
88 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

ACM
The image on this page was deleted due to copyright considerations

In fact, current privacy interfaces—the user inter-
faces to these privacy mechanisms—are woefully
inadequate. A user with a particular privacy policy in
mind often lacks a convenient means for enforcing it.
For example, there is no way to instruct one’s phone
to “ring if the call is from a friend or family member,
but forward everyone else to the answering machine.”
A user must either screen each call individually or for-
ward all calls to the answering machine. Similarly, in
order to share files in Windows NT or Unix, one
must manipulate each file and folder individually.

Today’s privacy interfaces are based on properties of
individual objects. To enforce a general privacy policy,
each affected item must have its privacy property set
individually. This is inconvenient for large numbers of
items. For example, users refuse to set a “protection”
on each email message they receive. Moreover, users
do not have the ability to proactively specify complex

policies that will automatically cover messages not yet
received. As a result, people default to defensive pri-
vacy policies where all potentially sensitive informa-
tion such as email is kept under lock and key.

In this article, we propose a set of guidelines for
designing privacy interfaces that facilitate the creation,
inspection, modification, and monitoring of privacy
policies. These guidelines are based on our experience
with COLLABCLIO—a system that supports auto-
mated sharing of Web browsing histories. COLLAB-
CLIO stores a person’s browsing history and makes it
searchable by content, keyword, and other attributes.
A typical COLLABCLIO query might be: “Show me all
the pages Tessa has visited in the .edu domain that
contain the phrase ‘direct manipulation.’ ” Since a
COLLABCLIO user can make queries regarding the
browsing history of other users, there are obvious pri-
vacy concerns.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 89

A system for examining Web browsing histories helps create
a set of guidelines for designing privacy interfaces.

Tessa Lau, Oren Etzioni,

and Daniel S. Weld

The designers of information management software must strike a delicate balance

between protecting user privacy and facilitating the sharing of information. Since there is no

universal policy appropriate for all users, designers must provide users with a means of specify-

ing their own individual privacy policies. Each user then determines what information to con-

ceal, what to reveal, and to whom. While information protection mechanisms abound, the user

interface to such mechanisms has received scant attention.

Privacy Interfaces
for Information Management

Q
U

EN
TI

N
 W

EB
B

Our proposed guidelines are sufficiently broad to
apply to privacy interfaces in such diverse domains as
the Windows NT file system, email, and telephony.
We have analyzed the privacy interfaces in each of
these domains, and discuss how they could be
improved in light of our design guidelines.

As we access more and more information via the
Web, standard navigation solutions such as “book-
marks” and “favorites” become less adequate for
enabling us to find our way back to pages of interest.
There is a clear need for a technology to mitigate the
“lost in hyperspace” phenomenon, and facilitate the
retrieval of useful Web pages.

In response to this need, we developed CLIO—a
program that automatically indexes the content of
Web pages that its user visits. CLIO runs on a work-
station and captures the user’s browsing history auto-
matically. A user can search
CLIO for previosuly visited
pages by describing the desired
Web page in terms of attributes
such as keywords in the page’s
content, parts of its title and
URL, when it was visited, and
so on. For example, one could
search for “All pages visited in
the last two weeks that con-
tained the keywords ‘privacy’
and ‘security.’ ”

In addition to retrieving
URLs for personal use, we
often need to share URLs with
colleagues. Previous
approaches to this problem
tended to center around shared
bookmark lists (for example [2,
6, 7]). Such approaches require
a user to anticipate which
URLs may be of interest to others, and to manually
enter such URLs into the system. To overcome these
limitations, COLLABCLIO takes a novel approach.

To support URL sharing, each user may elect to reg-
ister his or her CLIO with a centralized server; any CLIO

can be contacted at any time to service a remote query
on another user’s behalf. This network of CLIOs makes
up the COLLABCLIO system. Thus, a user can ask CLIO

to query colleagues’ CLIOs in order to discover who has
visited Web pages with certain attributes. For example,
one could search for “All pages which Joe has visited
that contain the phrase ‘collaborative filtering.’ ” To
discover pet owners, one might search everyone’s
CLIOs for “All pages containing the word ‘cats.’ ”

Of course, remote queries against users’ Web
browsing histories might reveal information they

would prefer to hide from other users, such as stock
quotes, class grades, fetishes, or health concerns. Log-
ically, pages in one’s Web browsing history can be par-
titioned into equivalence classes based on the groups
of people who are authorized to see those pages. In the
simplest case, there are two classes: private Web pages
(those which should be visible only to the owner) and
public pages (those which can be shared with other
people). Clearly, COLLABCLIO should only return
public pages in response to remote queries. To allow
users to classify pages as public and private, we have
developed a privacy interface for COLLABCLIO.

Example-based Privacy Interface
Our first privacy interface design consisted of two
mechanisms: a record light and a search-and-mark
tool. The record light widget (Figure 1) is designed

to be kept onscreen near a
user’s Web browser window.
It is based on the red light
on a video camera. When
the light is on, Web page vis-
its are recorded as public;
when the light is turned off,
Web pages are logged as pri-
vate. Users can toggle the
status of the record light at
any time; this action
changes the classification of
the page currently displayed
in the browser. The record
light is sticky: once it has
been toggled, it remains in
that state until the user
explicitly toggles it back.
The use of this record light
interface lets users classify
every Web page immediately

as either public or private.
The second mechanism, the search-and-mark tool

(Figure 2), was meant to be used in conjunction with
the record light, as a method of reviewing and amend-
ing previous decisions. Once Web pages have been
indexed into the COLLABCLIO system, a user can use
the search-and-mark mechanism to change Web page
classifications. A user can do this by using CLIO to
search his or her history for all pages with certain
attributes (for example, all pages in the .com domain).
The user can then click on one or more of the
retrieved pages, and mark them as either public or pri-
vate by selecting an item from a menu.

An informal user survey, however, revealed that this
interface was inconvenient to use for certain types of
privacy policies. For example, in order to implement

90 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Figure 1. The record light window. The top
window is displayed when the record light is

toggled to PRIVATE, the bottom when it
is set for PUBLIC.

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 91

the policy “Hide all visits to Web pages in the .com
domain,” a user would have to remember to either
toggle the record light private each time a .com site
was visited, or to periodically search for all .com pages
and mark them private at a later date. In the first case,
the number of actions on a user’s part increases with
the number of sites visited. In the second case, there is
a window of time during which private information
could be revealed: a remote query occurring after a
page was visited, yet before it was marked as private,
might reveal sensitive information.

In addition, some users found it hard to go back
and visualize their privacy policy; there was no way to
list or summarize all the private Web pages in one’s
history. Another criticism noted the record light was-
n’t proactive: if a site was marked private in the past,
subsequent visits to the site weren’t automatically
marked private, but were classified according to the
current setting of the record light.

Design Guidelines for Privacy Interfaces
In considering our experience, we realized the ideal
privacy interface should make it easy to create, inspect,
modify, and monitor privacy policies. In addition, pri-
vacy policies should be proactive—that is, apply to
objects as they are encountered. Our initial design
failed to support these goals to a sufficient degree.

The record light interface allowed a user to create a
privacy policy one document at a time. The search-
and-mark tool allowed users to inspect and modify
their policies (again, on a document-by-document
basis). No support was provided for monitoring of
policies (that is, verifying one’s policy worked as it was
intended under a workload of remote queries). Again,
privacy policies were not proactive.

Although our first privacy interface achieved some
of these goals in part, we realized the root of the prob-
lem was the fact that one’s privacy policy was repre-
sented as a property of individual documents (e.g.,
public or private), and not as an entity in its own right.

To address this shortcoming, we introduce the dis-
tinction between intensional and extensional represen-
tations [5] of privacy policies. An extensional
representation enumerates all the items in a set (such
as a list of all private Web pages). The record light
interface creates an extensional privacy policy. In con-
trast, an intensional representation describes a set by
characterizing the objects in the set. Consider, for
example, the policy “Hide all Web pages that contain
the word ‘sex.’ ” Using an extensional privacy interface
such as the record light, one must notice when a Web
page contains the word “sex,” and toggle the record
light accordingly. On the other hand, one would be
able to state this policy declaratively in an intensional
representation. Furthermore, such a declarative policy
could be applied automatically to future Web pages as
they are being visited and indexed by COLLABCLIO.

Although the search-and-mark mechanism gave
the appearance of an intensional representation by
retrieving sets of pages, in fact, it preserved the exten-
sional representation used by the record light mecha-
nism; privacy was still implemented as a property of
each document. In addition, the privacy policy cre-
ated using this interface was not proactive: one user
was surprised to hear that although he had used the
search-and-mark mechanism once to classify .com
sites as private, future visits to .com sites were not
automatically classified as private.

These considerations led us to develop an inten-
sional privacy interface for COLLABCLIO.

Rule-based Privacy Interface
COLLABCLIO’s second privacy interface centers
around the privacy policy editor window (Figure 3).
This window supports the creation, inspection, and
modification of privacy policies. A privacy policy
consists of a default protection (either public or pri-
vate), and a list of rules which describe a set of excep-
tions to that default.

Each line in the policy represents one rule. Each
rule is a list of words, using a syntax similar to that

Figure 2. The search-and-mark tool, part of the CLIO

user interface. The lower half of the window displays
the results of a CLIO search; titles of recently

browsed Web pages are displayed; they are prefixed
by their classification into public (+) or private (-);
several documents have been selected and high-

lighted. The user is about to select a menu option
that will mark these selected documents as private.

used in popular Web search engines such as Alta Vista
and Lycos: a minus sign in front of a word means
negation, and a URL: prefix specifies a match against
the document’s URL instead of its textual content.
There is an implicit conjunction over the words in
each line. The union of the sets described by the rules
makes up the set of exceptions to the default privacy.

For example, the privacy policy
url:washington

agent -travel
describes a set of documents consisting of all Web
pages whose URL contains the string “washington,”

as well as all Web pages that contain the
word “agent” but not the word “travel.” If
the default policy were private, then the
Web pages contained in this set would be
the only public documents in this user’s
CLIO.

Since users were not always sure of the
exact coverage of the rules they created, we
added two monitoring facilities to

COLLABCLIO. Figure 4 shows the monitor
window that displays the title of each Web
page and its classification as it is visited in a
Web browser. In addition, we provide a
query-log window that displays which URLs
(if any) were returned in response to remote
queries. The monitor and query-log win-
dows enable a user to verify the policy cre-
ated in the rule-editor window is having the
desired effect.

Privacy Interfaces in Other
Systems

Our experience with COLLABCLIO led us to the gen-
eral conclusion that privacy interfaces should make
it easy to create, inspect, modify, and monitor pri-
vacy policies, and that proactive privacy policies can
best be represented intensionally. To demonstrate
that our guidelines are broadly applicable, we use
them to critique the privacy interfaces in three radi-
cally different systems: Windows NT 4.0, email,
and telephony.

Windows NT 4.0 enables users to share files with
colleagues across the network. Each file has a set of
permissions associated with it. These permissions

grant varying levels of access to listed users.
A dialog box displays the list of users/groups
allowed to access each file or directory, along
with the permissions granted to each one.
Checkboxes control whether a setting is
applied to the current file, or to all files
recursively in this subtree. In this dialog
box, users and groups may be added,
deleted, or have their access rights modi-
fied.1

This system treats privacy as a property of
files and folders instead of as an object in its
own right. Due to this extensional represen-
tation, a privacy policy does not scale to
large numbers of items. It is difficult to
inspect. For example, there is no way to list
which files are shared with a particular user

92 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

Figure 3. The privacy policy editor interface. Clicking on the
Update button puts the policy displayed in the editor

window into effect. However, if “verify before update” is
enabled, Clio will check for conflicts between the updated
policy and existing page privacy settings; if such conflicts

are detected, Clio will ask the user to verify that the
changes are indeed intended.

Figure 4. The monitor window. Titles of recently
browsed Web pages are displayed; they are prefixed by
their classification into public (+) or private (-). The icon

at the bottom shows the classification of the current
Web page, displayed just above it.

1The Unix file system provides an analogous command-line based
interface for setting default protection of files (the umask command).

in Windows NT 4.0. In addition, the privacy of a par-
ticular file depends on its location (whether or not its
enclosing folder is shared). Excepting the case where a
file inherits permissions from its enclosing folder, pri-
vacy is not proactive—it does not automatically apply
to items as they are created. There is no way to express
a policy such as “Share all Microsoft Word docu-
ments, regardless of their location.”

Email clients such as Pine, MH, and Eudora pro-
vide no specific mechanisms for expressing a privacy
policy over email messages. For example, a user might
send and receive email messages related to camera
equipment, and wish to share this archive with other
users. Since the email program provides no mecha-
nisms for automatically sharing information, the user
must use the file system to accomplish sharing, subject
to the underlying mechanism’s limitations. In this
case, the user must manually save all camera-related
messages to a special folder, and use whatever file sys-
tem mechanisms are available to make the contents of
this folder public.2

Privacy interfaces in the telephony domain also
have an all-or-none flavor that forces users to choose
between making a global decision versus analyzing
each item individually, but does not allow for a mid-
dle ground. Answering machines, for example, do not
allow one to state the policy “pass through all phone
calls from family members, and take a message from
all others.” Similarly, a caller cannot instruct the
Caller ID system to reveal his or her phone number
under certain conditions (when calling family) but
not others (when calling vendors). The telephone sys-
tem relies on an extensional representation of privacy
policies. As a result, both caller ID and answering
machines allow people to make decisions regarding
individual calls (or all calls), but fail to enable them to
articulate proactive and more expressive policies for
groups of users.

Related Work
Several systems have already addressed the problem
of sharing URLs. Warmlist [8] is similar to COLLAB-
CLIO in that it automatically indexes the content of
Web pages stored in a user’s bookmark list. However,
the only facility for sharing URLs with other users is
by indirectly importing other users’ Warmlists.

Several other systems allow users to share URLs
with one another directly. WebTagger [7], Grassroots
[6], and Jasper [2] provide facilities for sharing book-

marks between colleagues via a centralized repository.
By requiring users to explicitly choose which book-
marks are shared with which people, however, they
expect each user to anticipate the interests of col-
leagues, and manually enter the URL into the system
each time he or she comes across something which
ought to be shared.

Another area of related work concerns the issue of
privacy in collaborative systems involving live video
feeds. Bellotti [1] proposes a framework to guide the
incorporation of privacy into the design of collabora-
tive systems, as well as a set of criteria for evaluating
such systems. In addition, Hudson and Smith [4]
study privacy in a video-awareness system. The
shadow-view technique (representing areas of recent
motion in a live video feed with darkened squares)
implements a proactive policy for video privacy. How-
ever, neither project suggests, as we do, the idea of an
explicit privacy interface, or the encoding of privacy
policies in an intensional representation.

Yenta [3] is a distributed agent system that uses
email and other sources to build a profile of a user that
is used to automatically match users with similar
interests. While Yenta was designed to provide infor-
mation security using encryption, it does not directly
address the issue of information privacy, which we are
concerned with here.

In the commercial arena, Firefly Network, Inc. has
introduced the Firefly Passport—a compact object
representing an individual’s privacy policy that speci-
fies who is online, as well as other various preferences.
This passport, if widely adopted, would represent an
important step forward in enabling Internet users to
conveniently control the information disclosed to
others when online. However, the passport relies on
an extensional representation of a user’s privacy policy
and, thus, suffers from scaling problems.

Future Work
There are many directions to go from here, but we
focus on increasing the expressiveness of privacy
policies, and making it more convenient for the user
to formulate privacy policies.

User feedback has revealed several areas in which
the privacy rule language in COLLABCLIO is not
expressive enough. These areas include time-based
policies and finer-grained classification.

Our policy simplification assumes that policies are
not time-dependent. However, this precludes the
expression of policies that are a function of time, for
example: “Don’t share any information about class
grades until grades have been released at the end of
the grading period,” or “Hide all Web pages visited
during non-work hours.”

COMMUNICATIONS OF THE ACM October 1999/Vol. 42, No. 10 93

2This single mechanism conflates multiple objectives. Users have no way of dissociat-
ing the privacy of email messages with their organization for locating them. Users who
ordered a camera via email might want to keep this with their other camera messages,
yet be unable to do this safely if the message contained their credit card number.

In the future, we plan to investigate interfaces for
allowing users to specify time-dependent policies.

We have assumed a binary classification scheme for
public and private Web pages. However, there are
many cases in which this is insufficient: for example,
a user might want to define a group of friends, with
whom he or she will share information that is private
to everyone else. This complicates visualization of the
privacy policy.

Although not described in this article, COLLAB-
CLIO provides a small amount of support for tailoring
privacy policies based on the identity of the person
asking for information (the asker). The current system
provides anonymity settings similar to those found in
the Caller ID system; the asker can be anonymous
when making a query, and the responder has the
option of refusing anonymous queries or responding
anonymously. A future extension will be to support a
richer set of asker attributes, and allow a privacy pol-
icy to be conditional based on these attributes. Sam-
ple policies include:

•Symmetry. Answer a query only if the asker would
answer the same query for me.

•Positive information balance. Answer a query only
if the asker has shared information at least as
often as she has requested it.

•Group-based. Share my current research results
only with people in my research group.

In addition to increased expressiveness, we can help
the user in formulating a privacy policy by using
machine learning techniques to automatically create
candidate privacy policy rules based on a set of
labeled example pages provided by the user. A sys-
tem that incorporated machine learning might allow
a user to classify certain representative pages, and use
the machine-generated rules as guidelines to help
the user formulate the desired intensional privacy
policy. Of course, extensive user studies are neces-
sary to evaluate this idea, and COLLABCLIO as a
whole.

Conclusion
We have introduced COLLABCLIO—a testbed for
investigating privacy interfaces—and described
design guidelines for privacy interfaces resulting
from our experience with the system. We have dis-
cussed the privacy interfaces in other domains such
as file systems, email, and telephony, and noted
where they fail to meet our guidelines for effective
privacy interfaces.

In summary, our experience has led to the follow-
ing general conclusions:

•Privacy interfaces should facilitate the creation,
inspection, modification, and monitoring of pri-
vacy policies.

•Privacy policies should apply automatically to
objects as they are encountered.

•One way of achieving these goals is the use of an
intensional representation of privacy policies.

The goal of enabling users to achieve fine-grained
control of the information they reveal has received
scant attention in previous work both in the user
interface literature and in practice. Yet, we pay a
price when information we could readily use, and
that others would readily share, is hidden because it
is too tedious to make decisions regarding tomor-
row’s personal information using yesterday’s privacy
interfaces.

References
1. Bellotti, V. Design for privacy in multimedia computing and communi-

cations environments. Technology and Privacy: The New Landscape. MIT
Press, Cambridge, Mass., 1996.

2. Davies, N.J., Weeks, R., and Revett, M.C. Information agents for the
World Wide Web. Springer-Verlag, Berlin, 1997, 81–99.

3. Foner, L.N. A security architecture for multi-agent matchmaking. In
Proceedings of the Second International Conference on Multiagent Systems.
(Kyoto, Japan, Dec. 1996).

4. Hudson, S.E. and Smith, I. Techniques for addressing fundamental pri-
vacy and disruption tradeoffs in awareness support systems. In Proceedings
of the ACM 1996 Conference on Computer Supported Cooperative Work.
(Boston, Nov. 1996).

5. Jackson, P., Reichgelt, H., and van Harmelen, F. Logic-Based Knowledge
Representation. MIT Press, Cambridge, Mass., 1989.

6. Kamiya, K., Roscheisen, M., and Winograd, T. Grassroots: A system
providing a uniform framework for communicating, structuring, sharing
information, and organizing people. Computer Networks and ISDN Systems
28, 7 (May 1996), 1157–1174.

7. Keller, R.M., Wolfe, S.R., Chen, J.R., Rabinowitz, J.L., and Mathe, N.
A bookmarking service for organizing and sharing URLs. In Proceedings
for the Sixth International World Wide Web Conference. (Santa Clara, Calif.,
Apr. 1997).

8. Klark, P., and Manber, U. Developing a personal Internet assistant. In
Proceedings of ED-MEDIA 95—World Conference on Educational Multimedia
and Hypermedia. (Graz, Australia, June 1995).

9. Shneiderman, B. Direct manipulation: A step beyond programming lan-
guages. Computer 16, 8 (Aug. 1983).

Tessa Lau (tlau@cs.washington.edu) is a Ph.D. student in the
Department of Computer Science and Engineering at the University of
Washington in Seattle.
Oren Etzioni (etzioni@cs.washington.edu) is an associate professor
in the Department of Computer Science and Engineering at the
University of Washington in Seattle.
Daniel S. Weld (weld@cs.washington.edu) is a professor in the
Department of Computer Science and Engineering at the University of
Washington in Seattle.

This research was funded in part by Office of Naval Research grants 92-J-1946 and
N00014-94-1-0060, by ARPA/Rome Labs grant F30602-95-1-0024, by a gift from
Rockwell International Palo Alto Research, by National Science Foundation grants
IRI-9357772 and IRI-9303461, and by a National Science Foundation graduate fel-
lowship.

© 1999 ACM 0002-0782/99/1000 $5.00

c

94 October 1999/Vol. 42, No. 10 COMMUNICATIONS OF THE ACM

