Semantic Email: Adding Lightweight Data Manipulation
Capabilities to the Email Habitat

Oren Etzioni, Alon Halevy, Henry Levy, and Luke McDowell
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195 U.S.A

{etzioni,alon,levy,lucasm}@cs.washington.edu

ABSTRACT

The Semantic Web envisions a portion of the World Wide
Web in which the underlying data is machine understand-
able and applications can exploit this data for improved
querying, aggregation, and interaction. This paper inves-
tigates whether the same vision can be carried over to the
realm of email, the adjacent information space in which we
spend significant amounts of time.

We introduce a general notion of semantic email, in which
email messages consist of a database query or update cou-
pled with corresponding explanatory text. Semantic email
opens the door to a wide range of automated, email-mediated
applications. In particular, this paper introduces a class of
semantic email processes. For example, consider the process
of sending an email to a program committee, asking who
will attend the PC dinner, automatically collecting the re-
sponses, and tallying them up. We describe a formal model
where an email process is modeled as a set of updates to a
data set, on which we specify certain constraints. We then
describe a set of inference problems that arise in this context,
and provide initial results on some of them. In particular, we
show that it is possible to automatically infer which email
responses are acceptable w.r.t. a set of ultimately desired
constraints. Finally, we describe a first implementation of
semantic email, and outline several research challenges in
this realm.

Categories and Subject Descriptors

H.2.8 [Database Applications|: Miscellaneous;

F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous;

D.4.3 [Communications Applications|: Electronic mail

Keywords

Semantic web, email, formal model, inference, ultimate sat-
isfiability, lightweight data manipulation

Copyright is held by the author/owner.
International Workshop on the Web and Databases (WebDB).
June 12-13, 2003, San Diego, California.

1. INTRODUCTION

There is currently significant interest in making portions
of the WWW machine understandable as part of the broad
vision known as the “Semantic Web” [1]. While the WWW
is a rich information space in which we spend significant
amounts of time, many of us spend even more time on email.
In contrast to the WWW, where most of our interactions in-
volve consuming data, with email we are both creating and
consuming data. With the exception of the generic header
fields associated with each email message, the email infor-
mation space has no semantic features whatsoever. While
the majority of email will remain this way, this paper argues
that adding semantic features to email offers tremendous op-
portunities for payoff in productivity while performing some
very common tasks. To illustrate the promise, consider sev-
eral examples.

e In the simplest case, suppose you send an email with
a talk announcement. With appropriate semantics at-
tached to the email, sending the announcement can also
result in automatically (1) posting the announcement to
a talks web site, and (2) sending a reminder the day
before the talk.

e Suppose you are organizing a PC meeting, and you want
to know which PC members will stay for dinner after
the meeting. Currently, you need to send out the ques-
tion, and compile the answers manually, leafing through
emails one by one. Furthermore, you need to do so ev-
ery few days in order to find out who has answered and
who has not. With semantic email, the PC members can
provide the answer in a way that can be interpreted by a
program and compiled properly. In addition, after a few
days, certain PC members can be reminded to answer,
and those who have said they’re not coming to the PC
meeting need not be bothered with this query at all.

e As a variant of the above example, suppose you are or-
ganizing a balanced potluck, where people should bring
either an appetizer, entree or dessert, and you want to
ensure that the meal is balanced. In addition to the fea-
tures of the previous example, here semantic email can
help ensure that the potluck is indeed balanced by ex-
amining the answers and requesting changes where nec-
essary.

e As a final example, suppose you want to give away tick-
ets to a concert that you cannot use. You would like
to send out an announcement, and have the semantic
email system give out the tickets to the first respon-

dents. When the tickets are gone, the system should
respond politely to subsequent requests. Alternatively,
you may want to sell the tickets to the highest bidder
and have the system help you with that task.

These examples are of course illustrative rather than ex-
haustive. However, the examples suggest a general point: we
often use email for tasks that are reminiscent of lightweight
data collection, manipulation, and analysis tasks. Because
email is not set up to handle these tasks effectively, accom-
plishing them manually can be tedious, time-consuming, and
error-prone.

In general, there are at least three ways in which semantics
can be used to streamline aspects of our email habitat:

1. Update: we can use an email message to add data to
some source (e.g., a web page, as in our first example).

2. Query: email messages can be used to query other
users for information. Semantics associated with such
queries can then be used to automatically answer com-
mon questions (e.g., asking for my phone number or
directions to my office).

3. Process: we can use semantic email to manage simple
but time-consuming processes that we currently han-
dle manually.

The techniques needed to support the first two uses of
semantic email depend on whether the message is written
in text by the user or formally generated by a program on
the sender’s end. In the user-generated case, we would need
sophisticated methods for extracting the precise update or
query from the text. In both cases, we require some methods
to ensure that the sender and receiver share terminologies
in a consistent fashion.

This paper focuses on the third use of semantic email
to streamline processes, as we believe it has the greatest
promise for increasing productivity and is where the most
pain is currently being felt by users. Some hardcoded email
processes, such as the meeting request feature in Outlook,
invitation management via Ewite, and contact management
via GoodContacts, have made it into popular use already.
Each of these commercial applications is limited in its scope,
but validates our claim about user pain. Our goal in this pa-
per is to sketch a general infrastructure for semantic email
processes. Feature rich email systems such as Microsoft’s
Outlook/Exchange offer forms and scripting capabilities that
could be used to implement some email processes. However,
it is much harder for casual users to create processes using
arbitrary scripts, and furthermore, the results would not
have the formal properties that our model provides. We
describe these properties in Section 3.

To the best of our knowledge, this paper is the first to
articulate and implement a general model of semantic emasl
processes (SEPs).! Our technical contributions are the fol-
lowing. We first describe a formal model for semantic email
processes. The formal model specifies the meaning of se-
mantic email processes and exposes the key implementa-
tion challenges. We then pose several fundamental inference
problems that can be used to boost semantic email creation
and processing, and describe some initial results on these
problems. We discuss implementation issues that arise for
semantic email and how we have addressed these in our first

! Associating semantic content with mail has been proposed
before [7, 3], but such proposals have focused only on using
semantics to improve mail search, sorting, and filtering.

=10l x|

% Department potluck -- please respond - Messa

JEiIe Edit ‘iew Insert Format Tools Actions Help

From: semweb@cs. washington.edu Sent: Wed 4§2/2003 4:35 PM

Iucasm(@cs washington e du sends the following message: ;!
You have been invited to the potluck described belowr
Please use the form below to indicate what you are bringing.
To ensure that our meal is balanced, you may be asked to change wour selection.

Description: End of quarter potluck
Date/Time: May 23, at 7:00 pum.
Location: Sieg 322

@Bringing :[] (enter a number 1-4 heiween the brackeis)
1. Not Coming
2. Appetizer
3.Eniree
4.Dessert

##%% The information below is to assist with automated processing ****
of wour answers Please include it in wour response without modification.
SELECT ?yousiring, ?Bringing
WHERE (<uw:processID36>, <uw:response>, ?x1),
(?xl, <uw:attendee=, Pyoustring),
(?xl, <uw:bringing>-, ?Bringing)
USING ww FOR <htip://www.cs washingion edw'research/senmweb/vocabéivl 0 :j

Figure 1: A message sent to recipients in a “Balanced
potluck” process. The bold text at the top is a form used
for human recipients to respond, while the bold text at
the bottom is a query that maps their textual response
to a formal language.

semantic email prototype. Finally, we outline several re-
search challenges related to semantic email.

2. FORMALMODEL OF SEMANTIC EMAIL
PROCESSES

Our formal model of SEPs serves several goals. First, the
model captures the exact meaning of semantic email and the
processes that it defines. Second, the model clarifies the lim-
itations of SEPs, thereby providing the basis for the study
of different variations with varying expressive powers. Fi-
nally, given the model, we can pose several formal inference
problems that can help guide the creation of semantic email
processes as well as manage their life cycle. We emphasize
that the users of SEPs are not expected to understand the
formal model or write specifications using it.

In our model, we assume that email addresses uniquely
determine individuals or sets of potential participants in the
process. A SEP is initiated by an individual participant,
called the originator. Informally speaking, the coordination
of a process is achieved by a supporting data set, and a set
of updates that the recipients of the email can make to this
data set as they respond to the original email.

EXAMPLE 2.1. We first illustrate our formal model with
the ezample of setting up a balanced potluck. The originator
of the process will initially send out a message announcing
the potluck and asking everyone to say whether they are com-
ing and whether they are bringing an appetizer, entree, or
dessert (see Figure 1). As a result of this email, a support-
ing data set is automatically created. The data set includes a
single table with a row for every recipient of the email. The
table will have two columns, email and bringing. The first col-
umn will be an email address of one of the recipients, and the
second column will have a constraint specifying that it can
only have one of four values: { not-coming, appetizer,
entree, dessert }. Initially, the second column will be set
to NULL.

The process will specify that the result of a response from
a recipient p is an update to the data set, where p is allowed
to update only the row where the first column is p, and the
update can only modify the second column. Hence, the only
thing p can do is modify NULL to one of the four allowable
values.

To guarantee that the potluck is balanced, the originator
will also impose a constraint on the contents of the data set.
For example, the originator may specify that the difference
in the number of appetizers, entrees, or desserts can be at
most two.

There are still several choices that the originator needs to
make. The first is whether the constraints are émposed as the
responses come in (e.g., after two desserts have arrived, the
system will not accept another dessert until at least one en-
tree and one appetizer have been volunteered). Alternatively,
the constraints may be imposed at the end with another se-
ries of balancing emails (and here we need to assume some
cooperation on behalf of the participants). Another choice is
whether to allow participants to modify their selection, and
how to handle such modifications. Finally, the originator
needs to decide whether and which followup messages will
be sent during the process. Section 3 elaborates on some of
these choices and demonstrates how inference can be used
to automatically direct constraint application and message
generation. O

We now define the components of the formal model: par-
ticipants, supporting data set, messages, responses, and the
constraint language.

Participants: a process has an originator, po, and a set of
recipients, P. Note that po could be in P.

Supporting data set: we assume that the supporting data
set, D, is a set of relations. The initial contents of the
relations are specified by the originator in the beginning of
the process (usually to be a set of default values for the
columns). With each relation in D we associate a schema
that includes:

e A relation name and names, data types, and range con-
straints for the attributes. A special data type is emailAd-
dress, whose values are the set P. Attributes may also
be given default values.

e For every relation in D, there may be a single attribute
of type emailAddress that is distinguished as a from at-
tribute, which means that rows in the relation whose
value is p can only result from messages from the par-
ticipant p. The from attribute may be declared unique,
in which case every recipient can only affect a single row
in the table.

o A set of constraints on D, denoted by Cp, specified in
the constraint language we describe shortly.

Messages: Processes proceed via a set of messages M. M
includes the originator’s first email, asking the queries for
the process. Other messages in M can either be to the
recipients (or subset thereof) or to the originator. A message
to the recipients is specified by:

® a time point or a triggering condition,

e a set of recipients specified by a query on D, and

e a message text, e.g., a prompt for the questions being
asked by the process or a reminder to a recipient to
respond to an earlier request.

A message to the originator has the first and third compo-
nents above.

Responses: the set of responses to the originator’s email
is specified as follows:

e Attributes: the set of attributes in D that are affected by
responses from recipients. This set of attributes cannot
include any from attributes.

e Insert or Update: recipients can only add tuples, only
modify tuples, or both. Recall that if there is a from
field then all changes from p pertain only to a particular
set of tuples.

e Single or Many: can recipients send a single response
or more than one? As we explain in Section 3.1, some
responses may be rejected by the system. By Single, we
mean one non-rejected message.

Constraint language: The constraints Cp are specified
in a language that includes conjunction and disjunction of
atomic predicates. Atomic predicates compare two terms,
or a term with a set. Terms have the following form:

e an attribute variable (referring to the value of a partic-
ular attribute in a row)

e a constant

e an aggregate applied to a column of a relation, or to
a subset of the rows that satisfy an equality predicate
(thereby obtaining the aggregate value of a single group
in the relation).

We allow comparison predicates (=, #, <,<), LIKE, and €
, & between a constant and an enumerated finite set.

EXAMPLE 2.2. As described earlier, in the balanced potluck
example, we will have a single table named Potluck with two
columns: email, of type emailAddress and declared to be
unique, and bringing, with the constraint Potluck.bringing € {
not-coming, appetizer, entree, dessert }. The default
value for the bringing attribute is NULL.

In addition to the single column constraint, we will also
specify several constraint formulas similar to the one below,
specifying that the potluck should be balanced (please note
that the below is not a proposal for a syntaz of the constraint
language so, for now, it should be taken with kindness):

(Count * where bringing = "dessert’) <
(Count * where bringing = "appetizer’) + 2

Let us assume for now that except for the range constraint
on the value of the bringing attribute, there are no additional
constraints on responses. Furthermore, assume that recipi-
ents are allowed to send a single (acceptable) response, and
hence cannot change their mind after they’ve committed to
a dish.

Finally, the set of messages in our example includes (1)
the initial message announcing the potluck and asking what
each person is bringing, (2) messages informing each re-
sponder whether their response was accepted or not, (3) a
reminder to those who have not responded 2 days before the
potluck, (4) regular messages to the originator reporting the
status of the RSVPs, and (5) a message to the originator in
the event that everyone has responded. O

3. INFERENCE FOR SEMANTIC EMAIL

Given the formal model for a SEP we can now pose a
wide variety of inference problems, whose results can serve to
assist in the creation and management of SEPs. The data-
centric flavor of our model will enable us to bring various
techniques from data management to bear on these inference
problems.

The core problem we want to address using inference is
whether a SEP will terminate in a legal state, i.e., a state
that satisfies Cp. The input to the inference problem in-
cludes the constraints Cp and possibly the current state of
D along with a response r from a recipient. The output of
the inference problem is a condition that we will check on
r to determine whether to accept r. In our discussion, we
assume that 7 is a legal response, i.e., the values it inserts
into D satisfy the range constraints on the columns of D.

The space of possible inference problems is defined by sev-
eral dimensions:

e Necessity vs. possibility: as in modal logics for rea-
soning about future states of a system [14, 8, 4], one
can either look for conditions that guarantee that any
sequence of responses ends in a desired state (the O op-
erator), or that it is possible that some sequence of re-
sponses brings us to a desired state (the ¢ operator).

e Assumptions on the recipients: in addition to as-
suming that all responses are legal, we can consider other
assumptions, such as: (1) all the recipients will respond
to the message or (2) the recipients are flexible, i.e., if
asked to change their response, they will cooperate.

e The type of output condition: at one extreme, we
may want a constraint C, that can be checked on D
when a response r arrives, where C, is specified in the
same language used to specify Cp. At another extreme,
we may apply an arbitrary procedure to D and r to de-
termine whether r should be accepted. We note that
a constraint C, will inevitably be weaker than an arbi-
trary algorithm, because it can only inspect the state
of D in very particular ways. As intermediate points
we may consider constraints C, in more expressive con-
straint languages. Note that in cases where we can suc-
cessfully derive C,, we can use database triggers to im-
plement modifications to D or to indicate that r should
be rejected.

e Generation of helpful intermediate messages: in
addition to finding a condition for accepting responses,
we may infer helpful messages when a response is re-
jected (e.g., to suggest that while a dessert could not be
accepted an entree would be welcome).

As a very simple example, suppose we consider the case
where we want all response sequences to end in a legal state,
we make no assumptions on the recipients, and we are inter-
ested in deriving a constraint C, that will be checked when
a response arrives. If the initial state of D is a legal state,
then simply setting C, to be Cp provides a sufficient condi-
tion; we only let the data set D be in states that satisfy Cp.
In the example of the balanced potluck, we will not accept a
response with a dessert if that would lead to having 3 more
desserts than entrees or appetizers.

In some cases, such a conservative strategy will be too
restrictive. For example, we may want to continue accepting
desserts so long as it is still possible to achieve a balanced
potluck. This leads us to the following inference problem.

3.1 Ultimate Satisfiability

We now describe our central result concerning inference
for SEPs. Our goal is to find the weakest condition for ac-
cepting a response from a recipient. To do that, we cut
across the above dimensions as follows. Suppose we are
given the data set D after 0 or more responses have been
accepted, and a new response r. Note that D does not nec-

essarily satisfy Cp, either before or after accepting r. We
will accept r if it is possible that it will lead to a state sat-
isfying Cp (i.e., considering the ¢ temporal operator). We
do not require that the condition on r be expressed in our
constraint language, but we are concerned about whether it
can be efficiently verified on D and r. Furthermore, we as-
sume that recipients can only update their (single) row, and
only do so once. Hence, the columns that can be affected by
the recipients start out with the NULL value, and can get
assigned values in a1, ...,as.>

DEFINITION 3.1. (ultimate satisfiability) given a data
set D, a set of constraints Cp on D, and a response r, we
say that D is ultimately satisfiable w.r.t. r if there ezists a
sequence of responses from the recipients, beginning with r,
that will put D in a state that satisfies Cp. O

In what follows, let C" be our constraint language re-
stricted to conjunctions of atomic predicates (i.e., disjunc-
tion is not allowed, and negation can only be applied on
atomic predicates). A term in a predicate of Cp may select
a group of rows in an attribute A, and aggregate the value
of the corresponding values in an attribute B. We say that
the aggregation predicates in Cp are separable if whenever
there is a non-COUNT aggregate over an attribute B, then
B is not a grouping attribute in any term. (All of the ex-
amples given in this paper can be expressed with separable
constraints.) We consider the aggregation functions MIN,
MAX, COUNT, SUM, and AVERAGE.

THEOREM 3.1. Let S be a semantic email process where
Cp is in the language C™. Then,
o If the predicates in Cp are separable, then ultimate sat-
isfiability is in polynomial time in the size of D and Cp.
o If the predicates in Cp are not separable, then ultimate
satisfiability is NP-hard in the size of D. O

As an example of applying this theorem, in the balanced
potluck example, suppose a new dessert response arrives. At
that point, the inference procedure will (1) determine the
maximal number of people who may come to the potluck
(i.e., the number of recipients minus the number of people
who replied not-coming), (2) check that even if the dessert
response is accepted, then there are still enough people who
have not answered such that the ultimate set of dishes could
be balanced.

Discussion: The challenge in proving this theorem is in
reasoning about the possible relationships between aggre-
gate values (current and future), given a particular state of
D. Reasoning about aggregation has received significant at-
tention in the query optimization literature [15, 17, 9, 10, 2,
5]. This body of work considered the problem of optimizing
queries with aggregation by moving predicates across query
blocks, and reasoning about query containment and satis-
fiability for queries involving grouping and aggregation. In
contrast, our result involves considering the current state of
the database to determine whether it can be brought into a
state that satisfies a set of constraints. Furthermore, since
Cp may involve several grouping columns and aggregations,
they cannot be translated into single-block SQL queries, and

2As it turns out, the case in which the recipients can add
rows is actually easier, because there are less constraints on
the system.

hence the containment algorithms will not carry over to our
context.

To the best of our knowledge, formalisms for reasoning
about workflow [13, 12] or about temporal properties of ne-
cessity and possibility have not considered reasoning about
aggregation. For instance, workflow formalisms have gener-
ally been restricted to reasoning about temporal and causal-
ity constraints [16].> One exception is the recent work of
Senkul et al. [16], who expand workflows to include resource
constraints based on aggregation. Each such constraint,
however, is restricted to performing a single aggregation
with no grouping (and thus could not express the potluck
constraint given in Example 2.2). In addition, their solution
is based upon general constraint solving and thus may take
exponential time in the worst case. We’ve shown, however,
that in our domain SEPs can easily express more complex
aggregation constraints while maintaining polynomial infer-
ence complexity in many interesting cases.

Ultimately the problem of reasoning about semantic email
will be related to the problem of reasoning about e-services;
see [6] for a recent survey.

4. IMPLEMENTATION AND USABILITY
ISSUES

There are several significant challenges involved in im-
plementing semantic email and getting it adopted widely.
Our formal model provides a framework for identifying these
challenges. Below we discuss some of these challenges, and
describe the particular choices we made in our prototype
implementation.

Message handling: The first and most important chal-
lenge is how to manage the flow of messages. The problem
can be divided into three: message creation, transport, and
reply. For message creation, we envision a set of GUIs that
guide the user through composing the message and selecting
the appropriate options for the process. In addition, there
will be an interface for monitoring the progress of the pro-
cess. Under the covers, these interfaces can make use of the
inference procedures described above.

Ideally, these GUIs would be integrated with the user’s
mail client, which would then handle sending and receiving
process-related mail on the user’s behalf. For replying, a
recipient’s email client would present the recipient with an
interface for constructing legal responses, or automatically
respond to messages it knows how to handle (e.g. “Decline
all tickets to the opera”). This approach, however, requires
all participants in a process to install additional software
(limiting its applicability) and is complicated by the variety
of mail clients currently in use.

Consequently, we have adopted the following pragmatic
strategy. Users originate a process by selecting a simple
text form from a shared folder or a webpage, filling out the
form, and then mailing that form to a special email address
(e.g., semweb@cs.washington.edu). A central server reads
this message, creates a new email process based on the pa-
rameters in the form, and sends out an initial message to the
recipients. These messages also contain a simple text form
that can be handled by any mail client. Recipients reply via

3Workflow formalisms could potentially convert aggregation
constraints to temporal constraints by explicitly enumerat-
ing all possible data combinations, but this may result in an
exponential number of states.

mail* directly to the server, rather than to the originator,
and the originator receives status and summary messages
directly from the server when appropriate. The originator
can query or alter the process via additional emails or a web
interface. This approach is simple to implement, requires no
software installation, and works for all email clients.> We
believe that divorcing the processing of semantic email (in
the server) from the standard email flow (in the client) will
facilitate adoption by ameliorating potential user concerns
about privacy and about placing potentially buggy code in
their email client.

Human/Machine Interoperability: An important re-
quirement is that every message must contain both a human-
understandable (e.g. “I’'m giving away 4 opera tickets”) and
an equivalent machine-understandable portion (e.g., in RDF
or SQL). For messages sent to a recipient, this ensures that
either a human or a machine may potentially handle and re-
spond to the message. Thus, a process originator may send
the same message to all recipients without any knowledge of
their capabilities. For responses, a human-readable version
provides a simple record of the response if needed for later
review. In addition, a machine-understandable version en-
ables the server to evaluate the message against the process
constraints and take further action.

In our implementation, we meet this requirement by hav-
ing the server attach RDF to each outgoing text message. A
human responds by filling out an included text form, which
is then converted into RDF at the server with a simple map-
ping from each field to an unbound variable in a RDQL
query associated with the message.® A machine can respond
to the message simply by answering the query in RDF, then
applying the inverse mapping in order to correctly fill out
the human-readable text form.

Steamlining semantics with other aspects of email:
Despite the advantages of semantic email, we do not want
to create a strict dichotomy in our email habitat. In our
potluck example, suppose that one of the recipients wants
to know whether there is organized transportation to the
potluck (and this information affects his decision on what
to bring). What should he do? Compose a separate non-
semantic email to the originator and respond to the semantic
one only later? A better solution would be to treat both
kinds of emails uniformly, and enable the recipient to ask
the question in replying to the semantic email, ultimately
providing the semantic response later on in the thread.
Our implementation supports this behavior by supplying
a “remark” field in each response form, where a recipient
may include a question or comment to be forwarded to the
originator. For a question, the originator can reply, enabling

* Alternatively, we could send recipients a link to a suitable
web-based form to use for their response. This mechanism is
fully consistent with our formal model and has some advan-
tages (e.g., forms are not restricted to text, immediate data
validation). We chose instead to use email because we feel
it fits more naturally with how recipients typically handle
incoming messages.

®This approach can still enable the automated answering of
common questions, but requires an extra step for recipients
to forward such messages to the server

5Technically, this response does not contain a pure machine-
understandable portion (e.g. in raw RDF'), but does contain
all the information necessary (fields, RDQL, and mapping)
to easily produce this portion.

the recipient to respond to the original semantic question
with the included form, or to pose another question.

Database and inference engine: There are several sys-
tem issues to consider, such as where does the actual database
and inference engine reside. Right now, we built a separate
semantic email system implemented as a centralized server
supported by a relational database.

Implementation Status: We have developed a prototype
semantic email system and deployed it for public use.” So
far we have developed simple processes to perform functions
like collecting RSVPs, giving tickets away, and organizing a
balanced potluck; these can be customized for many other
purposes (e.g. to collect N volunteers instead of give away N
tickets). We are currently testing the system with real users
to determine how well these processes generalize to everyday
needs.

The prototype is integrated with our larger MANGROVE [11]
semantic web system. This provides us with an RDF-based
infrastructure for managing email data and integrating with
web-based data sources and services. For instance, the M AN-
GROVE calendar service accepts event information via email
or from a web page. Future work will consider additional
ways to synergistically leverage data from both the web and
email worlds in this system.

5. CONCLUSIONS

We have introduced a paradigm for enriching our email
habitat with the ability to perform lightweight data collec-
tion and manipulation tasks. We believe that this form of
semantic email has the potential to offer significant produc-
tivity gains on email-mediated tasks that are currently per-
formed manually in a tedious, time consuming, and error-
prone manner. Moreover, semantic email opens the way to
scaling similar tasks to large numbers of people in a man-
ner that is not feasible with today’s person-processed email.
For example, large organizations could conduct surveys and
voting via email with guarantees on the behavior of these
processes. We motivated semantic email with several ex-
amples, presented a formal model that teases out the issues
involved, and used this model to explore several important
inference questions. Finally, we described our publicly ac-
cessible prototype implementation.

This short paper focused on a particular class of semantic
email processes (SEPs) that can be described with a sim-
ple constraint language. However, our notion of semantic
email is substantially broader, which suggests several re-
search challenges:

e Our formal analysis considered a point in the space of
semantic email processes, which led to our central the-
orem. It would be worthwhile to carefully analyze the
remaining points in the space described in Section 3.

e In our analysis we adopted a limited constraint language
— how does increasing its expressive power impact the
tractability of inference?

e We considered a small set of illustrative examples. Fu-
ture work will explore additional tasks and investigate
any impediments to widespread adoption.

e SEPs are only one instantiation of semantic email, which
far from exhausts its potential. New ways to leverage
semantic email seem like a promising direction for future
work.

" Accessible at www.cs.washington.edu/research/semweb/email

Finally, we see semantic email as a first step in a tighter
integration of the web (semantic or not) and email, the two
information spaces in which many of us spend the bulk of
our online time.

6. ACKNOWLEDGMENTS

This research was partially supported by NSF ITR Grant
11S-0205635, by NSF CAREER Grant 11S-9985114 for Alon
Halevy, and by a NSF Graduate Research Fellowship for
Luke McDowell.

7. REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[2] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting
aggregate queries using views. In Proc. of PODS,
pages 155-166, 1999.

[3] D. Connolly. A knowledge base about internet mail.
http://www.w3.0rg/2000/04 /maillog2rdf/email . html.

[4] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. M.I.T Press, 1995.

[6] S. Grumbach and L. Tininini. On the content of
materialzed aggregate views. In Proc. of PODS, 2000.

[6] R. Hull, M. Benedikt, V. Christophides, and J. Su.
E-Services: A look behind the curtain. In PODS, 2003.

[7] A. Kalyanpur, B. Parsia, J. Hendler, and J. Golbeck.
SMORE - semantic markup, ontology, and RDF
editor. http://www.mindswap.org/papers/.

[8] R. E. Ladner. The computational complexity of
provability in systems of model propositional logic.
SIAM Journal on Computing, 6(3):467-480, 1977.

[9] A.Y. Levy and I. S. Mumick. Reasoning with
aggregation constraints. In Proc. of EDBT, Avignon,
France, March 1996.

[10] A. Y. Levy, I. S. Mumick, and Y. Sagiv. Query
optimization by predicate move-around. In Proc. of
VLDB, pages 96-107, Santiago, Chile, 1994.

[11] L. McDowell, O. Etzioni, S. D. Gribble, A. Halevy,
H. Levy, W. Pentney, D. Verma, and S. Vlasseva.
Evolving the semantic web with Mangrove. Technical
Report UW-CSE-03-02-01, February 2003.

[12] C. Mohan. Workflow management in the internet age.
www.almaden.ibm.com/u/mohan /workflow.pdf, 1999.

[13] S. Mukherjee, H. Davulcu, M. Kifer, P. Senkul, and
G. Yang. Logic based approaches to workflow
modeling and verification. In Logics for Emerging
Applications of Databases, 2003.

[14] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th Annual IEEE Symposium on
Foundations of Computer Science, pages 46-57, 1977.

[15] K. Ross, D. Srivastava, P. Stuckey, and S. Sudarshan.
Foundations of aggregation constraints. In A. Borning,
editor, Principles and Practice of Constraint
Programming. Lecture Notes in Computer Science,
874. Springer Verlag, 1994.

[16] P. Senkul, M. Kifer, and I. H. Toroslu. A logical
framework for scheduling workflows under resource
allocation constraints. In VLDB, 2002.

[17] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering SQL queries using materialized views. In
Proc. of VLDB, Bombay, India, 1996.

