieves an expected value that
is at least half of the optimum value.

Extending Pick-a-Star to a PTAS The extension of the al-
gorithm is straightforward. Let r � 1 be any �xed constant.
The new algorithm iterates over all possible choices of at
most r sources and schedules the rest of the sources based
on the cost to success probability ratio, using the same stop-
ping criterion. It then outputs the best schedule found in all
iterations. Call the new algorithm Pick-r-Stars. Clearly, it
runs in O(nr+1) time. We show that Pick-r-Stars achieves
an approximation ratio of r�1

r+1 . The analysis is di�erent
from the previous subsection in that we will make use of the
r sources in the optimal schedule with the highest success
probability instead of the the most pro�table ones.

Let APPR be the schedule found by Pick-r-Stars and
OPT an optimal schedule. We assume without loss of gen-
erality that (i) APPR contains the r sources in OPT with
the highest success probability, and (ii) the collective fail-
ure probability of APPR is at least the ratio dlast=plast,
where last is the last source picked by Pick-r-Stars. Let
S0 = APPR \OPT, S1 = APPR� S0, and S2 = OPT� S0
and the corresponding collective costs and success prob-
abilities Di and Pi, for each i = 0; 1; 2. We also have
di=pi � dj=pj for all i 2 S1; j 2 S2. De�ne l = jS1j,
m = jS2j, and

�0 = max
i2S0

di
pi
; �1 = max

i2S1

di
pi
�

dlast
plast(1 � P0)

After making some more simpli�cations, we derive the
following clean formulas for the expected values:

V (APPR) = 1� (1� p)r
�1

(1� p)r
� �0rp

� l(1� (
�1

(1� p)r
)1=l)

V (OPT) = 1� (1� p)r+m � �0rp� �1mp

By further simplifying the formulas and a lot of careful
mathematical manipulations, we obtain the next main the-
orem.

Theorem 3.8 Pick-r-Stars produces a single-batch sched-
ule with an expected value that is at least
(r � 1)=(r + 1) of the optimum.

3.2.2 Approximating Optimal k-Batch Schedules

We present an algorithm, Back-and-Forth, that approxi-
mates optimal k-batch schedules with a constant ratio 1=6.
Back-and-Forth works in two phases. In the �rst phase,
it greedily constructs a schedule batch by batch, starting
from the last batch and going backward. For each batch, it
invokes the single-batch algorithm Pick-a-Star, but with a
modi�ed stopping criterion derived from Lemma 3.3. In the
second phase, the algorithm splits the schedule obtained in
the �rst phase into three k-batch schedules: one is a sched-
ule obtained by taking the �rst source picked in each batch
and arranging these sources in an optimal serial order; one is
a schedule obtained by taking the last source picked in each
batch and arranging these sources in an optimal serial order;
and the third consists of the rest of the sources but with the
batch ordering completely reversed. It then compares these
three schedules with the original one and returns the best
of the four.

For any schedule P, PR denotes the schedule obtained
by reversing the batches. We will also use set operations on

k-batch schedules when there is no ambiguity. Back-and-
Forth is illustrated in Figure 2. Clearly Back-and-Forth can
be implemented to run in time O(kn2).

The analysis of Back-and-Forth uses Theorem 3.7. The
di�culty here is that because the sources can be scheduled in
di�erent batches, some batches of an optimal k-batch sched-
ule could be better individually than their counterparts in
APPR by an arbitrarily large factor. To get around this,
we relate a k-batch schedule to its optimally serialized ver-
sion. For any schedule P, let P denote the serial schedule
obtained by scheduling the sources in P in an optimal order
(i.e. in decreasing order of d=p). In general V (P) is better
than V (P) and could be arbitrarily better than V (P). Be-
fore we give the complete analysis, we observe the following
useful facts:

Corollary 3.9 Let S1 and S2 be two sets and S1 � S2.
Then V (S1) � V (S2).

The following lemma, which is somewhat surprising, is a key
to our analysis.

Lemma 3.10 For any irreducible set S of sources, V (S) �
V (S)=2.

The next corollary follows from the above lemma and
Lemma 3.4.

Corollary 3.11 Let P be a k-batch schedule consisting of
batches S1; : : : ; Sk. Suppose that (i) each Si is irreducible
and (ii) for any sl 2 Si and sm 2 Sj, where i < j, cl=pl �
cm=pm. Then V (P) � V (P)=2.

Now we analyze the performance of Back-and-Forth. De-
note the optimal schedule as OPT, and partition OPT as
OPT1 = APPR0 \OPT and OPT2 = OPT�OPT1, where
the sources in OPT1 and OPT2 are scheduled in the same
batches as they are in OPT. By Lemma 3.2,

V (OPT) � V (OPT1) + V (OPT2):

We compare the performances of OPT1 and OPT2 with
that of APPR separately. The proof of the following lemma
uses Lemma 3.3 and Theorem 3.7.

Lemma 3.12 V (OPT2) � 2V (APPR).

The proof of the next lemma uses Lemma 3.2 and Corol-
laries 3.9 and 3.11.

Lemma 3.13 V (OPT1) � 4V (APPR).

Lemmas 3.12 and 3.13 together give the following theo-
rem.

Theorem 3.14 Algorithm Back-and-Forth returns a k-batch
schedule with an expected value at least 1=6 of the optimum.

3.3 Approximation Algorithms for the Cost
Threshold Models

Optimal schedules in the cost-threshold models TL and
TT are much easier to approximate. We �rst present an
FPTAS for model TL under a weak assumption: pi� ti � 0
for every source i, i.e. every source considered is pro�table
by itself. The extension to model TT (with no restriction) is

1. Sort the sources so that c1=p1 � � � � � cn=pn.
(* Phase I *)

2. APPR0 = ;. (* APPR0 denotes a k-batch schedule. *)
3. For i := k downto 1
4. S = ;. (* S is the best i-th batch found so far. *)
5. For j := 1 to n, where sj =2 APPR0

6. S1 := fsjg.
7. Q := 1� pj. (* Q is the collective failure probability of S1. *)
8. For l := 1 to n, where l 6= j and sl =2 APPR0
9. If Q(1� V (APPR0)) > cl=pl then
10. S1 := S1 [fslg; Q := Q(1� pl).
11. else exit to step 13.
12. If V (S) < V (S1) then S := S1.
13. Add S to APPR0 as the i-th batch.
14. Record the �rst and last sources picked for S.

(* Phase II *)
15. Let APPR1 and APPR2 be the optimal serial schedules consisting of

the �rst and last sources picked in Phase I for each batch, resp.
16 APPR3 := (APPR0 � fAPPR1 [APPR2g)

R.
17 Output schedule APPR as the best of APPR0;APPR1;APPR2;APPR3.

Figure 2: The algorithm Back-and-Forth.

straightforward. The main idea is the rounding technique in-
troduced in [6] for Knapsack. It is easy to see that, in model
TL, an optimal schedule should be in fact a single-batch
schedule. Let P = fi1; : : : ; img be a single-batch schedule,
where ti1 � � � � � tim . Then,

V (P) =

m�1X
j=1

j�1Y
l=1

(1� pil)pij (1� tij)

+

m�1Y
j=1

(1� pij)(pim � tim)

Since pi � ti � 0 by our assumption, every term is non-
negative in equation 4, and we can round each pim � tim ,
pij (1�tij) and log(1�pij), and then use dynamic program-
ming to obtain an FPTAS.

Theorem 3.15 Assume that pi � ti � 0 for every source i.
There is an FPTAS for the problem of computing optimal
schedules in model TL.

Corollary 3.16 There is an FPTAS for the problem of com-
puting optimal schedules in model TT.

References

[1] O. Etzioni, S. Hanks, T. Jiang and O. Madani. Optimal
Information Gathering on the Internet with Time and
Cost Constraints. Manuscript 1996.

[2] O. Etzioni, R. M. Karp, and O. Waarts. E�cient Ac-
cess to Information Sources on the Internet. Manuscript
1996.

[3] P. Feigin and G. Harel. Minimizing costs of personnel
testing programs. Naval Research Logistics Quarterly
29, 87-95, 1982.

[4] M. Garey. Optimal task scheduling with precedence
constraints. Discrete Mathematics, 4, 37-56 (1973).

[5] M. Henig and D. Simchi-Levy. Scheduling tasks with
failure probabilities to minimize expected cost. Naval
Research Logistics 37,99-109, 1990.

[6] O. Ibarra and C. Kim. Fast approximation algorithms
for the knapsack and sum of subsets problems. Journal
of the ACM 22, 463-368, 1975.

[7] B. Krulwich. The BargainFinder agent: Comparison
price shopping on the Internet. Bots and Other Internet
Beasties. 1996.

[8] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys. Sequencing and Scheduling: Algorithms
and Complexity. Designing Decision Support Systems
Notes NFL 11.89/03, Eindhoven University of Tech-
nology, 1989.

[9] New York Times, June 7, 1992

[10] S. Sahni. Approximation algorithms for the 0/1-
knapsack problem. Journal of the ACM 22, 115-124,
1975.

[11] Secure Transaction Technology. In
http://www.visa.com/cgi-bin/vee/sf/set/intro.html.

[12] E. Selberg and O. Etzioni. Multi-service search and
comparison using the MetaCrawler. Proc. 4th World
Wide Web Conf., 195-208, Boston, MA, 1995.

[13] H. Simon and J. Kadane. Optimal problem-solving
search: all-or-none solutions. Arti�cial Intelligence 6,
235-247, 1975.

[14] M. Sirbu, and J.D. Tygar. NetBill: An Internet Com-
merce System Optimized for Network Delivered Ser-
vices. Manuscript 1995. To appear in IEEE CompCon
Conference.

