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Abstract

This paper investigates the problem of automatically learning declar-
ative models of information sources available on the Internet. We re-
port on ILA, a domain-independent program that learns the meaning

of external information by explaining it in terms of internal categories.
In our experiments, ILA starts with knowledge of local faculty mem-
bers, and is able to learn models of the Internet service whois and of
the personnel directories available at Berkeley, Brown, Caltech, Cor-
nell, Rice, Rutgers, and UCI, averaging fewer than 40 queries per
information source. ILA's hypothesis language is �rst-order conjunc-
tions, and its bias is compactly encoded as a determination. We ana-
lyze ILA's sample complexity within the Valiant model, and using a
probabilistic model speci�cally tailored to ILA.
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1 Introduction and Motivation

The number and diversity of information sources on the Internet is increas-
ing rapidly. A number of tools such as Gopher, WAIS, and Web Crawlers
are available to help people search for the information they need. However,
these tools are unable to interpret the results of their searches and unable to
use multiple information sources in concert. A number of more sophisticated
AI systems have emerged including SIMS [5], the Information Manifold at
AT&T [6], and the Internet softbot [3]. However, each of these AI systems
requires sophisticated declarative models of the di�erent information sources
it is able to access. As a result, there are two barriers that prevent AI ap-
proaches from keeping up with the explosion of information sources on the
Net. First, e�ort has to be devoted to hand coding a declarative model of
each source. Second, sources unknown to the programmers associated with
each AI system cannot be modeled. To enable the AI approaches to scale
with the growth of the Net, we explore the problem of automatically learning
declarative models of information sources. This learning problem raises four
fundamental questions:
� Discovery: how does the learner �nd new and unknown information
sources? (e.g., A Web page representing the Brown phone directory has
recently come on-line.)
� Protocol: what are the mechanics of accessing an information source and
parsing the response into tokens? (The Brown directory is searched by send-
ing a string such as \gopher://ns.brown.edu:105/2?kaelbling" to the
Brown server, and receiving back a string that is parsed into tokens.)
� Semantics: how does the learner come to understand the information
available at the source? (The tokens describe Kaelbling's e-mail address,
phone number, department, etc.)
� Scope: how does the learner �gure out which individuals are described
at the source and which are not? (The directory contains information only
about people at Brown, not elsewhere.)

Satisfactory answers to each of these questions would enable us to con-
struct an autonomous Internet learning agent able to discover and use in-
formation resources e�ectively. As a �rst step, this paper investigates the
question of learning semantics.

Our learning method is based on the following idea, due to St. Augustine
[10]. Consider how we might teach English nouns to an Israeli. If we do not
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know Hebrew, we are reduced to pointing at individual objects and saying
\chair" or \tree." In doing so, we rely on three key assumptions. First, the
Israeli is familiar with the particular object we are pointing to. Second, the
Israeli has a category or concept, corresponding to our own, which contains
the object. Third, the Israeli is willing to establish a general correspondence
between his concept of chair and the word \chair" based on the individual
chair we pointed to.1 As we show below, this leap of faith can be viewed
as an inductive bias and formalized as a determination. We refer to this
determination as the correspondence heuristic.

This paper is organized as follows. In Section 2, we de�ne the category
translation problem. In Section 3, we present the Internet Learning Agent
(ILA), and explain its learning method. In Section 4, we describe experiments
in a simple Internet domain. In Section 5, we describe a probabilistic model
of ILA that bounds its sample complexity. We conclude with a critique and
directions for future work.

2 The Category Translation Problem

Below, we present both a concrete example and a general formulation of the
category translation problem. Suppose, for example, that the agent queries
the University of Washington sta� directory with the string \Etzioni" and
gets the response Oren Etzioni 685-3035 FR-35. Based on its knowledge
about Etzioni, we'd like the agent to come up with the general model of the
directory shown at the bottom of Table 1.

To solve the category translation problem, an agent has to generalize from
the observed queries, and responses, to a logical expression made up of model
attributes. To generalize e�ectively, the agent has to employ some inductive
bias. ILA has to assume that the information source (IS) is (roughly) in-
variant when responding to queries about di�erent individuals. It would be
di�cult to learn a model of an IS that responded with random facts about
each individual queried | the phone number for one person, the birth date of
a second, and the social security number for a third. As with St. Augustine's
method for teaching nouns, ILA requires an overlap between its world model
and the information returned by the source. First, ILA and the IS must

1In fact, this leap of faith is notoriously fallible. For example, the Hebrew concept of
chair or \kiseh" does not include armchair, whereas the English category does.
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Given:

1. Incomplete internal world model:

� Objects (e.g., persons: P1, P2, ..., Pn).

� Attributes of the objects (e.g., lastname(P1)=Etzioni,
department(P1)=CS, userid(P1)=Etzioni,
mail-stop(CS)=FR-35,: : :).

2. An external information source (IS) that responds to queries.
e.g. staffdir, the University of Washington personnel directory:
Query: Etzioni

Response: Oren Etzioni 685-3035 FR-35

Determine: A set of logical expressions composed of model attributes which ex-
plains the observed query/response pairs. e.g.

Query: lastname(person)
Response: �rst �eld = firstname(person)

second �eld = lastname(person)
third �eld = phone-number(person)
fourth �eld = mail-stop(department(person))

Note that the explanation may involve compositions of model attributes, as in the

case of mail-stop, and that we seek to minimize the number of queries made.

Table 1: The Category Translation Problem.

share some individuals. If the agent is only familiar with UW faculty, and
the IS contains information about current Brown undergraduates, learning
will prove problematic. Second, ILA and the IS must share some categories.
If ILA is familiar with people, and the IS is a catalog of stellar constella-
tions, there is no basis for learning. Of course, ILA is not limited to people
and their phone numbers. The same method could be used to learn about
movie databases, product catalogs, etc.

We formalize the learning problem as follows. Let I be an IS that con-
tains k �elds. We represent I with the functions I1(o) : : : Ik(o), where each
Ij(o) returns the jth �eld in the output when I is queried with object o. For
staffdir (Table 1), we would say that staffdir4(P1) = FR-35. In standard
concept learning terms, ILA is trying to learn or approximate the concepts
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I1..Ik, based on examples of the form I1(o) = S1; I2(o) = S2; : : : ; Ik(o) = Sk.
The correspondence heuristic states that a syntactic attribute of the IS

determines its meaning in terms of ILA attributes. For example, staffdir4(o) =
mail-stop(department(o)). More formally, let S(I; o) be true if o is an ob-
ject in I. If two objects o1 and o2 are both in an IS, then we believe that,
for some attributeM�, if we query the IS with o1 and the jth �eld isM�(o1)
then, when we query with o2, the jth �eld will be M�(o2), where M� is an
arbitrary composition of model attributes.

We can state the correspondence heuristic as the following determination:

9(M�)8(o1; o2)[S(I; o1) ^ S(I; o2) ^ (Ij(o1) = M�(o1))! (Ij(o2) = M�(o2))]

The equation Ij(o1) = M�(o1) encodes the assumption that the jth element
of I's response can be described as a logical expressionM�, which is composed
of model attributes. The implication encodes the assumption that, for some
M�, the equality observed for one individual holds for all others for which
S is true. The existential quanti�er suggests that we need to search for the
appropriate M�. Section 3 describes ILA's search strategy, and its use of
multiple queries to track down M�.

3 Algorithm

In essence, ILA queries the IS with known objects, and searches for token
correspondences between its model and information returned by the IS.
ILA generates hypotheses based on these correspondences, and ranks them
with respect to how often they accord with observations. To esh out this
algorithm sketch we have to answer several questions:

1. Which object from its internal model should ILA query the IS with?
2. What is the appropriate mapping from that internal object to a query

string? (in the case of a person, the IS might be queried with the person's
last name, full name, social security number, etc.)

3. What are possible explanations (denoted byM� in our determination)
for each token in the response?

4. How should ILA evaluate competing explanations?
We consider each question in turn.

Initially, ILA may use any object in its internal model to query the IS: a
person, a tech report, a movie, etc. To constrain the set of possible queries,
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ILA utilizes any information it has about the IS. This knowledge could be
expressed as a constraint on the type of object that can be in the IS or as
an attribute that is only true of objects likely to be found in the IS. For
example, if it knows that the IS is a personnel directory, ILA will not query
the IS with movie titles.

In addition, ILA employs several heuristics to reduce the number of
queries necessary to converge to a satisfactory model of the IS. Most im-
portant, ILA attempts to discriminate between two competing hypotheses
by choosing an object for which the hypotheses make di�erent predictions
(cf. [7]). For example, if ILA has seen the record Oren Etzioni 685-3035

FR-35, it will consider both lastname and userid as hypotheses for the sec-
ond �eld, because Etzioni's userid is his last name. To discriminate between
the two hypotheses, ILA will attempt to query with someone whose userid is
di�erent from her last name. If no discriminating query is possible, ILA will
attempt to �nd an object that has the potential to discon�rm the leading
hypothesis. In the above example, if ILA hypothesizes that the third �eld is
phone-number, it will choose a person whose phone number is known over a
person whose phone number is not. Finally, if neither a discriminating nor a
discon�rming query is possible, ILA will query with an object about which it
has much information, in order to increase the likelihood of recognizing some
token in the response. Discriminating queries typically accelerate ILA's abil-
ity to converge on a satisfactory hypothesis; in the case of staffdir, for
example, when ILA does not make use of discriminating queries, it requires
50% more queries to converge on the same hypotheses.

Once a particular object is chosen, ILA has to decide which query string
to actually send to the IS. Initially, ILA will try all known facts about the
object as possible query strings, attempting to learn the appropriate query
string for the IS. The learning mechanism used is, in essence, the same as
the one described below for learning to interpret the IS's output.

Once ILA obtains a response from the external IS, it attempts to explain

each token in the response. An explanation is a chain of one or more model
attributes composed into a relation. For example, in ILA's model, people are
associated with departments and departments with mail-stops. The relation
between a person and her mail-stop, then, is a composition of department
and mail-stop| the mail-stop of P is mail-stop(department(P )).

We employ a variant of relational path�nding [8] to discover a relation
between the query object and each response token. Richards and Mooney's
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path�nding technique performs a bidirectional breadth-�rst search in which
constants are nodes in the graph and attributes on constants are edges be-
tween nodes. We use a fuzzy matcher to compare tokens from the IS to
constants in ILA's model. Our current matching function ignores punctu-
ation and spacing, and can allow substring matches (e.g., the learner can
recognize \(206) 616-1845" and \616.1845" as being the same token). Con-
sequently, our path�nding is unidirectional, proceeding from the query object
to fuzzily-matched tokens.2

Suppose the agent starts with the model shown in Table 1. It queries
the IS with the last name of object P1 and gets the response Oren Etzioni

685-3035 FR-35. It will now try to explain each response token in turn. For
example, in order to explain \FR-35", ILA will start with P1 and spread out
one step through the model, e.g. to CS and Etzioni. Since neither matches
the target token \FR-35", ILA will continue spreading out from the current
frontier, retaining the path to each current node (e.g., the attribute path
from P1 to CS is department(x)). From CS, ILA will get to FR-35. Thus,
the path to FR-35 is mail-stop(department(x)). Since FR-35 matches the
target, this path will be returned as an explanation.

Next, ILA evaluates the hypothesized explanation. With respect to a par-
ticular query, a hypothesis may be explanatory (it predicted the output actu-
ally seen), inconsistent (it predicted something else), or consistent (it made
no prediction). Thus, a hypothesis h partitions the set of responses to queries
into Explanatory, Inconsistent, and Consistent subsets. We denote the num-
ber of elements in each subset by the ordered triple (E(h); I(h); C(h)). We
refer to the triple as the score of the hypothesis h. Since a hypothesis is
only generated when it successfully explains some response, we know that,
for any h, E(h) � 1.

The predictions of a new hypothesis are compared against old responses
to compute the hypothesis's score. Overall, ILA compares each hypothesis
against each response exactly once, so learning time is linear in both the num-
ber of responses and the number of hypotheses. To determine whether one
hypothesis is better than another, ILA compares the number of inconsistent
predictions by the two hypotheses. If the number of inconsistent predictions
is equal, ILA compares the number of explanatory predictions. More for-

2To perform bidirectional path�nding, we would have to �nd the set of matching tokens
in ILA's model, an expensive computation due to the size of the model.
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mally, we say that the hypothesis h is better than the hypothesis h0 if and
only if:

Better(h; h0) � [I(h) < I(h0)] _ [I(h) = I(h0) ^ E(h) > E(h0)]

ILA chooses the hypothesis with the lowest I score and uses E scores to
break ties. An inconsistency arises either when the hypothesis is inaccurate
or when the information is incorrect. Because incorrect information is rare
in our domain, a bad (high) I score indicates an inaccurate hypothesis. A
hypothesis may fail to explain an observation due to incomplete information,
because if we lack the relevant fact, the hypothesis makes no prediction.
Since incomplete information is relatively common, a bad (low) E score does
not necessarily indicate low accuracy of the hypothesis. Therefore, I(h)
is a better indicator of the quality of h than E(h). Suppose ILA knows
everybody's last name but only a few people's userid. When trying to learn
the userid �eld, the userid hypothesis will explain only a few observations
(because it will make very few predictions) but will never be inconsistent. In
contrast, lastname will explain many observations but will be inconsistent
on others. Because ILA prefers low I scores, it makes the right choice.

ILA terminates the learning process when one of two conditions occur.
One, it has run out of objects with which to query the IS. Two, its leading
hypothesis is \signi�cantly" better than its other hypotheses. The di�erence
in I scores that is deemed signi�cant is controlled by a parameter to ILA.
Currently, this parameter is set to 3. Although ILA's running time is expo-
nential in the depth of the relational path�nding search for an explanatory
hypothesis, the maximal search depth is typically set to a small constant,
keeping ILA fast. As mentioned earlier, the running time is linear in the
number of queries made, and the number of explanatory hypotheses gener-
ated. In fact, as the experiments in Table 2 show, ILA's running time is
dominated by network transmission time.

4 Experimental Results

In this section, we report on experiments designed to test whether our ap-
proach is viable in a real-world domain. We �nd that ILA is able to learn
models of simple information sources on the Internet.

To factor out the issues of protocol (which we do not address in this
paper), ILA is provided with an interface that standardizes the interaction
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Fields Queries Time
1 2 3 4 5 6 7 queries hits discr Internet CPU

sta�dir
p p p p p p p

16 16 5 19 24
whois

p p p p p
50 22 19 1569 184

Berkeley
p p

- -
p

24 5 7 367 54
Brown

p p p
- - 69 6 0 666 178

Caltech
p p p p

22 11 4 242 17
Cornell

p p p p p
41 13 0 8277 743

Rice
p p

-
p

x 36 2 0 413 75
Rutgers

p p
36 8 2 329 57

UCI
p p

- -
p

34 13 2 722 400

Table 2: Learning to understand information sources by bootstrapping from
staffdir and whois. We report number of queries, number of responses, number
of discriminating queries; Time spent querying (on the net) is in real seconds; lo-
cal processing time is in CPU seconds. Fields: 1=�rstname, 2=lastname, 3=title,
4=dept, 5=phone, 6=email, 7=userid. Fields tagged

p
were learned; \-" could

have been learned but weren't, and those left blank could not have been learned,
because the �eld was not reported by the IS. The �eld marked x was mistaken
for �eld 1 due to the paucity of hits at Rice.

with the information sources used. Each interface takes query strings as
input and outputs a list of tokens which ILA attempts to understand. In our
�rst experiment, ILA is provided with complete and correct models of faculty
in the University of Washington's (UW) Computer Science Department, and
is asked to learn a model of staffdir, the UW personnel directory. The
�rst line of Table 2 shows the results of this experiment. We see that in 16
queries ILA was able to learn a correct model of staffdir. ILA spent 19
seconds interacting with staffdir and 24 CPU seconds searching for, and
evaluating, hypotheses.

Below, we show the �nal scores of the leading hypotheses for interpreting
the second �eld of staffdir's output:

staffdir2(x) = lastname(x) Explanatory: 11 Inconsistent: 0
staffdir2(x) = userid(x) Explanatory: 8 Inconsistent: 3

We see that for eight people, both the lastname and userid hypotheses
correctly explained the second �eld in the output of staffdir. However, for
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three people, the userid hypothesis failed, leading ILA to consider lastname
the correct hypothesis.

A general problem that arises in relying on token correspondence to infer
type correspondence is the occurrence of puns. A pun occurs when matching
tokens are not actually instances of the same concept. A hypothesis arising
from a pun amounts to �nding an incorrect M� (Section 2) | one that is
not true for all x and y. A pun is an instance of the general problem of an
incorrect hypothesis resulting in a correct classi�cation of a training example.
One type of pun is entirely coincidental; a person's area code turns out to
be the same as his o�ce number. A spurious hypothesis resulting from a
coincidental pun is easy to reject | it is unlikely to prove explanatory for
more than a single example. However, we also encounter semi-regular puns
| where there is a correlation between the two concepts which gives rise
to the pun. As pointed out above, many people's userids are also their last
names. Semi-regular puns may require many more queries to converge on
the correct hypothesis, because both the correct and spurious hypotheses
will make accurate predictions in many cases. Discriminating queries aim
to address this problem by �nding examples where the correct and spurious
hypotheses make di�erent predictions.

No matter how regular a pun, there must eventually be a di�erence be-
tween the correct hypothesis and the competitor.3 How long that takes is
a function of the learner's knowledge and the regularity of the pun. The
system faces a tradeo�: if it collects more examples, it can be more con�dent
in the correctness of its conclusions. The learner can never be fully certain it
is not the victim of a particularly regular pun, but it will have some estimate
of the likelihood that it has the right solution. We provide a quantitative
analysis of this intuition in Section 5.

One possible criticism of ILA is that it relies on an overlap between the
individuals in its model and individuals in the IS it is trying to learn. How-
ever, ILA bene�ts from the presence of spanning information sources on the
Internet. A spanning information source is one that contains objects from
a wide variety of information sources. For example, the Internet service
called whois reports information on individuals from a wide range of sites on
the Net and will, for example, return people from a particular school when

3If there is no di�erence in extension between the two hypotheses, then they are equally
good solutions to the learning problem.
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queried with that school's name. ILA relies on its knowledge of local individ-
uals to learn a model of whois, and then leverages its model of whois to learn
models of a wide variety of remote sites on the Net. Instead of relying on
individuals from its model, ILA will query whois for new individuals at the
target site. For example, when trying to learn the Brown directory, ILA will
query whoiswith \Brown" to get information about people at Brown and use
its learned model of whois to interpret the output. Our second experiment
demonstrates this process (Table 2). The second line of the table shows the
results of learning whois from knowledge of local people. Given the learned
model of whois, we report on ILA's performance in learning models of the
personnel directories available at Berkeley, Brown, Cal-Tech, Cornell, Rice,
Rutgers, and UCI. As the results in Table 2 demonstrate, ILA is able to learn
fairly accurate models of these information sources averaging fewer than 40
queries per source, most taking less than 15 minutes each, where the bulk
of that time is spent in network tra�c. The processing time for ILA is less
than three CPU minutes in most cases.

5 Theoretical Analysis

We would like to understand how the accuracy of (and con�dence in) ILA's
hypotheses scale with the number of queries it makes, the size of its hypoth-
esis space, the correctness of its information, and so on. We consider both
the PAC model and an alternative probabilistic model of ILA.

The PAC model provides a convenient framework for analyzing ILA's be-
havior, under the simplifying assumption that queries to the IS are random.
jHj is the size of the hypothesis space explored by ILA. We posit a prob-
ability distribution P over queries to the information source I. The error
E of a hypothesis h is the probabilistic weight of the queries on which the
hypothesis h disagrees with the actual behavior of I:

E(h; I) =
X

o2I s:t: h(o)6=I(o)

P (o)

For simplicity, we consider an IS with a single output �eld, where I(o) is
the token returned by the IS, and h(o) is the value predicted by h. Haussler
[4] derives a lower bound on the number of examples necessary for PAC
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learning. If h is any hypothesis that agrees with at least n queries from I,
where n � 1

"
ln( jHj

�
), then we have the following: P (E(h; I) � ") � 1 � �.

To apply this bound to ILA, we have to assume that the information in
I and in ILA's model is error free, that a perfect model of I can be found in
ILA's hypothesis space, and that token matching is working perfectly. We
can model the violation of these assumptions as random classi�cation noise
and use the bound due to [1]: n � 2

"2(1�2�b)2
ln(2jHj

�
), where �b is an upper

bound on the frequency of noisy classi�cations, and the learner chooses the
hypothesis that is correct most often. Unfortunately, the number of queries
suggested by the bound is very large. For example, if we set � = 0:1; �b =
0:05, and jHj = 2, we see that the number of queries necessary to guarantee
" � 0:05 exceeds 3,000. How does ILA get away with relying on far fewer
queries in our experiments?

The PAC bounds are overly conservative for two reasons. First, the
bounds presuppose randomly distributed queries, whereas ILA makes dis-
criminating queries, which enhance its ability to converge quickly. Second,
the PAC bounds are based on a worst case analysis where there is at least
one hypothesis whose accuracy is just less than 1� ", where where the accu-

racy of a hypothesis h with respect to an IS I is 1 � E(h; I). The learning
algorithm has to observe enough examples to rule it out, and �nd a hypoth-
esis whose accuracy is at least " with probability 1 � �. Typically, puns
are not as pernicious as this worst-case analysis would suggest. In the case
of the lastname-userid pun in staffdir, for example, the best hypothesis
(lastname) has accuracy of 1.0 and the next best hypothesis (userid) has
accuracy 0.37. Only 2 queries are required to have 90% con�dence that ILA
will prefer the better hypothesis. Below, we derive a general bound that
yields this observation.

Instead of asking how likely a learner is to �nd a hypothesis whose ac-
curacy is at least 1 � ", we ask how likely the learner is to pick the best
hypothesis in its hypothesis space based on its observations. We can no
longer guarantee that the hypothesis chosen has accuracy 1�". However, we
can guarantee that the learner is likely to perform as well as possible, given
its hypothesis space. Furthermore, when the best hypothesis is much better
than the other hypotheses in the space, relatively few queries are required to
converge on the best hypothesis with high con�dence. Below, we formalize
this intuition using elementary probability theory.

If a hypothesis has probability p of making a correct prediction, then the
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Figure 1: (a) The probability of choosing the better hypothesis as a function of
Ab and the number of queries. (b) Number of queries required to be 90% sure
of choosing the better hypothesis, as a function of Ab. The lower line is using
discriminating queries; the upper line is without. In both graphs, Ag is �xed at
0.95.

probability that the hypothesis will yield x correct predictions on n indepen-

dent queries is the binomial distribution: px (1�p)n�x

 
n

x

!
. For simplicity

and brevity, we analyze the case where the space contains exactly two hy-
potheses, and the learner chooses the hypothesis that makes fewest incorrect
predictions.4 Thus, if we consider the hypothesis g, with accuracy Ag, and
the hypothesis b, with accuracy Ab, then the probability that after n queries
ILA will prefer the hypothesis g is at least:

nX
x=1

Ax
g (1�Ag)

n�x

 
n

x

! 0
@x�1X

y=0

Ax
b (1 �Ab)

n�y

 
n

y

!1A (1)

This formula sums the probability, under the binomial distribution, of the
di�erent states where g results in more correct predictions than b.5 We can
use the above formula to determine the number of queries n necessary to

4In our model, if the two hypotheses have equal scores, they have equal probability of
being chosen.

5We assume independence between the errors of g and b. Also, under the worst-case
assumption that n� 1 hypotheses all have accuracy Ab, a similar formula can be derived
for a hypothesis space of size n, and for ILA's more complex evaluation function [2].
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guarantee, with con�dence at least c, that ILA will choose the hypothesis
with accuracy at least Ag over the hypothesis with accuracy at most Ab. To
do so, we choose the desired con�dence level c, set the above formula equal
to c, and solve for n.

Figure 1(a) shows the probability of choosing hypothesis g, of accuracy
0.95, over hypothesis b, whose accuracy ranges from 0 to 0.95, as a function
of the number of queries performed. For example, when Ab = 0:5 and ILA

performs 4 queries, the probability of choosing hypothesis g is 0.94.
Discriminating queries enable ILA to converge on the high-accuracy hy-

pothesis even more quickly. To demonstrate the advantage of discriminating
queries over random queries, Figure 1(b) shows the number of random and
discriminating queries necessary to achieve at least 90% con�dence that the
learner will prefer a hypothesis with accuracy 0.95 over a hypothesis whose
accuracy ranges from 0 to 0.95. The random-queries curve is derived from
Equation 1; Due to lack of space, we omit the mathematics underlying the
discriminating-queries curve, but see [2]. When Ag = 0:95 and Ab = 0:5,
ILA requires only a single discriminating query to have 90% con�dence that
it has found the better hypothesis.

In short, if there is a large gap between the best hypothesis and its closest
competitor, and we are able to perform discriminating queries, our proba-
bilistic model shows that relatively few queries are necessary to have high
con�dence in choosing the best hypothesis. The model helps to explain how
ILA was able to learn accurate models of information sources, using a small
number of queries, in the experiments summarized in Table 2.

6 Critique and Future Work

Our contributions include: formulating the Category Translation problem,
developing ILA's algorithm, and formalizing its bias as a determination. We
have tested ILA experimentally on a simple Internet domain, and analyzed
its sample complexity within the PAC framework and using a specialized
probabilistic model.

We have identi�ed several problems that ILA does not yet address. Cat-
egory mismatch occurs when ILA fails to �nd categories corresponding to
those of the external information source [9]. For example, the IS records fax
numbers, of which ILA is ignorant. Token mismatch occurs when, despite
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having appropriate categories, ILA fails to �nd matching tokens due to a

di�erence in representation. For example, ILA may record prices in dollars,

but a Japanese information source may store prices in yen. Finally, ILA's

conjunctive bias can prevent it from learning a category that corresponds to

a disjunction of ILA's categories. In future work, we plan to test ILA on

substantially more complex Internet domains, explore solutions to the above

problems, and investigate the discovery and scope problems mentioned in the

introduction.
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