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Abstract

Modern processors rely on memory dependence predictioretouge load
instructions as early as possible, speculating that they raot dependent
on an earlier, unissued store. To date, the most sophisticdependence
predictors, such as Store Sets, have been tightly couplé tietch and ex-
ecution streams, requiring global knowledge of the in-tligiream of stores
to synchronize loads with specific stores. This thesis @epa new depen-
dence predictor design, called a Counting Dependence Bi@d{CDP).
The key feature of CDPs is that the prediction mechanismigiredome set
of events for which a particular dynamic load should wait,ickhmay in-
clude some number of matching stores. By waiting for locahts/only, this
dependence predictor can work effectively in a distributgcroarchitecture
where centralized fetch and execution streams are infeasitundesirable.
| describe and evaluate a distributed Counting DependeneeliBtor and
protocol that achieves 92% of the performance of perfect ongrdisam-
biguation. It outperforms a load-wait table, similar to thdpha 21264, by
11%. Idealized, centralized implementations of Store &&ithe Exclusive
Collision Predictor, both of which would be difficult to ingphent in a dis-
tributed microarchitecture, achieve 97% and 94% of oracgarformance,
respectively.
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memory

address |value
(1) y = 500;
(2) a = 2500; 2000
(3) store y to memory location a 2500 500
(4) b = 2000 + y; 3000
(5) i = load from location b
3500

Figure 1. This example code illustrates the memory disambiguatioblpm. Instructions 3 and 5
access the same memory location, but this cannot be knowiom gmce the memory locations must
first be computed by other instructions.

1 Introduction

Microprocessor performance has been increasing expaiigrfor the past 30 years, one of the
key enabling technologies that has powered the computigutton. Unfortunately, continued
improvement at historical rates is far from guaranteed;esimany technical challenges stand in
the way of continued progress. One of these challengesemory disambiguationin modern
processors, there are many operations in flight at onceydimad reads and writes to memory, which
can be executed out of order. It is unknown in advance whiatls@nd writes will access the same
memory location. If a load reads from memory before an aastiere writes to the same location,
the load may have read an incorrect value and the processpebne must be flushed, resulting in
performance degradation. Figure 1 illustrates the memisgnabiguation problem.

Memory disambiguation was an enormous problem for dataftohitctures in the 1970s/80s,
which required that all instruction dependences be knowaticstly, and likely prevented their adop-
tion by forcing them to require unconventional languagestilhow it has been one of the primary
impediments to scaling the performance of high-perforrearsingle-threaded microprocessors.
Therefore, modern processors rely memory dependence predictitmexecute load instructions
as early as possible: they predict which reads to memoryldtveait for a write that will match,
and which are safe to issue early. Because most loads aradiaygeon one or no stores, it is not
necessary for them to wait on the completion of all prevideses. Dependence predictors rely
on the previous execution history of a load to make predistimtended to minimize performance
losses due to loads executing too early (and thereforerggdisishes) or to loads being held back
longer than necessary (and therefore losing valuable tymtes for parallelism).

The early work on dependence predictors began with MoshamdsSohi's PC-matching pre-
dictor [10] and with the 21264 load-wait table [3]. Chrysoslé&Emer’s Store Sets predictor [2]
achieves close to ideal performance, defined as each lodihgvanly for the exact stores, if any,
that will forward values to the load.

Some key assumptions under which previous dependenceciueadivere shown to be near-
ideal have changed. Global wire delays have resulted inrttexgeence of partitioned architectures,
such as CMPs and tiled architectures [24]. Distributed itectures that execute single-threaded
code [5, 14, 20, 23, 24] without a single centralized fetct/anexecution stream will make it
challenging to deploy predictors such as Store Sets, wigighire observation of a complete and
centralized stream of fetched instructions to synchrotiagls with specific stores. Previously
proposed dependence prediction mechanisms also rely dalgéaxecution information to track
the completion of stores that trigger the wakeup of defelvads. Furthermore, these distributed



architectures, with heavily partitioned and distributededcache banks, may benefit from placement
of the dependence predictors at the cache bamiarory sidepredictors), even at the cost of a
slight reduction in accuracy ovexecution sidg@redictors. These factors result in a need for new
dependence predictors that work effectively for largedein distributed microarchitectures.

This thesis proposes a class of dependence predictor desajledCounting Dependence Pre-
dictors (CDPs). CDPs are designed to work well in distributed aectiitres, in which a centralized
fetch stream and access to some global execution informatay be infeasible. Dependence pre-
dictor designs must therefore strive to make accurate gieds with as little remote information as
possible. Any needed information must be available, olyeasade available, locally to the predic-
tor. The enabling feature in CDPs is that the prediction ragim is oblivious of the fetch stream
and predicts the local events for which a particular dyndodad should wait. These events include
some number of matching stores and can be tracked withoutleterglobal execution information.
In one implementation of CDPs, a PC-indexed table of coantéll produce a state that indicates
the number of matching stores for which a dynamic load shaalitt zero (aggressive)y (already
arrived or arriving later), or all of them (conservativeedaduse any earlier store to the same address
is considered a match for a load, rather than waiting on sqaeific store that was fetched, the
predictor mechanism is decoupled from reliance on the fstickam. If deferred loads are held at
their cache bank, information about matching stores wikalable locally.

This thesis evaluates CDPs in the context of the TFlex michacture [8], a fully distributed
tiled architecture that supports an issue width of up to Gftamexecution window of up to 4,096
instructions. Since control decisions, instruction issarel dependence prediction may all happen
on different tiles, a distributed protocol for handling eiiint dependence prediction is necessary.
This thesis describes such a protocol and shows how disdlilependence prediction can be effi-
ciently run on an aggressive processor with only small mas@erformance (1-2%) over an ideal,
centralized CDP with no routing latencies.

The ideas behind CDPs are applicable to any architectute distributed fetch and distributed
memory banks, in which the comprehensive event completimwledge needed by previous de-
pendence predictors is costly to make available globalllyis Thesis describes a specific control
protocol implementation for TFlex, but this implementatimay differ for other architectures with
different state.

The best-performing CDP configuration achieves 92% of daaquerformance, showing only
small performance drops due to the routing latencies of thigilsited prediction protocol. As a
point of comparison, a distributed load-wait table, simila the Alpha 21264, achieves 81% of
ideal performance. Idealized, centralized implementatiof Store Sets and Yoaz et al.’s Exclusive
Collision Predictor achieve 97% and 94% of oracular pertoroe, respectively. Of these predictors,
only Load-Wait is straightforward to implement in a distribd environment, as it is essentially a
degenerate form of the CDP. Although remaining performarae be mined from large-window
distributed dependence prediction, the CDP designs eealua this thesis outperform Load-Wait
by 11%.

2 Related Work in Dependence Prediction

According to Onder’s proposed classification [13], depewcdepredictors are typically indepen-
dence predictors that predict zero matches very well, padiptors that are tuned for predicting
exactly one matching store, and set predictors that aimgtuoamore intricate load/store patterns.
Counting Dependence Predictors are a hybrid that can swétlieen these classes of predictors
depending on the program workload.



All previous work in dependence prediction has relied onrdreg point of fetch to build tables,
and/or the ability to observe a centralized execution siratrack events needed to wake deferred
loads. Predicting loads to be dependent on specific stoggsres knowing which stores are in
flight and when they complete, and thus observing centihligich and execution streams, which
becomes infeasible or undesirable for large-window diigted architectures. These requirements
make it difficult to distribute the predictors efficiently.

Early work on dependence predictors by Moshovos and Sohtifael the potential of memory
speculation for out-of-order processors. They proposerkdigior that identified recurring RAW
memory violations using two content-addressable memoAMLtables [10], one for static and
the other for dynamic load-store pairs. Entries, congistihthe PCs of a static load-store pair,
are allocated in the memory dependence prediction tableRWDvhen a load violation occurs.
When a memory instruction executes, if it finds a MDPT entrfinds or allocates an entry in the
sychronization table (MDST), which consists of dynamicdistore pairs identified by a unique
instance number. A load with an active entry (or entries, ufitiple dependences are supported)
must wait for the corresponding store(s) to complete beémeruting. This scheme requires the
ability to track the completion of every store globally, whiis difficult to implement efficiently in
a distributed environment, where stores may map to diffggercessing tiles.

Moshovos and Sohi's later work [11] uses a prediction schdrmeassigns a common tag to
all dependences that have common producers (stores) onroens (loads). The tag is used to
identify all of these dependences collectively, and theembrassociation between a load and a store
is enforced based on which store is in flight. This mechansssmiilar to Chrysos and Emer’s Store
Sets predictor, which identifies sets of matching loads ame@s, and makes dependent loads wait
on particular dependent stores [2]. The Store Sets impletien consists of two tables, the store
set ID table (SSIT) and the last fetched store table (LFSTekva load is fetched, it acquires a
store set ID from the SSIT and uses it to access the LFST, whigguts the most recently fetched
store in that set, upon which the load is made dependent. \&thess are fetched, they also access
the SSIT and LFST, serializing stores in the same set. Toldandltiple dependences between
different load and store PCs, store sets are merged if aiginlaccurs involving a load or store that
has already been assigned an SSID. Both of these schema® ralogervation of the fetch stream
to build up the prediction tables. Loads depend on specifierdtores that are in flight, and these
dependences are marked as the stores are fetched. Accdsbabexecution information is also
necessary to track the completion of stores.

Yoaz et al. developed a much simpler but still effective ed based on distances between
dependent loads and stores [25]. In its simplest form, dwdiision history table (CHT) works like
a load-wait table, holding back loads predicted dependatiltall older stores have completed. The
inclusion of dynamic distances between a load and the stihewhich it collides allows loads to
be advanced past some but not all stores in flight. The distaith which the load’s CHT entry
is annotated will converge to the smallest distance seehnedoad violates with other stores. The
distances are based on load and store ages, which are ¢§¢egtaaiped at fetch, making it difficult
to support distributed fetch. This predictor also posesalehge for distributed execution, as the
completion of each store must be tracked to determine wheioaés a given distance away from a
deferred load have completed.

Several researchers have adapted these designs. NothalyMartin and Roth enhanced the
Store Sets predictor with path based information and peghésining on both violations and for-
wardings [16]. Similarly, Subramaniam and Loh extendeddiséance predictor with partial tags
and confidence estimates to improve its accuracy even fuy@g Other follow-on work has in-
cluded several LSQ optimizations [16, 17, 21, 22] and dile&tl-store communication [12].



Bench- No Matches One Match Two+ Matches
mark static | dynamic | static | dynamic | static | dynamic
bzip2 64.2 93.3| 20.8 6.7 | 151 0.0
crafty 81.4 95.8| 14.5 4.1 4.1 0.1
gce 79.4 99.9| 15.2 0.1 5.3 0.0
gzip 72.3 92.1| 20.0 7.2 7.7 0.7
mcf 71.1 98.2 | 22.3 1.8 6.6 0.0
parser 79.4 90.7| 14.0 8.5 6.6 0.8
perlomk | 79.8 86.8| 18.4 12.8 1.8 0.4
twolf 88.8 95.8 8.9 4.2 2.3 0.0
vortex 80.6 90.3| 16.1 9.5 3.2 0.2
applu 78.1 875| 21.2 125 0.7 0.0
apsi 90.4 96.7 9.0 3.3 0.6 0.0
art 96.8 99.8 2.7 0.2 0.5 0.0
mesa 82.2 93.5| 15.7 5.7 2.2 0.9
mgrid 85.5 98.9| 13.1 0.4 14 0.6
sixtrack 77.1 90.2 | 20.5 9.4 2.4 0.4
swim 100.0 100.0 0.0 0.0 0.0 0.0
wupwise | 77.5 253 | 19.1 62.1 3.2 12.6
average 81.5 90.3| 14.8 8.7 3.8 1.0

Table 1. Breakdown (Percent) of Store Matches for Static and Dyndrmads in SPEC2000 bench-
marks: Most loads conflict with one or fewer in-flight stordhis and table 2 were generated with
a 16-core TFlex configuration, with up to 2048 instructionsflight, 512 of which can be memory
instructions.

2.1 Applicability to Distributed Architectures

Though this thesis describes a distributed CDP protoctareal specifically for the TFlex mi-
croarchitecture, other designs can also benefit from tharddge of the CDP [4, 5, 19, 20, 23, 24].
For example, the protocol described in Section 5 can easilgdapted for Core Fusion [5] by giv-
ing its steering management unit (SMU) the responsilslitiethe controller core. While Ipek et al.
describe how a Store Sets implementation would be pos$hléhpir preference for the simplicity
of per-core load-wait tables is a testament to the difficoftglistributing a predictor that requires
information not easily or cleanly made globally available.

In addition, while the block-atomic nature of the ISA usedlflex simplifies some components
of the protocol, this technique could be employed with otlg#ks by artificially creating blocks
from logical blocks in the program for the sake of simplifigdre completion tracking. Blocks
provide simplicity advantages because they allow opearatike tracking completed stores and
determining if a given instruction is in flight to be done onladk granularity and because they
naturally separate instructions into groups that may hastelolited control points.

3 Counting Dependence Prediction

Counting Dependence Predictors predict the events fortwdniparticular dynamic load should
wait. These events may include some number of arbitrarymragcstores, rather than specific stores
identified before execution. This section presents datariticates that it is possible to predict how
many in-flight stores a load will conflict with and a possibBEimplementation that predicts loads
to wait for zero, one, or more store matches.



Bench- no one| two+ | 0,1]| 1,2+ | 0,2+ | 0,1,2+
mark match | match | match | flip flip flip flip
bzip2 67.6 0.0 00| 88| 00| 0.0 235
crafty 82.2 0.3 00| 125| 02| 0.0 4.7
gcc 811 1.2 00| 111| 03| 0.0 6.3
gzip 72.4 0.0 00| 171| 02| 0.0 10.3
mcf 68.6 0.0 00| 221| 00| 0.0 9.2
parser 82.3 0.0 00| 94| 0.0 0.0 8.3
perlbmk 77.3 14 00| 19.2| 00| 0.0 2.2
twolf 90.0 0.1 00| 73| 00| 0.0 2.6
vortex 80.1 15 00| 144| 05| 0.2 3.2
applu 73.1 0.9 00| 25.0| 00| 0.0 0.9
apsi 90.0 0.0 00| 92| 00| 0.0 0.7
art 97.3 0.8 00| 14| 03] 0.0 0.3
mesa 81.0 0.2 00| 162 00| 0.0 2.6
mgrid 84.9 1.4 0.0| 120 00| 0.0 1.6
sixtrack 73.6 0.6 0.0|227| 00| 0.0 3.1
swim 100.0 0.0 00| 00| 00| 0.0 0.0
wupwise | 75.6 1.0 00| 19.0| 00| 0.0 4.4
average 81.0 0.6 00| 134 | 0.1 0.0 4.9

Table 2. Breakdown (Percent) of Dynamic Behavior of Static LoadsRES2000 benchmarks: Most
static loads never conflict with any in-flight stores acrdssitt dynamic instances; if they do, they
usually flip between zero and one store match.

3.1 Store-Load Dependence Behavior

Table 1 shows a breakdown of the number of in-flight matchidgrostores for each load, mea-
sured with an execution window of up to 512 memory instruwio Static loads are identified
uniquely by their PC. A given static load may be executed rtitae once, and théynamiccolumns
refer to these dynamic instances of static loads. For ex@ni@l3% of gzip’s static loads have no
store matches in at least some of their dynamic instancé920i06 of the dynamic instances dur-
ing the execution of the program conflict with no stores. Moad instructions conflict with no
in-flight stores and can safely be executed as soon as tlariesslis available. Of the loads that
must wait for data from one or more stores before executingstrdepend on only one in-flight
store. A minority of static loads (3.8% on average), and degrer dynamic instances (1.0% on
average), must wait for two or more stores before executhgys

Table 1 does not distinguish among loads that have diffdrentivior across dynamic instances.
Table 2 shows a breakdown of the dynamic behavior of statiddoEach percentage indicates what
fraction of static loads have dynamic instances that ekHilei behavior described by that column.
For example, 72.4% of gzip’s static loads match with no st@eery time they are executed, and
17.1% of the static loads dynamically alternate between aad one matching stores. According
to these data, most static loads will never alias with anfligit stores and thus each dynamic
instance of that load can safely be executed as soon as itesadid available. Loads that flip
between different numbers of store matches are less pigdiébr any dependence predictor but
may nevertheless be grouped into useful categories.

These data indicate that it is beneficial to predict when #afe to execute a given load by
predicting for how many store matches that load should W@ounting Dependence Predictors wait
for a learned number of stores to complete before waking@poedicted to be dependent. Unlike
many previous dependence predictors, CDPs do not predietnoig loads to be dependent on one



1 #define s1zE 100

2

3 void main(Q)

4

5 int x = 0; inty, k, i; Case #1: Two Matches | Case #2: One Match Case #3: Early Match
6

7

8

int A[2*SIZE];

int B[SIZE]; i=2 i=3 i=3

9
10 for( i = 0; i < SIZE; i++ )
i% { ) Execution order: Execution order: Execution order:

y =1

13 if(1%2==0) Load C (from i) Load C (from i) Store A (to i)
14 k =13 Store A (to i) Store A (to i) Store B (to i + SIZE)
15 else Store B (to i) Store B (to i + SIZE) Load C (from i)
16 k = i + SIZE;
17
18 Aly]l = y; //Store A
19 A[k] = k; //store B
20 x += A[i]; //Load C
21 }
22 }

Figure 2. Load C matches different numbers of stores in differentsabethe first two cases, unless
the load waits long enough, a violation will occur becauselttad executes too early. In the last case,
the matching store executes correctly before the load.

or more specific dynamic stores, but rather on a predictecoeuf arbitrary stores.

A load violation occurs when a load executes before an oldee ¢earlier in program order) to
the same address. When such a violation is detected, thinpipeust be flushed. Figure 2 shows
how a given static load may conflict with a different numberstifres dynamically. In the code
given, Load C follows Stores A and B in program order. Load € alvays be dependent on Store
A, but whether or not it is also dependent on Store B dependbewalue ofi. The three cases in
Figure 2 show different ordering possibilities during theeution of the code. The states of one
possible CDP, outlined in Table 3, are designed to handlef #lese cases and to transition among
them.

3.2 Prediction Types

When a load is predicted dependent, it must be awakened by sigering event, as defined by
the predictor. Various information, such as the controhptite load’s PC, or its address can be used
to predict which event should cause a load to issue. In algiséd architecture, this information
would ideally be either locally available or globally braadt for other purposes. CDPs aim to use
as little additional remote messaging as possible to préuiaype of event that should cause a load
to be woken.

The states of one possible CDP are outlined in Table 3. Riffieprediction types are defined by
the event type that triggers the load wakeup:

1. Anaggressivdoad can execute speculatively as soon as its address lialdgai

State Event waiting for
Aggressive None
Conservative Completion of all previous stores
N-store | N matching stores arriving before or after load

Table 3. Overview of CDP States



2 bits

f(load_PC)

1

aggressive one-store
(00) (01)

one-store
(10)

matches

predictor table

Figure 3. CDP Dependence Table and State Machine: A load hashes iatprédictor table with its
PC, interpreting the value found there as one of the statewsh The states are updated based on load
behavior.

2. Conservativdoads must wait until all previous stores (in program ordierye completed.

3. N-storeloads wait for a learned number of arbitrary matching olderes. In the imple-
mentation described here, loads predicted in this thirdgmaly wait on any one store match
(i.e. N equals one). Because the load’s address must be resolvae Istbre matches can
be counted, the load is issued, routed to the correspondicigedoank, and buffered until its
wakeup event happens.

The third type of prediction raises the question of what tiarnies a store-match event and
whether using the timing of matching stores can help to mafatse matches. There are two pos-
sibilities for defining a store-match event; the assumpitiathe protocol description above is that a
store match happens when a store to the same address restdves waiting load. However, the
particular store on which a load is dependent may resolverbdiie load instead. Therefore, | also
evaluated a second policy, callatteady arrived storesin which loads that are predicted to be de-
pendent on one store are woken immediately if a matching st in flight has already resolved.
Waking one-store loads based on the presence of an alreasdislder store that is likely to be the
load’s only store match reduces the number of costly casesich a load is incorrectly predicted
one-store and needlessly waits for all older stores to cermplConsidering early arriving stores
wakes one-store loads and trains the dependence predased lon store-to-load forwardings.

3.3 Wakeup and Training Policies

The predictor is a simple table hashed by load PC that cantalnit values representing one of
the three states described in the previous subsection.ableis initialized with each entry in the
aggressive state and is updated according to subsequédrnbébavior, as shown in Figure 3. The
following describes the behavior of each state:

e Aggressive If a load was issued aggressively but should have waitedifioolder store, a
dependence violation flush is triggered. The load’s cooedmg predictor table entry is set

9



to conservative. Otherwise the prediction was correct aiglentry in the table remains in
the aggressive state.

e Conservative As a load predicted conservative waits for all older stamesomplete, the
number of older stores that execute and conflict with therdedeoad are counted, and the
corresponding entry in the prediction table is updated te-store if the count shows the
conservative execution to have been overkill (i.e. fewanttv + 1 store matches were
counted). Otherwise this entry in the table remains in theseovative state.

e N-store In a basic CDP implementation, when a load is predicteddxestthe number of
older matching stores that execute while the load waits latecmunted, and when this num-
ber reachesV, the load is woken up to issue to memory. If the number of dstoae matches
does not reaclv, the load is effectively treated as conservative since gtmait needlessly
for all older stores to complete. In this case, the deperelpredictor is de-trained. If instead
the load was not held back long enough and a violation ocaugst@l a second store match,
a flush is triggered and the corresponding table entry isosebriservative. The presence of
two one-store states in the implementation described rdae laysteresis and decreases the
sensitivity of the predictor. | use this version of N-stosetlae baseline for the evaluation in
this thesis, but these two states could represent sepaeatetpns of some number of stores
or some other event used to trigger load wakeup. Sectioni8chskes slightly different
treatments of the N-store state.

3.4 CDP Advantages and Disadvantages

The CDP performs well when the number of stores that matdh avlbad is consistently small
(one, in the case of the CDP implementation described heiteasd mentioned, other values of
N could be used and/or additional intermediate states caellddoled). When the CDP correctly
predicts that a load will alias with one store, the load is enadwait for only that one store. The
CDP performs well especially if the one store with which adl@aatches is not always the same
static store, since it does not predict dependence on afigpsiire. Other predictors will often
force the load to wait longer than necessary: Load-Waitdeithe load to wait for all older stores
to complete, ECP forces the load to wait for most older sttwasomplete, and Store Sets grows
more conservative as the in-flight store set grows largeiceSinost dependent loads are dependent
on only one in-flight store, the CDP has this advantage inrifsgignt number of cases.

However, in some cases the CDP is at a disadvantage compuaogiger predictors. There are
two types of dependence mispredictions, too conservatidet@ aggressive, and certain patterns
of load behavior aggravate the CDP’s mispredictions indhesgtegories. In particular, loads that
dynamically alias with different numbers of stores can eahg prediction states to fluctuate, alter-
nately causing too aggressive and too conservative miggicts. The following section describes
modifications to the basic protocol that address these cases

Even correct conservative predictions are more costlyfei@DP than for more precise predic-
tors like Store Sets. Beyond the N-store state, the CDP duategifferentiate betweev + 1 and
all stores. Thus, if a load is dependent on some intermediatger of in-flight stores, Store Sets
will hold the load back only until all stores in the in-flighibse set have completed, while the CDP
will hold the load back until all in-flight stores have comiglé. Because the load generally does not
match with most of these stores, the load may be held baclotap |

As an example, Figure 2 shows some of these cases. In thedseasa, the CDP will perform
very well when it predicts correctly, since it will wake thead immediately after the single store

10



match. In the third case, the CDP variant which uses alreadsed stores will perform well, since
it will let the load execute immediately, rather than waitfor another match that will never happen.
In the first case, however, the CDP may not perform as welh éiecorrectly predicts the load to
be conservative, since it will wait for all older stores (shbwn in the example) to complete, rather
than deferring the load only until the completion of the twarss with which it actually matches.

3.5 CDP State Machine Optimizations

When the number of matching stores varies among dynamianoss of a given static load, the
CDP is at a disadvantage, because the predictor state mayatiebased on the repeated mispredic-
tions and subsequent updates of the table. | experimentihdseseral modifications to determine
what information may help the predictor identify the cotreember of stores in such cases.

Specifically, a load might alternate between being depdruleaero or one store(s), causing an
unnecessarily conservative load execution half of the ameéa violation the other half. Similarly,
a load might alternate between being dependent on one oltwodre) stores.

To address the 0-1 case, | modified the CDP to record somefhite store’s PC when a load
violates. When the next instance of this load is predictee-store, the predictor checks if an
older instance of the offending store is in flight. If not, thad is allowed to issue aggressively,
assuming it will not alias with another static store. Thidiggoaims to reduce the cases in which
an independent load is predicted one-store and defaultsiting for all older stores to complete
because no store match ever occurs. This optimizationneyadditional space (for the bits of the
store PC) and can also cause incorrect predictions in tleclm®mon case where the load’s next
dynamic instance is dependent on a different static store.

| address the 1-2 case in a similar way. When a matching storepgis the wakeup of a load
predicted one-store, a check is done to see if there are argssiith the same PC in flight between
the store match and the load. If so, the wakeup of the loadfesréel. This policy approximates
the aspect of Store Sets which serializes all in-flight sttsedonging to a given store set and makes
the load dependent on the last of these stores. This optionizdoes not require additional storage
area, but may in some cases needlessly delay the load’stxecu

4 TFlex

| simulate and evaluate CDPs on the TFlex microarchitedi8lea Composable Lightweight
Processor (CLP), that allows simple cores to be aggregatgthter dynamically. TFlex is a fully
distributed tiled architecture of 32 cores, with multiplistdbuted load-store banks, that supports
an issue width of up to 64 and an execution window of up to 4886uctions with up to 512 loads
and stores. Since control decisions, instruction issuggdapendence prediction may all happen on
different tiles, a distributed protocol for handling eféot dependence prediction is necessary. Here
| give necessary background information about the TFlekitacture upon which the protocol of
the next section is based.

The TFlex architecture uses the TRIPS Explicit Data Grapéchtion (EDGE) ISA [1] which
encodes programs as a sequence of blocks that have atonaigtieresemantics, meaning that
control protocols for instruction fetch, completion, anahunit operate on blocks of up to 128
instructions.

The TFlex microarchitecture has no centralized microdechiral structures. Structures across
participating cores are partitioned based on address. Black is assigned an owner core based
on its starting address (PC), instructions within a bloak gartitioned across participating cores
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based on instruction IDs, and the load-store queue (LSQUatalcaches are partitioned based on
load/store data addresses.

A block is distributed across the I-caches of all partidipgtcores. The block owner core is
responsible for initiating fetch and predicting the nexitdd. Once predicted, the next-block ad-
dress is sent to the owner core of the predicted next blockenNshmemory instruction executes,
it is sent to the appropriate core’'s cache bank based onrgsttaddress. Pipeline flushes due to
misspeculations are also initiated by the owner of the béatlsing the misspeculation. Since loads
and stores to the same address will always go to the same meami@, dependence violations
are detected by the load-store queue at that cache bankreBmiomitting the block, the owner
core must receive completion confirmations of stores, tegigrites, and one branch from all par-
ticipating cores. Once the block is ready to commit, the awasmds a commit message to each
participating core and waits for acknowledgements. Alltogin data request and response, and
operand communication among cores uses a number of twaadiormal wormhole-routed meshes.

Each block owner has the PCs of all in-flight blocks availabl@is information allows the O-

1 and 1-2 flip CDP optimization described in the previousieacto be implemented efficiently
by simply checking whether another in-flight block has themaalock PC as the block of the
store in question, rather than needing to perform the mdifiewdt and non-centralized operation of
determining which stores are in flight. This also preventspradictions due to overly specifying
stores, since one block usually contains several stores.

5 A Distributed CDP Protocol

A correct protocol for dependence prediction must fulfivexal requirements. First, all loads
and stores to the same address must be matched. For eacla lpaadiiction must be made and
stored, and if the load is deferred, the corresponding wakeent must be detected and the waiting
load must be notified. Thus, the protocol must detect whestates older than a given load have
completed. Finally, the correctness of speculation musoioéirmed.

Several of these requirements are non-trivial to impleniera distributed environment. Be-
cause instructions can execute on any core, it may to diffioudetect wakeup events, such as the
completion of all stores older than a given load. Thoughaddk and stores to the same address
will eventually arrive at the same cache bank in TFlex, itesssltrivial to track the completion of
older stores to different cache banks. Confirming corresstred speculations is also non-trivial, as
significant events may happen elsewhere in the architecture

Because CDPs use as little information as possible to madqtions—in particular, they do not
need to follow all stores in the fetch stream—they are moreraile to operation in a distributed
environment. A number of additional control messages, rieestt in this section, are required for
correct handling of the issues discussed above.

There are three goals to consider when designing a distdbpitotocol: few control messages,
few control message types (i.e., low protocol complexigyld low latency on the critical path. The
distributed CDP protocol | describe achieves all of thesdgyo

5.1 Distributed Protocol
Figure 4 lists the message types and stages of predictitnbdied among different processing
cores. The protocol requires four message types, inclutiirge not in the base TFlex design. The

prediction and wakeup of a load are handled by the protoc@llsvs. Each of these operations
may occur on any core, including on the same core.
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Figure 4. Distributed Counting Dependence Predictor Protocol: Senpontrol messages between
processing cores are used to implement dependence podicti

1. Aload is issued at one core (casdan Figure 4), and is routed to the core containing the

appropriate cache bank, determined by the address of tte loa

. Prediction occurs at the core containing that cache bemie ¢, in this example). If a load

is predicted aggressive, it executes immediately. If itrisdpcted to be dependent (either
conservative or waiting on some eventsjegistration messages sent to the controller core,
the block owner of the load’s block (cot&. The registration message is a request to the block
owner to inform the load when all older stores have completed

. To enable the block’s controller core to know when all esoprior to a particular load have
completed, two additional types of messages are needead, Whrenever a store in the block
completed, atore completion messagesent from the core containing its cache bank back
to the controller core. Store completion messages do nat tebe added specifically for
the purpose of dependence prediction, as they are alreashgsery for determining block
completion.

. Before a registered load can be safely woken, the coatroire must know that all stores
older than that load have completed. It is not sufficient tovkithat all older stores in the
load’s block have completed, since there may be pendingsstorolder blocks. Thus, an
all-stores-completed messaigeneeded, which block owneY sends to block ownel + 1

as soon as all of the stores in blaskhave completed. This single message sent between con-
troller cores of successive blocks prevents the need talbasa store completion messages
to every core.

. The controller core is responsible for sendivekeup messagés any load that has registered
with it (i.e., any load which was not predicted aggressivey.soon as all stores older than a
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Benchmark| Registration| Wakeup | Store Completion
bzip2 0.0871| 0.0871 2.9272
crafty 0.2196 | 0.2196 1.3628
gcc 0.0029 | 0.0029 5.3457
gzip 0.0606 | 0.0606 1.2160
mcf 0.0319| 0.0319 0.7255
parser 0.0349 | 0.0349 1.2567
perlbmk 0.1304 | 0.1304 1.0702
twolf 0.1978| 0.1978 1.5402
vortex 0.1586| 0.1586 2.2079
applu 0.4303| 0.4303 1.6618
apsi 0.1328 | 0.1328 3.0648
art 0.2424| 0.2424 1.5538
mesa 0.2218| 0.2218 1.9681
mgrid 0.1317| 0.1317 0.9838
sixtrack 0.3892| 0.3892 3.0365
swim 0.0000| 0.0000 2.9896
wupwise 0.6659 | 0.6659 2.1654
average 0.1846 | 0.1846 2.0633

Table 4. Breakdown of average number of messages sent per block ¢brreassage type (across

SPEC2000 benchmark run on a 16-core TFlex configurationjidiation and wakeup messages have
identical counts because one wakeup message is sent imssspm every registration message. All-

stores-completed messages are excluded from this tabdxaasly one is always sent per block.

registered load have completed, the controller core semdskaup message back to the core
containing the cache bank at which the load is waiting.

. When a waiting load receives a wakeup message, it is freggoute. The wakeup message
is required for loads predicted conservative and loadsiacty predicted N-store (i.e. those
which effectively execute conservatively because no stoatch ever occurs). Because a
memory instruction’s cache bank is determined by its adgnestching stores will always
arrive at the core where the load is waiting. Thus, if thereend matches for an N-store
load, that load will already have been woken when the wakeegsage arrives. In this case,
the wakeup message can safely be ignored. If two matchimgsstorive in program order
after a later dependent load has issued, the first will wagéotld and the second will trigger
a violation flush.

5.2 Messaging Overhead

One all-stores-completed message must be sent per 128eti block, and two messages
(registration and wakeup) must be sent for each load pestlict be dependent on unarrived older
stores. Loads correctly predicted independent require egsages at all. In our experiments, each
load requires the sending of only 0.28 control messages/emage. Table 4 shows a breakdown per
message type of average number of messages per block dtsogparted SPEC2000 benchmarks.
Of these message types, store completion messages, whielaleady necessary in the base TFlex
design, are the highest in volume. Registration, wakeug, allrstores-completed messages are
specific to the CDP protocaol.

Experiments show that the message latencies have only sffedts on overall CDP perfor-
mance, since most can be hidden by execution. The case wiesageelatency can lead to perfor-
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mance loss is when a load on the critical path is predictedemvative and needs to wait for the
wakeup message before knowing that all older stores havpleted. For the best-performing CDP
configuration, removing the message latencies improvdempeance by only 1% on average.

Load registration messages are sent to the control tile bly kad predicted dependent. These
registrations must be stored at the control tile until thadls corresponding wakeup event has
been detected and the wakeup message dispatched, thusngegpace to buffer these messages
and ways of handling overflow of this space. The performaeselts for this thesis are all based
on infinite buffer space for these messages, but | found Heatrtaximum number of registration
messages held by a control tile at one time (across the SRIEG#hchmark suite with a 16-core
TFlex configuration) is 14. Thus a small buffer at each cdnti® would suffice. In the event of
overflow, any of the strategies described in [15] to deal WBQ overflow would be appropriate.
For instance, a flush could be triggered if a registratiomfi@ load in the oldest in-flight block
arrives at a full buffer. An alternative solution is to simbrce all loads that attempt to register at
a control tile with a full buffer to execute aggressively.

5.3 Execution vs. Memory Side

The distributed protocol described above implements dégace prediction on the memory side,
after a load has been issued and sent to the core contaisingdhe bank. Loads index into the
predictor table at that core. Alternatively, predictiorultboccur on the execution side, before the
load issues. The advantage of this placement is that the talihdexed by the load’'s PC, rather
than a combination of the PC and address. However, exeesitienprediction will require a more
complex protocol with additional messaging for little gain

To model the effect of placing the predictor table on the akien side, | approximated execution-
side prediction by having all loads index into an ideally tcalized predictor table. This idealized
experiment improves CDP performance by 2% over the bestqmeiig memory-side implementa-
tion, but does not model the effects of complicating therttisted protocol or splitting the predic-
tion table by cores.

5.4 Distribution of other Dependence Predictors

Moshovos and Sohi’s initial dependence predictor [10] wesighed for Multiscalar [19], a dis-
tributed architecture in which a single program is dividatbia collection of tasks distributed to
a number of parallel processing units. However, there areraereasons why this design cannot
be adapated for other distributed architecture like TFixst, Multiscalar's predictor was imple-
mented as a centralized structure [10]. Moshovos and Sotiedoribe how their predictor can be
distributed by replicating the CAM tables at every proaegdile [10]. However, because this ap-
proach requires the broadcasting of information to keepiahkes synchronized and to wake loads,
it is difficult to scale it efficiently to 8 or 16 nodes. While aome efficient mechanism for distribut-
ing this predictor can be imagined, the key issue is thatidpgon in Multiscalar is only intra-
and not inter-task, and intra-task dependences are edftmce¢he local core, leaving the depen-
dence predictor to deal only with inter-task dependences 9P This predictor model works well
for Multiscalar with its specific tradeoffs, but works lesgliwfor regular superscalars, leading to
Moshovos and Sohi’s later design not specifically targeihdtiscalar [9].

Moshovos and Sohi’s later predictor [11] is similar in copictd Store Sets and poses a similar
challenge to effective distribution. Store Sets [2], axuaésed before, is tightly coupled with the
fetch stream. Loads and stores are assigned a store setyaméhietched, allowing loads to be
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Parameter | Configuration |
Instruction Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tament predictor (8K+256 bits, 3 cycl

]

Supply latency) with speculative updates; Num. entries: Loca(L&}+ 128(L2), Global: 512, Choice
512, RAS: 16, CTB: 16, BTB: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issuadeiv, dual-issue (up to two INT angd
one FP).

Data Supply | Partitioned 8KB D-cache (2-cycle hit, 2-way set-assoedgtil-read port and 1-write port); 64
entry LSQ bank; 1031-entry CDP; 4MB decoupled S-NUCA L2 edaf} (8-way set-associative,
LRU-replacement); L2-hit latency varies from 5 cycles tod€les depending on memory ad
dress; average (unloaded) main memory latency is 150 cycles

Simulation Execution-driven, validated in TRIPS-like configuratiamtie within 7% of TRIPS prototype
hardware cycle counts.

Benchmarks | 17 SPEC CPU benchmarks currently supported (9 Int, 8 FPylated with single SimPoints of
100 million instructions [18].

Table 5. Single Core TFlex Microarchitecture Parameters

made dependent on specific stores and stores within the sgne lse serialized. This approach
also requires tracking events that may not occur in the sdaoe jn the microarchitecture, making
distributed execution difficult as well.

Distance predictors such as that of Yoaz et al. [25] requiied memory instructions each be
assigned relative ages, typically at fetch/decode. Loaeltheen made to wait on stores a certain
distance (in dynamic instructions) away. This scheme requracking specific stores in flight. The
store in question may not actually be a match and may nottréptre core responsible for waking
the load. Thus it is insufficient to know that all stores bejiog to controller cores of previous
blocks have completed, since a load in a given block may béngabn an arbitrary store in the
middle of a previous block. A straightforward implementatirequires the broadcasting of store
completion information, whereas the CDP requires only arietgio-point message per store.

6 Experimental Results

6.1 Experimental Apparatus

The experiments described in this section were run usingpsesof the SPEC2000 benchmark
suite (17 SPEC CPU benchmarks currently supported, 9 Ineag® 8 FP), simulated with single
SimPoints of 100 million instructions [18], on a simulatbat models the TFlex microarchitecture.
Table 5 details the simulator configuration for one core.edslotherwise noted, the configuration
used for these experiments is 16 composed cores, whichspords to an execution window of up
to 2048 instructions, 512 of which may be memory instruciorhe flush penalty modeled requires
5-13 cycles to detect the misprediction, to flush the midpted state, and to reinitiate dispatch;
some additional cycles are required to refill the pipeline.

6.2 Predictor Configurations
All results are compared to the cycle counts achieved byeperhemory disambiguation, in
which loads are made to wait only exactly as long as necesgdénput causing a violation. As

soon as exactly all of the stores (if any) upon which a loadejgetident have completed, the load
executes. | evaluated the following load execution strateg

1. ConservativeAll loads wait until all older stores have completed.

2. AggressiveAll loads execute as soon as their addresses are available.
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6.3
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Figure 5. Breakdown of Predictions for All Loads for SPECINT Benchkaar

. Load-Wait A load is predicted either dependent or not; if it is preglictlependent, it waits

on the completion of all previous stores. This policy is etisdly a CDP with only two
options (zero or all stores). The Load-Wait predictor idribsted using the same protocol
as described in Section 5. The predictor table is reset eM@d90 blocks to prevent overly
conservative load execution as the table saturates.

. CDP: | use the best CDP configuration, including all of the modifiens described in Sec-

tion 3. | used a prediction table size of 1031 entries per,dadexed using.oad PC mod
(T'ableSize). Using a prime number féFable Size reduces aliasing and allows this modulus
to be computed efficiently in hardware [6].

. Store Setsl implemented a Store Sets predictor according to the gegur in Chrysos and

Emer’s paper [2]. This implementation is ideal in that mgsskatencies are not modeled
and access to a centralized fetch stream and executiormafan is assumed. For these
experiments, | sized the centralized Store Sets structoi@scomparable with the cumulative
size of the distributed CDP structures.

. Exclusive Collision Predictor (ECP) also implemented a version of Yoaz et al.'s Exclu-

sive Collision Predictor [25]. | use a tagless collisiontbig table (CHT) augumented with
distance information. Once a load violates, its entry intttide is marked valid and contin-
ues to predict a collision until the table is cleared (eved@d0 blocks). The CHT is sized
to be comparable to the CDP table, and | use the same hasliofutctindex into it. This
implementation is also ideally centralized and messagadats are not modeled.

Accuracy

The graphs in Figures 5 and 6 show a breakdown of the accufatiffeyent prediction mech-
anisms. Each set of bars (per benchmark) shows the breakfbowoad-Wait, CDP, ECP, and
Store Sets. Each bar represents the fraction of all loadsuteg: that were correctly predicted
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Figure 6. Breakdown of Predictions for All Loads for SPECFP Benchraark

independent, correctly predicted dependent, incorrgrtgicted independent, and incorrectly pre-
dicted dependent. An incorrectly predicted independesd kesults in a flush, while an incorrectly
predicted dependent load results in later-than-necesssug of the load.

On average, CDP mispredicts fewer independent loads thamgmf the other schemes. By
dynamically de-training the predictor rather than reaugjran occasional clearing of the table, it
avoids becoming too conservative as prediction histonugsl lip.

However, when the CDP does make an overly conservativegi@dli it can be more costly than
for Store Sets or the ECP. If a load is predicted one-storendstore match ever occurs, then the
load defaults to waiting for all older stores to complete. dntrast, if Store Sets makes an overly
conservative prediction, the load will not wait for all ofdgores, but only the additional stores that
have mapped to the same set. ECP will also generally not hawedrst case behavior of the CDP
in these situations, but is still likely to lose more par@i® than Store Sets. This difference is
because Store Sets will not make loads dependent on states¢mot in flight, while the ECP may
degenerate to essentially Load-Wait behavior as the pgestldependence distance decreases.

The CDP mispredicts slightly more dependent loads than tier @redictors. By having most
loads wait only on one matching store, CDP may miss the ras<in which there is another match
coming that is not caught by the 1-2 optimization. This caderesult in a violation flush. By
contrast, once a load violates, Load-Wait will force itetdhstances to execute conservatively until
the table is cleared, thus never causing another violaBiare Sets will also always synchronize
loads with their previously conflicting stores, preventirgiolations of the same load-store pairs
until the table is cleared. The ECP, like the CDP, may failr@vpnt reviolations if the control path
is different for the next instance of a previously violatiogd.

Loads that are counted as correctly predicted dependemniadrall handled in the same way.
For instance, when the Load-Wait strategy forces a depé¢rndad to wait for all older stores to
complete, the dependence was correctly identified, buhgiatgarallelism was still lost, since the
load only needed to wait for the stores upon which it was dégety not all stores. In this sense,
the CDP may have an advantage over other predictors in tkendzere a load is correctly predicted
dependent. When the CDP correctly predicts a load to waibiha store match, the load is not
delayed needlessly past that one match. Since most depdodds conflict with only one in-flight
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Figure 7. Comparison of Dependence Prediction Mechanisms

store, this situation is not rare.

By contrast, ECP will make the load wait for all older storgsta some point specified by the
distance, which may degenerate to all older stores in thstveaise. Store Sets is less sensitive to
this situation since loads wait for specific stores, but aight store sets grow large, loads may be
needlessly delayed. In particular, if a load is always ddpahon one store, but this store differs
across dynamic instances of the load, Store Sets will delyoad needlessly, while the CDP will
wake it as soon as the store match occurs.

6.4 Performance

The graph in Figure 7 compares the performance, measurgdlascof the predictor configura-
tions relative to perfect disambiguation. The best CDPqawitachieves 92% of the performance
of perfect, whereas aggressive achieves 76% and Load-\0kiges 81%. Conservative execu-
tion gives by far the worst performance, achieving only 48tore Sets achieves 97% of perfect
performance and the ECP achieves 94%.

Since most loads match with only zero or one stores (see Tabteaking every load wait on all
previous stores (conservative execution) is unnecessarjogaes opportunities for parallelism. The
Load-Wait strategy only executes a subset of load conseelatbut this approach is still far too
conservative, and Load-Wait performs barely better thamnesgive execution, despite the high cost
of load violation flushes in the aggressive case. The CDPpad 11% better than the Load-Wait
policy while only slighly increasing the complexity of thegglictor structures.

Ideal Store Sets still outperforms the best CDP configundiio5% on average. By making loads
dependent on a specific dynamic set of in-flight stores, Sete can avoid some of the pathological
cases that can arise for the CDP in which dynamic instancadoafd each have a different number
of store matches. The ECP, which outperforms the CDP by 2% @rage, will also delay loads for
a shorter period of time, in the average case, than does tiRv@i2n it predicts loads conservative.

The CDP does outperform Store Sets and the ECP for sevedifmanks, especially those where
the CDP mispredicts fewer independent loads. The accunaakfown indicates that the CDP’s
higher misprediction rate of dependent loads, and subségigation flushes, degrades the overall
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average performance.

The models of Store Sets and the ECP that | implemented asstoess to a centralized fetch and
execution stream without additional overhead. A nonttigrmount of overhead (message latencies,
broadcasting of global information needed locally by thedietor) would be required to distribute
these prediction mechanisms in the same manner as the Co@,tke needed information cannot
always efficiently be made locally available. Implementihgm as ideally centralized allowed me
to implement them as originally described without addingfrihution complexity. This approach
provides the upper bound on the performance comparing t€B® which is designed for a dis-
tributed system. Furthermore, | also model an ideal camt@lCDP, as mentioned in section 5.3,
which achieves on average 94% of perfect, comparable to@ie E

Figure 8 shows the average performance of the differentigited schemes as the window size
increases from an 8-tile TFlex configuration (up to 1,024rutdions, up to 256 of which can be
memory instructions, in flight at once) to 16-tile and 32-tibnfigurations. The larger the window,
the more a predictor’s performance degrades due to thesisiseribed above. With a window of
up to 4,096 instructions, with up to 1,024 memory instrutsiothe CDP (with message latencies
modeled) achieves about 85% of ideal performance. The peaface of Load-Wait drops to 74%,
since it forces all loads predicted dependent to wait on dmepietion of all older stores. As the
number of memory instructions in flight increases, thisqgobiecomes more costly. At this window
size, Store Sets (ideally centralized, no message la®rstiél achieves 94% of ideal performance,
but the difficulty of supporting a distributed Store Sekelprotocol increases.

6.5 Sensitivity Studies

The graph in Figure 9 shows the performance gain from incnéailig adding the modifications
described in Section 3. Each bar in the graph includes thefivatiibns added in all of the bars to
the left of it, with the exception of 1-2 flip, which does notiade the 0-1 flip optimizationFull
includes both the 0-1 and the 1-2 optimizations. Betweerb#sic CDP protocol and the version
including all optimization, there is a 4% performance imment.

All of the modifications to the CDP protocol (Figure 9) impeowr maintain performance across
most benchmarks. The 1-2 flip optimization sometimes dijgiiégrades performance, as it may
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Figure 10. Reducing Aliasing in CDP Prediction Table

hold back some loads longer than necessary. However, thangt1-2 optimizations interact in a
favorable way. Table 2 indicates that on average 4.9% ofladtdrnate between matching with no,
one, or more than one stores. When the 0-1 and 1-2 optimizatice combined, loads that fall into
this category are more likely to be deferred long enough &zeate safely, without having to wait
for all older stores to complete.

The only benchmark that does not benefit from all optimizeis applu. A prediction accuracy
breakdown for applu shows that the percentage of loadsgteeddependent incorrectly actually
increases, even for the 0-1 optimization. This result malgdmause when the 0-1 optimization pre-
vents a load predicted one-store from being deferred beaaublock with the PC of the previously
offending store’s block is in flight, it does not update thedictor table to aggressive, causing a
later instance of that load to be more likely to be misprediaine-store or even conservative.

Because predictions depend on the current state of the iarttrg predictor table to which loads
index, and because these states are updated based on ttepafpredictions, the CDP is sensi-
tive to aliasing. Since some of the resulting mispredicioan be costly, aliasing is fundamentally
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Figure 11. Comparison of Store Sets and CDP Performance on applu

more expensive for the CDP that for other predictors. | tlastetd CDP performance using dif-
ferent hash functions to index into the predictor table. fidwmilts of these experiments are shown
in Figure 10. The baseline, indexing into the table Wiload PC' mod T'ableSize), where table
size in these experiments is 1024, achieves 90.9% of ide&rpeance. Using Load PC' mod
(T'ableSize — 1)) (hash function 2 in Figure 10) improves performance to 91d8%leal, nearly
the performance of an infinitely large table (92.0%). Unl&gas$leSize or (T'ableSize — 1) is a
prime number [6], it may not be possible to efficiently congtliis modulus in hardware. For
all other experiments discussed above, | thus used a tatdeo$i1031 and the hash function
(LoadPC mod TableSize), which achieves performance essentially identical to tfaan in-
finitely large table.

6.6 CDP and Store Sets Comparison Studies

The benchmark for which the CDP performs worst compareddceS3ets is applu. The graph
in Figure 11 shows a comparison of Store Sets and CDP penfmenan applu. For each load
PC, there are three bars, representing how many stores liim-tlight store set actually matched
with the load (all, some, or none). Each of these bars in fglitveen instances that the CDP
mispredicted too conservatively or too aggressively. Thstrdominant category is loads for which
Sets Sets had some of the stores from the in-flight store sehing and that the CDP predicted
overly conservatively. Similar graphs for other benchrsdie which Store Sets performs better
show the same trend. This confirms the hypothesis that SaeissoBtperforms CDP primarly in the
cases where only a few (more than one) of the in-flight storgsim Store Sets waits only for all of
the stores in the store set to complete and then issues thedbde the CDP must avoid a violation
by forcing the load to wait for all older stores to complete.

It may thus be beneficial to add states to the CDP that allodigiiens of some number of stores
between one and all. The graph in Figure 12, however, shomtghis modification would not be
straightforward. The graph shows a breakdown of Store Sstavor (how many stores were in
the in-flight store set, and how many of those stores actmadliched the load’s target address) for
instances in which the CDP made an overly conservative giedi Most of the data is clustered
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Figure 12. Breakdown for Store Sets Behavior for CDP’s Overly Cond@rgd_oads for applu

around the lower part of the graph (small in-flight store )sbtd ranges up to large in-flight store
sets with a variable number of actual store matches. Thiahitity, which is also seen in other
benchmarks for which Store Sets outperform the CDP, makeéiffiitult for the CDP to predict
anything more specific than the common cases of zero, oneamy matches.

7 Conclusions

Previously proposed dependence predictors, such as tifiddestovos and Sohi [12], Store
Sets [2], and the ECP [25] worked well for centralized supaes processors, and were shown
to be near ideal. Future architectures, however, will bevihedistributed, making it difficult to
observe the single, ordered fetch stream and centralizecuggn information required for these
and similar designs.

This thesis evaluates a new type of dependence predictahwiaits for some number of match-
ing stores or other local events to complete before allovainigad to issue. The main advantage
of this scheme is that the prediction mechanism is decoupted reliance on observation of the
fetch and execution streams. The best configuration achi@é®® of oracular performance, in an
instruction window of up to 2,048 instructions with up to 9bads or stores.

The simplicity of the CDP allows it to be easily implementadidistributed microarchitecture.
Despite its simplicity, it significantly outperforms anethpolicy, Load-Wait, which is as easy to
distribute. Predictors similar to Store Sets and the ExguSollision Predictor require access to a
centralized fetch stream and global execution informati@RPs use only information that is easily
made available locally, yet still achieve good performance

CDPs may be at a disadvantage when loads are not consiglepiyndent on the same number of
stores. They are also sensitive to overly conservativeigtied, either by predicting an independent
load to wait on one store match that never arrives, or by ptiadi a load to be conservative, which
prevents violations, but will make any load wait longer thtameeds to (no load is dependent on all
older stores). CDPs perform well when the number of storeiestis small and consistent, since
loads are made to wait only as long as necessary. Wakeuptiomsdcan easily be changed under
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the CDP framework by altering the definition of the wakeuggdering event, such as by including
already arrived stores in the count of matches.

As window size increases, resulting in more memory insiastin flight, loads alias with more
in-flight stores, and the disadvantages of each dependead&ion scheme are aggravated. Mis-
predictions become more costly, so accurate predictiomrbes more important. Efficient dis-
tributed implementations also become more important getarvindow sizes increase the burden
on the distributed protocol. By slightly complicating th®E design, such as by allowing pre-
dictions of some number of store matches between one andrdlly using path-based or other
information to address fluctuating numbers of store matcG&s® performance may be improved
further for large windows without compromising its ability support fully distributed execution.
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