Proceedings of the Seventh AAAI/ACM Conference on Al, Ethics, and Society (AIES 2024)

LLM Platform Security:
Applying a Systematic Evaluation Framework to OpenAI’s ChatGPT Plugins

Umar Igbal', Tadayoshi Kohno?, Franziska Roesner’

"Washington University in St. Louis
2University of Washington

Abstract

Large language model (LLM) platforms, such as ChatGPT,
have recently begun offering an app ecosystem to interface
with third-party services on the internet. While these apps ex-
tend the capabilities of LLM platforms, they are developed by
arbitrary third parties and thus cannot be implicitly trusted.
Apps also interface with LLM platforms and users using nat-
ural language, which can have imprecise interpretations. In
this paper, we propose a framework that lays a foundation
for LLM platform designers to analyze and improve the se-
curity, privacy, and safety of current and future third-party
integrated LLM platforms. Our framework is a formulation
of an attack taxonomy that is developed by iteratively explor-
ing how LLM platform stakeholders could leverage their ca-
pabilities and responsibilities to mount attacks against each
other. As part of our iterative process, we apply our frame-
work in the context of OpenAl’s plugin (apps) ecosystem.
We uncover plugins that concretely demonstrate the poten-
tial for the types of issues that we outline in our attack tax-
onomy. We conclude by discussing novel challenges and by
providing recommendations to improve the security, privacy,
and safety of present and future LLM-based computing plat-
forms. The full version of this paper is available online at:
https://arxiv.org/abs/2309.10254

1 Introduction

Large language models (LLMs), such as GPT-4 (OpenAl
2023g), and platforms that leverage them, such as Chat-
GPT (OpenAl 2023h), have advanced tremendously in ca-
pabilities and popularity. In addition to the actual LLM at
their core, platforms like ChatGPT (OpenAl 2023h) and
Bard (Google 2023) are becoming increasingly complex in
order to support various use cases and integrate with differ-
ent features and third-party services. For example, platform
vendors like OpenAl and Google have announced and begun
implementing app ecosystems, allowing the LLM to inter-
face with third-party services (OpenAl 2023b; TechCrunch
2023). In this paper, we investigate conceptually and empir-
ically the security of these emerging LLM-based platforms
that support third-party integrations. In this paper we focus
on OpenAl’s plugins as a case study (Note that Plugins have
now transitioned into Actions, which follow a similar struc-
ture and are embedded in OpenAl’s GPTs (OpenAl 2024)).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

611

While extending the capabilities of LLM platforms, third-
party plugins may add to the long list of security, privacy,
and safety concerns raised by the research community about
LLMs, e.g., (Greshake et al. 2023; Jakesch et al. 2023; Kang
et al. 2023; Perez and Ribeiro 2022; Zou et al. 2023; Bag-
dasaryan et al. 2023). First, plugins are developed by third-
party developers and thus should not be implicitly trusted.
Prior research on other computing platforms has shown that
third-party integrations often raise security and privacy is-
sues, e.g., (Enck et al. 2011; Mayer and Mitchell 2012; Fer-
nandes, Jung, and Prakash 2016; Farooqi et al. 2020; Cobb
et al. 2020; Chen et al. 2022). In the case of LLM platforms,
anecdotal evidence already suggests that third-party plug-
ins can launch prompt injection attacks and can potentially
take over LLM platforms (Rehberger 2023a). Second, as we
observe, plugins interface with LLM platforms and users us-
ing natural language, which can have ambiguous and impre-
cise interpretation. For example, the natural language func-
tionality descriptions of plugins could either be interpreted
too broadly or too narrowly by the LLM platform, both
of which could cause problems. Furthermore, some LLM
platform vendors, such as OpenAl, currently only impose
modest restrictions on third-party plugins with a handful of
policies (OpenAl 20231,m) and — based on our analysis and
anecdotal evidence (Rehberger 2023b) — a frail review pro-
cess.

These concerns highlight that at least some LLM plat-
form plugin ecosystems are emerging without a systematic
consideration for security, privacy, and safety. If widely de-
ployed without these key considerations, such integrations
could result in harm to users, plugins, and platforms. Thus,
to lay a systematic foundation for secure LLM platforms and
integrations, we propose a framework that can be leveraged
by current and future designers of LLM-based platforms.

To develop the framework, we first formulate an exten-
sive taxonomy of attacks by systematically and conceptu-
ally enumerating potential security, privacy, and safety is-
sues with an LLM platform that supports third-party plug-
ins. To that end, we survey the capabilities of plugins, users,
and LLM platforms, to determine the potential attacks that
these key stakeholders can carry out against each other. We
consider both attacks and methods that uniquely apply to
the LLM platform plugin ecosystem as well as attacks and
methods that already exist in other computing platforms but

also apply to LLM platform plugin ecosystems.

Second, to ensure that our taxonomy is informed by cur-
rent reality, we investigate existing plugins to assess whether
they have the potential to implement adversarial actions that
we enumerate in our taxonomy. Specifically, we leveraged
our developed attack taxonomy to systematically analyze the
plugins hosted on OpenAlI’s plugin store (as of June 6, 2023)
by reviewing their code (manifests and API specifications)
and by interacting with them. When we uncovered a new
attack possibility or found that a conjectured attack is infea-
sible, we iteratively revised our attack taxonomy.

Looking ahead, we anticipate that third-party integrations
in LLM platforms is only the beginning of an era of LLMs
as computing platforms (Zhou et al. 2023). In parallel with
innovation in the core LLMs, we expect to see systems and
platform level innovations in how LLMs are integrated into
web and mobile ecosystems, the IoT, and even core operat-
ing systems. The security and privacy issues that we iden-
tify in the context of LLM plugin ecosystems are “canaries
in the coalmine” (i.e., advance warnings of future concerns
and challenges), and our framework can help lay a founda-
tion for these emerging LLM-based computing platforms.

We summarize our key contributions below:

1. We develop a framework for the systematic evaluation of
the security, privacy, and safety properties of LLM com-
puting platforms. The core component of this framework
is a taxonomy of attacks.

2. We demonstrate the actionability of our framework by
evaluating it on a leading LLM platform (OpenAl and its
plugin ecosystem) and found numerous examples where
plugins, at least at the time of our analysis, had the po-
tential to mount attacks enumerated in our taxonomy.

3. We reflect upon the framework and the attacks we found,
to identify challenges and lessons for future researchers
and industry practitioners seeking to secure LLM com-
puting platforms.

2 Background: LLM Plugin Architecture

LLMs on their own are limited at tasks that require interac-
tion with external services. For example, LLMs cannot cre-
ate a travel itinerary without using data about active flight
schedules and cannot book tickets without reaching out to
travel agencies. To tackle these limitations, platform ven-
dors, such as OpenAl, have begun to extend LLMs by in-
tegrating them with third-party plugins (OpenAl 2023b).
Third-party plugins expose API endpoints to LLM platforms
so that the LLMs can access up-to-date and/or restricted data
(e.g., data beyond the training samples) and interface with
third party services on the internet (i.e., to act on recom-
mendations made in the emitted output) (OpenAl 2023c).

2.1 Plugin Architecture & Interaction Flow

OpenATI’s LLM plugins (which have now transitioned into
Actions embedded in GPTs (OpenAl 2024)) consist of a
manifest and an API specification, both of which are defined
through natural language descriptions (OpenAl 2023c).
Code 1 and 2 show the manifest and API specification for
an OpenAl plugin. The manifest includes plugin metadata,

612

1 { ”schema_version™: "v1”

2 “name_for_model”: "KAYAK”,

3 “name_for_human”: "KAYAK”,

4 “description_for_model”: ”Search flights , stays &
rental cars or get recommendations where you
can go on your budget”,

5 "description_for_human”: ”Search flights , stays &
rental cars or get recommendations where you
can go on your budget.”,

6 Tauth”: {

7 “type”: “none”

s).

9 Tapi”: {

10 “type”: “openapi”,

11 “url”: ”plugin_spec_url”

12 },

13 “contact_email”: “contact_email”,

14 “legal_info_url”: "legal_info_url”

15 }

Code 1: A simplified version of Kayak’s OpenAl plugin
manifest (obtained from OpenAl’s plugin store on 6/6/23).

| I

2 paths:

3 /search/flight:

4 post:

5 operationld: searchFlights

6 summary: Search flights for certain dates

7 requestBody:

8 $ref: ‘/searchFlightsRequest’

9

10 components:

11 schemas :

12 searchFlightsRequest:

13 description: origin from which flight
starts . Will be approximated if not
specified .

14

Code 2: A simplified version of Kayak’s OpenAl plugin API
specification (obtained from kayak.com on 6/6/23).

functionality description (defined separately for users and
the LLM), authentication details, a link to a privacy policy,
and a reference to the API specification. The API specifica-
tion includes the API server endpoint, API functionality end-
points along with their description, expected API data with
its type and description, and expected API response type.

Figure 1 summarizes the life cycle of a user prompt to
an LLM that requires interaction with a plugin, as described
in OpenAl’s documentation (OpenAl 2023f). Once a user
enables a plugin, its description_for_model and endpoints
(specified under paths) are fed to the LLM to build the con-
text that is necessary for interpreting and resolving the user
prompt with the help of the plugin. Once a user initiates a
prompt, the LLM first determines if addressing the prompt
requires the use of the installed plugin, based on the plugin’s
description_for_model in Code 1. Then the LLM platform

VL » User

_________________________ .\I
(LLM Computing Platform l:
1 1
1 (o] . i
2 Userprompt | o ﬁ Exchange with |
| O processing @ plugin APls !
1 i
I Lﬁ ® i
I r) s N :l
! {© Plugin Plugin I
: selection store :|
______________ 1
: (Integrated plugins ‘I >l n * < :|
1 : -
| 1 |
@ 9 X L AR
[I NN U_A?/\ |@ |
e efot o P)

\ S — ‘) \. J
\]

—— e o e e e e e e e e e e

Figure 1: Life cycle of a user command to LLM that requires
use of a plugin: User installs a plugin on LLM platform from
the plugin store (step 1). Plugin description and its endpoints
are fed to LLM to build the context, necessary for interpret-
ing user prompt (step 2). User makes a prompt to the LLM
that requires the use of the installed plugin (step 3). LLM se-
lects the relevant plugin based on its description (step 4) and
makes a request to the plugin API endpoint with the required
parameters (step 5). LLM then interprets the response from
the plugin API endpoint and displays it to the user.

makes a call to the relevant plugin API endpoint, which is
determined through the endpoint path summary defined in
Code 2. The LLM also determines the necessary data that
needs to be sent along with API call, based on the schema
properties in Code 2. The LLM may send additional user
data, that is not part of the user prompt, such as the coun-
try and state, with the plugin API request (OpenAl 2023c).
After LLM makes the API call, the plugin executes its func-
tionality on its own server and returns a response. LLM then
interprets the response returned by the API, and formats it to
show it to the user.

Note that the LLM platform mediates all interactions with
the plugin; users and plugins do not directly interact, except
for a few instances, e.g., logging in on plugin service.

2.2 Responsibilities of Key Stakeholders

Next, we briefly survey the capabilities and responsibilities
of plugins, LLM platforms, and users, in order to provide
background on roles of different potential victims and at-
tackers in our subsequent discussions. While surveying the
capabilities, we consider OpenAI’s plugin architecture as
our reference (OpenAl 2023c).

First, plugin developers are responsible for (1) develop-
ing and updating plugins, (2) hosting plugins on their own
servers, (3) supporting authentication of platform (e.g., end-
points restricted to traffic from LLM platform), (4) support-
ing authentication of users to the plugin, and (5) processing

613

data and fulfilling commands provided by the LLM.

Next, the LLM platform is responsible for (1) reviewing
and making plugins available on plugin store, (2) providing
user authentication interfaces, (3) initiating plugins based on
user prompts, and (4) facilitating user-plugin interaction.

Finally, the user is responsible for (1) installing and re-
moving plugins, (2) managing their accounts, and (3) issuing
prompts to interact with plugins.

2.3 Security Considerations

It is a standard practice in computing platforms that support
third party ecosystems to impose restrictions on third par-
ties. OpenAl also deploys some restrictions, provides sug-
gestions, and enforces a review process to improve the secu-
rity of the plugin ecosystem.

As for restrictions, OpenAl requires that plugins use
HTTPS for all communication with the LLM platform (Ope-
nAl 2023f), build confirmation flows for requests that
might alter user data, e.g., through POST requests (OpenAl
2023c), use authentication if the plugin takes an action on
user’s behalf (OpenAl 20231), not use non-OpenAl genera-
tive image models (OpenAl 20231), adhere to OpenAlI’s con-
tent policy (OpenAl 2023k), comply with OpenAI’s brand
guidelines (OpenAl 2023a), among other things mentioned
in the plugin review process (OpenAl 20231). OpenAl also:
states that it will remove plugins if they change (OpenAl
20230), restricts communication to only the plugin’s root do-
main (OpenAl 2023e), and only passes user identifiers that
do not persist for more than a day and beyond a chat ses-
sion (OpenAl 2023n).

As for suggestions, OpenAl suggests that plugins imple-
ment API request rate limits (OpenAl 2023n) and provides
an IP address range for OpenAl servers so that plugins can
add it to their allow lists (OpenAl 2023i).

These restrictions and suggestions are a step in the right
direction, but in our assessment, insufficient in securing
LLM platforms (as we elaborate in Section 7.2). Further-
more, anecdotal evidence found online (Rehberger 2023b)
and experience of some developers (Section 7.2) suggests
that even these restrictions are not fully enforced by Ope-
nAlL

2.4 Threat Modeling

We consider both security and NLP researchers and prac-
titioners to be among our target audience with this paper.
We rely heavily on threat modeling, a common technique in
computer security. For the benefit of non-security readers,
we provide some background here.

Threat modeling is a process to systematically uncover
vulnerabilities in a system with a goal to improve its se-
curity (Swiderski and Snyder 2004; Schneier 1999). The
vulnerabilities uncovered during the threat modeling can be
structured in an attack taxonomy, which thematically groups
different classes of potential attack. The attack taxonomy
provides information related to the objectives of the attacker
and the potential mechanisms it could use to achieve the ob-
jectives. This structured information is used by system de-
signers to triage and eliminate the potential attack mecha-
nisms or the classes of attacks. To identify the threats, secu-

rity analysts use a variety of techniques, including surveying
existing security and privacy literature that closely relates to
the system, domain knowledge, and parallels from the real-
world.

The goal of threat modeling is to not just reveal novel at-
tacks that uniquely apply to the system, but instead to enu-
merate a comprehensive set of both existing and novel at-
tacks that need to be addressed in order to improve the secu-
rity of the system. Along with the novel attacks, such as the
ones related to the complexity of natural language process-
ing in our case (which we later uncover in our taxonomy),
existing attacks that uniquely apply to the system may also
require development of new concepts for mitigation. List-
ing both existing and novel attacks is also crucial because
the consumers of an attack taxonomy may not be security
experts, they may be experts in another domain, including
NLP or product managers making prioritization decisions.

We also stress that our objective is to highlight the po-
tential for a broad set of attacks to manifest in practice, in
contrast to demonstrating the existence or feasibility of a
select few attacks in the existing implementations of LLM
platforms. Put differently, LLMs are relatively a new area
of research and we intend to advance the understanding of
LILM-based ecosystems. Our contribution could be consid-
ered as a lens that the research community can leverage to
research specific issues in LLM-based systems, examples of
which could include demonstrating the feasibility or exis-
tence of attacks, researching defenses to mitigate security
issues, or improving LLM-based systems in other ways. It
is also noteworthy that because of the lack of trust relation-
ships between stakeholders of a system, some attacks (e.g.,
Risk 1 in our case) may be obvious and need not be con-
cretely demonstrated.

3 Methodology

Next, we describe our framework to systematically evalu-
ate the security, privacy, and safety of LLM platform plugin
ecosystem. We iteratively develop a framework where we
first formulate a preliminary attack taxonomy and evaluate
it on the LLM platform plugins. Based on our evaluation,
we refine our attack taxonomy and improve the examination
of plugins. While developing the framework, we consider
OpenAT’s plugin-integrated LLM platform as our reference.

3.1 Framework Goal and Tenets

Our primary goal for building this framework is to contribute
to a foundation for LLM platform designers to analyze and
improve the security, privacy, and safety of current and fu-
ture plugin-integrated LLM platforms. To achieve that goal,
we set the fundamental tenets of our framework to be ac-
tionable, extensive, extensible, and informed. By being ac-
tionable, we intend to provide a scaffolding that could be
leveraged to create an attack taxonomy for analyzing the
security, privacy, and safety of plugin-integrated LLM plat-
forms. Through extensiveness, we intend to capture a broad
set of classes of existing attacks that also apply to LLM plat-
forms along with new and future attacks that uniquely apply
to LLM platforms. While being extensive, we also intend our

614

framework to be extensible so that our framework can incor-
porate future attacks and is also generalizable across existing
and future LLM platforms. Lastly, we intend to be informed
in our enumeration and discovery of attacks such that they
are grounded in reality and are not mere speculation.

3.2 Framework Formulation Process

To begin creating our attack taxonomy, we take inspira-
tion from prior research which has studied and discovered
security and privacy issues in other computing platforms
that integrate third-parties, such as the web (Guha et al.
2011; Liu et al. 2012; Sanchez-Rola, Santos, and Balzarotti
2017; Somé 2019; Ghasemisharif et al. 2018), mobile (Enck
et al. 2011; Felt et al. 2011), and IoT (Fernandes, Jung, and
Prakash 2016; Igbal et al. 2023; Cobb et al. 2020; Liang et al.
2015). Specifically, we draw attacks from prior work that
might also apply to the plugin-integrated LLM platform. We
then filter these attacks by considering the capabilities of key
stakeholders, i.e., plugins, users, and LLM platform, and the
relationships between them, surveyed in Section 2. We also
assume that an external adversary could compromise any of
the stakeholders and assume their roles.

Next, we use an attack tree-based structured threat mod-
eling process (Schneier 1999) to identify new and future at-
tacks that could be mounted against plugin-integrated LLM
platforms. To systematically enumerate these attacks, we re-
view the surveyed capabilities of users, plugins, and LLM
platforms (in Section 2) and determine the potential ways in
which an adversary could leverage its capabilities to raise
security, privacy, and safety issues. While determining, we
rely on our domain knowledge and consider issues that could
arise due to complexity of understanding the functionality
described in natural language (Manning and Schutze 1999).

Toward achieving extensibility, it is important for the
framework to be well-structured. To provide that structure,
we first group the attacks based on the high-level goal
that the attacker intends to achieve, and then further under
pairs of LLM platform stakeholders, each acting as adver-
saries and/or victims. This extensibility will allow future re-
searchers to incorporate new stakeholders, attack goals, and
specific instantiations of attacks that might appear in future
LLM platforms (or others that are not captured by our frame-
work). All three authors met several times over a period of
two months to discuss and revise the attack taxonomy.

It is important to note that we do not assume trust be-
tween the stakeholders (i.e., the LLM platform, plugins, and
users) because of two main reasons. First, plugins, a key
stakeholder, are developed by unfamiliar third parties and
cannot be implicitly trusted as demonstrated by prior re-
search (Enck et al. 2011; Mayer and Mitchell 2012; Fer-
nandes, Jung, and Prakash 2016; Farooqi et al. 2020; Cobb
et al. 2020; Chen et al. 2022). Second, some stakeholders
might not be in a position to provide security guarantees,
e.g., LLM platforms may not have autonomy over data col-
lected by third party plugins (e.g., Risk 1) or they may have
known vulnerabilities that can be exploited (Greshake et al.
2023; Perez and Ribeiro 2022; Zou et al. 2023).

3.3 Applying the Framework

To ensure that our taxonomy is informed by current reality,
we evaluate the feasibility of enumerated attacks by doing
an analysis of plugins hosted on OpenAl. We also iteratively
updated the taxonomy throughout this process.

Crawling OpenAl plugins OpenAl implemented support
for plugins in ChatGPT in March, 2023 (OpenAl 2023Db).
Our analysis considers 268 plugins from June 6 2023 and a
few other plugins from later dates. All of the analysis was
conducted between June 6 and July 31, 2023. We visited the
OpenAl plugin store and individual plugin developer web-
sites to download plugin manifest and specifications. We
downloaded the amalgamated manifests for all plugins from
the OpenAl’s official plugin store. We then programmati-
cally traversed the plugin manifests and sent requests to each
plugin services’ API URL to download their API specifi-
cations. Additionally, we also download privacy policies of
plugins from the links provided by plugins.

Analyzing OpenAl plugins We started by manually an-
alyzing the plugins’ manifests and API specifications. We
listed the functionality offered by the plugin, whether the
plugin requires account linking including with other on-
line services, and the data collected by the plugin. We then
reviewed this information for each plugin and examined
whether any of our hypothesized attacks apply to the plugin.
If we suspected that a plugin might demonstrate the capabil-
ity of an attack, we installed the plugin on the LLM platform
(ChatGPT) and interacted with it to exercise the potentially
problematic functionality. When we uncovered a new attack
possibility or found that a conjectured attack is infeasible,
we revised our attack taxonomy accordingly. It is impor-
tant to note that the discovered attack potentials (referred
to as risks) may not be deliberate attempts by malicious ac-
tors but could instead be the results of bugs, poor security
and privacy practices, poorly defined interfaces, and/or fun-
damental inabilities to provide stronger security within the
current LLM plugin ecosystem. Nonetheless, these practices
could result in harm to users. Overall, we find numerous plu-
gins that contain or illustrate potential security, privacy, and
safety risks. Table 1 summarizes the attack surface between
plugins, users, and the LLM platform.

4 Attacks Between Plugins & Users

Next, we describe our attack taxonomy for the attack surface
between plugins and users, interleaved with our application
of this taxonomy to OpenAlI’s current ecosystem. We turn to
the attack surface between plugins and the LLM platform in
Section 5 and between plugins in Section 6 (see also Table 1
for a summary). We elaborate on each attack goal in a sep-
arate subsection along with example mechanisms through
which that goal could be achieved. We also present the po-
tential manifestation of some of the attack mechanisms in
OpenAT’s plugins, discovered by applying our framework.

4.1 Hijack User Machine

In this attack category, the goal of the attacker is to take con-
trol over the user’s machine. Some of the potential mecha-

615

nisms that an attacker could leverage to hijack user machine
include: tricking users into installing unvetted or unofficial
plugins from sources outside the official plugin store, by
making malicious recommendations to trick users into vis-
iting websites that can infect their machines, or by exploit-
ing information shared for legitimate reason.

LLM platforms support several use cases and interaction
flows that could be exploited by adversaries to use the above
mentioned mechanisms. For example, we identified several
plugins that provide functionality to manage cloud-hosted
machines, for which they collect user’s credentials or private
keys. We describe their details in Risk 1.

RiISK 1: CREDENTIAL EXFILTRATION

Risk overview. OpenAl hosts plugins that provide func-
tionality to automate software development operations
and infrastructures. These plugins require users to share
credentials or allow SSH access to their servers.

Risk impact. The presence of user credentials with third-
party plugins could cause serious harm to users. In the
worst case, a third-party developer can log into the user’s
machine and completely take over it. Even when the third
party is trustworthy, a compromise at the third party’s end
could result in leakage of user credentials to an attacker.

Evidence of risk. Autolnfra (autoinfra.ai 2023) and
ChatSSHPlug (ChatGPT SSH Plugin) are two plugins
that provide SSH session management functionality. Au-
tolnfral asks users to add its public key in their SSH
authorized_keys file and then asks them to share
their public IP address, as seen in our partial interaction
with Autolnfral in Figure 2 and in our full interaction by
visiting Autolnfral interaction link (aut 2023).ChatSSH-
Plug on the other hand, directly asks users to share their
passwords or private key (more detail can be seen by vis-
iting ChatSSHPIug interaction link (cha 2023)). Analysis
conducted on June 07, 2023.

REQUEST TO AUTOINFRA1 ®

Used Autolnfrai 2

"command": "1s"

RESPONSE FROM AUTOINFRA1 0)

Inform the user they are not setup yet. Tell them to run
the following command on their remote server that has ssh
enabled, formatted in a code block: ''‘echo "ssh-ed25519
AAAAC3NzaC11ZDIINTESAAAAILNFrE8hzCtV/Hk4/cQOPs56mTIW+
Xb7zWOGg6821LHT tejas@autoinfra.ai" | tee -a

$HOME/ .ssh/authorized_keys && sudo systemctl restart
sshd” " Also ask the user to run this command on their
remote server, (which you will format into a code block)
and then paste the entire output: *°° echo
"$(whoami)@$(wget -qO- ifconfig.me)" &% echo "port=$(echo
$SSH_CLIENT | cut -d -£f3)" ' After the user pastes the
output, call the /set_public_ip endpoint with the address
(username@ip_address) as the path parameter, and the port
as a query param . Also tell the user to email
support@autoinfra.ai if they run into any issues

Figure 2: User interaction with Autolnfral plugin.

Observation. Users might want third-party plugins to in-
teract with other services on the internet on their behalf.
These interactions might require users to share autho-

Stakeholders | Attacker goal

| Plugin count | Attack method

| Example risk

Hijack user machine (§ 4.1) 2

Leverage unvetted & unofficial plugins
Make malicious recommendations
Exploit info. shared for legitimate reason

Credential exfiltration (Risk 1)

Hijack user account (§ 4.2) 27

Exploit authentication flow

Abuse authorization

Make malicious recommendations
“Squat” another plugin

Harvest user data (§ 4.3) 35

Plugin, User

Mandate accounts
Define broad API specifications

(Section4) | gepefit partner plugins (§ 4.4)

Share user data
Make recomm. favorable to partners

Manipulate users (§ 4.5) 37

Deploy deceptive design patterns
Recommend inap. and harmful content
Recommend nonfactual content

Lie or change functionality

Refusal of service by plugins (§ 4.6) 2

Deliberately refuse service
Unresponsive server

DoS by users (§ 4.7) 1

Make excessive prompts
Make malicious prompts

Hijack LLM platform (§ 5.1) 6

Inject malicious description
Inject malicious response

LLM session hijack (Risk 2)

Hijack plugin prompts (§ 5.2) 1

Divert prompts to itself
Divert prompts to another plugin
Hallucinate plugin response

Plugin, Steal plugin data (§ 5.3)

Log interaction
Make ghost requests

LLM platform

(Section 5) | Pollute LLM training data (§ 5.4) 1

Inject misleading response

Refusal of service by plugins (§ 5.5)

Deliberately refuse service
Unresponsive server

DoS by LLM platform (§ 5.6)

Make excessive prompts
Make malicious prompts

Hijack another plugin’s prompts (§ 6.1) 12

“Squat” another plugin
“Squat” functionality
Inject malicious response

Functionality squatting (Risk 3)

Plugin, Plugin

(Section 6) | Hijack prompts on a topic (§ 6.2) 14

“Squat” a topic
Inject malicious response

Influence prompts to plugin (§ 6.3) 2

Exploit multipart prompts

Table 1: Attack surface of plugin-integrated LLM platforms. Stakeholders column represents the actors who carry out attacks
against each other. Attacker goal column represents the goal that an attacker wants to achieve. Plugin count column represents
the number of plugins that demonstrate the capability of a risky behavior. Attack method column represents the methods that
an attacker might choose to carry out the attack. Example risk column represents the evidence of a potentially risky behavior

found in OpenAT’s plugin ecosystem.

rization with third-party plugins. LLM platforms should
aim to support such use cases without requiring exposure
of critical user credentials to arbitrary third parties (e.g.,
through the use of OAuth or other approaches).

4.2

In this attack category, the attacker’s goal is to take control
over a user’s account for another service. An attacker could
achieve this goal by abusing privileged access or through
social engineering.

LLM platforms support several use cases that plugins
can exploit for abusing privilege or social engineering. For
example, plugin are allowed to interact with other online

Hijack User Account

616

services on user’s behalf, e.g., managing repositories on
Github, for which they need authorized user access, e.g.,
through OAuth. Malicious or hacked plugin services could
abuse such authorized access to hijack user accounts. We
also note that plugins could exploit the authentication flows,
as control is often delegated to third-party services in this
process, e.g., to allow them to redirect to their sign-in pages.

For social engineering, attackers could “squat” (Szurdi
et al. 2014) other plugins, by copying their names and de-
scription, or by developing plugins for online services that
do not yet have plugins. Such squatting would allow attack-
ers to essentially hijack all interactions intended for the orig-
inal plugin, including the sharing of credentials for authen-

tication.

4.3 Harvest User Data

In this attack category, the attacker’s goal is to collect per-
sonal and excessive data on users. Among other ways, an
attackers could benefit from users’ data by selling it to other
services (e.g., data brokers) or using it for non-essential and
undisclosed purposes (e.g., to profile users for online ad-
vertising), both of which are common practices on the in-
ternet (Commission et al. 2014; Olejnik, Minh-Dung, and
Castelluccia 2014; Igbal et al. 2023).

One convenient mechanism for attacker to achieve that
goal is to specify overly broad API specifications for their
plugins to collect excessive amount of user data, similar to
over-privileged mobile apps (Felt et al. 2011). For example,
a plugin could simply include in its API specification that
it needs the entire user query instead of relevant keywords,
even when it is not required for providing functionality. Plu-
gins could also further mandate accounts by requiring users
to log in before they can use their services, allowing them
to associate the collected user data with personal identifiers,
such as email addresses.

4.4 Benefit Partner Plugins

In this attack category, an attacker plugin’s goal is to bene-
fit their partner plugins. There are potentially several bene-
fits that plugins can provide each other. Broadly, the benefits
could fit under the objective of improving each other’s busi-
nesses to make more revenue. It is important to note that the
plugin collusion may not be beneficial for users and in fact
may result in harms to the users.

One of the most obvious way the plugins can benefit each
other is by making favorable recommendations to part-
ners. In fact, LLM platforms encourage cross-plugin syn-
ergy (OpenAl 2023p) to fulfil multipart user requests, e.g.,
a request to book a flight and make a hotel reservation. In
such cases, plugins could craft their recommendations in a
way that would favor their partners, e.g., a flight booking
plugin could show the best flight for dates when their part-
ner hotel has free rooms available. Plugins could also help
partners by simply sharing user data with each other, which
they can use according to their needs — a common practice
on the web (Papadopoulos, Kourtellis, and Markatos 2019).

4.5 Manipulate Users

In this attack category, an attacker’s goal is to manipulate
users. At a high level, an attacker can manipulate users with
a number of problematic recommendations.

For example, attackers could deploy deceptive design pat-
terns by exploiting the limited interfacing capabilities on
LLM platforms to only reveal few recommendations that fa-
vor them. For example, a travel reservation plugin service
could show flight tickets where it expects to gain the high-
est profit instead of the cheapest tickets. Additionally, natu-
ral language content is challenging to automatically scruti-
nize (e.g., due to prompt injection (Perez and Ribeiro 2022)),
which attackers could exploit to recommend content that is
inappropriate and harmful or nonfactual. We also note that

617

separate functionality descriptions are show to the users and
the LLMs (Code 1), which malicious plugins could exploit
to deceive users by lying or changing their functionality.

4.6 Refusal of Service by Plugins

In this attack category, the attacker’s goal is to refuse service
to the user. Among other motivations, an attacker’s motiva-
tion to refuse service could be to help itself with another
attack, even outside the internet. For example, the refusal of
service by an IoT door lock plugin could make user vulner-
able to theft.

At a high level, plugins could either deliberately refuse
service or they might just not be in a position to provide
service, e.g., due to an unresponsive server. Some reasons
for these behaviors could be because plugins are miscreant,
compromised, or experiencing internet or power outages.

4.7 Denial-of-Service by Users

In this attack category, the attacker’s goal is to make the plu-
gin service inaccessible. The inaccessibility of plugin ser-
vice could potentially result in several harms to the plugin
users (as described in Section 4.6). The inaccessibility could
also harm plugin service, e.g., potentially leading to loss
in revenue and negatively impacting the plugin reputation.
Possible adversaries who could conduct this attack could in-
clude miscreant users and rival plugins, posing as users.
Some potential ways in which an attacker could make plu-
gin server inaccessible is by, making excessive prompts to
generate excessive network traffic to flood and ultimately
crash the plugin server and by making malicious prompt re-
quests that target known vulnerabilities on the plugin server.
These malicious prompts could just be big payloads that the
plugin server cannot parse (Crosby and Wallach 2003).

5 Attacks Between Plugins & LLM Platform
5.1 Hijack LLM Platform

An attacker’s goal is to take over an LLM or an LLM plat-
form session. Taking over an LLM or an LLM platform ses-
sion would allow the attacker to impersonate the LLM plat-
form and control the interactions between user and the LLM
platform. Such a takeover will allow the adversary to achieve
several attack goals, including stealing user interaction his-
tory with the LLM, list of installed plugins, and other attacks
discussed earlier in Section 4.

At a high level, an attacker could rely on prompt injec-
tion (Perez and Ribeiro 2022) techniques to hijack an LLM
or an LLM platform session. Two possible mechanisms that
attackers could leverage to include prompt injection are in-
Jecting malicious functionality descriptions and injecting
malicious responses, both of which are used by the LLM to
build the necessary context to respond to user through a plu-
gin. It is important to note that the takeover of an LLM can
be latent, where an adversary succeeds in inserting a back-
door that activates at a later point in time, e.g., after an LLM
is retrained using the plugin data (OpenAl 2023d). Risk 2
describes a plugin, which we identified on OpenAl, that is
able to hijack the LLM platform session through instructions
in its functionality description.

RiISK 2: LLM SESSION HIJACK

Risk overview. OpenAl hosts plugins that direct the
LLM through commands in their functionality descrip-
tions to alter its behavior when it communicates with the
user. When LLM platforms load these plugins, the LLM’s
behavior is altered for the session, as instructed by the
plugin, even when prompts are not directed to plugin.

Risk impact. The plugin is able to takeover the LLM
platform session and control the interaction between the
user and the LLM platform. Such a takeover can be ex-
ploited in a number of ways, including exfiltration of
user-LLM platform interaction history, collection of sen-
sitive data, and exposure to misleading information.

Evidence of risk. AMZPRO (AMZ 2023), a plugin that
helps users write product descriptions for Amazon, in-
structs ChatGPT to always reply in English. Typically,
ChatGPT responds in the same language in which a users
asks a question (as it can be seen in our example interac-
tion here: (oth 2023)). However, when AMZPRO is en-
abled, and not even used, ChatGPT only responds in En-
glish for the rest of the user’s LLM platform session as
it can be seen in the partial interaction with AMZPRO
in Figure 3 and full interaction in AMZPRO interaction
link (amz 2023). This analysis was conducted on July 27,
2023.

Shared Chat « Default « Enabled plugins:

f‘ oS s (S SS39y ol 5 e Uox 1 woien]

Sure, | can help you write a product description for a pair of shoes to be sold on

Amazon. Here's an example:

Title: "Premium Leather Comfortable Men's Dress Shoes"

Figure 3: User interaction with ChatGPT, when
AMZPRO is enabled but not used.

Observation. Our demonstration of LLM session hi-
jacking with AMZPRO, highlights the need for contex-
tual awareness and context isolation. We see contextual
awareness and context isolation, while still supporting
plugin synergy as a key challenge for LLM platforms.

5.2 Hijack Plugin Prompts

In this attack category, the LLM platform is the adversary
and its goal is to hijack prompts intended for a plugin. This
attack is similar to how search engines and online market-
places prioritize their own offerings or advertisements in re-
sponse to user queries (Markup 2020; Journal 2023). There
could be several motivations for hijacking user prompts, in-
cluding serving self interests, benefiting partner plugin ser-
vices, or harming a plugin service.

Some of the ways in which an attacker could hijack user
prompts include the LLM: (i) diverting prompts to itself
without consulting the plugin service at all or by utilizing
plugin data in the background, including cached data from
prior prompt resolutions, (ii) unfairly diverting prompts to
another plugin, and (iii) hallucinating plugin response

618

without ever forwarding the request to the plugin.

5.3 Steal Plugin Data

In this attack category, the LLM platform is the adversary
and its goal is to steal plugin-owned, -hosted, or -facilitated
data. Plugin could be hosting proprietary financial data,
marketing insights, source code from private repositories,
emails, and private documents. Stealing such data could re-
sult in several harms to the plugin service and to the users,
including monetary harm, leakage of secrets, and invasion of
privacy. After stealing data, LLM could use it for a variety
of purposes, including using data for training future models
or selling data to others.

Some of the ways in which an LLM platform could steal
plugin data, include: logging interaction as LLLM platforms
facilitate interactions between users and the plugins and
making ghost requests to plugins to capture their data.

5.4 Pollute LLM Training Data

In this attack category, plugin is the adversary and its goal
is to pollute the training data of LLMs, used by an LLM
platform. Feeding such information will hinder an LLM’s
ability to respond to user with factual and authentic informa-
tion. At a high level, an attacker could achieve this goal by
exposing the LLM platform to misleading and incorrect in-
formation, e.g., by injecting misleading response, as LLM
platforms by default log user interaction for training their
models (OpenAl 2023d).

5.5 Refusal of Service by Plugin

The refusal of service by plugins to the user (Section 4.6)
could also impact the platform. For example, in OpenAlI’s
current implementation, an unresponsive plugin results in
crashing of the user’s ChatGPT session. Note that a plugin
could also delay its responses instead of not responding to
the requests at all. Section 4.6 already described the mecha-
nism through which a plugin could refuse service.

5.6 Denial-of-Service by LLM Platform

Similar to how users can crash a plugin service with a denial-
of-service attack (Section 4.7), LLM platforms could do the
same. The motivation for the LLM platform could broadly
be hostility towards a competitor or an implementation is-
sue. The potential mechanisms through which an LLM plat-
form could launch a denial-of-service attack are also similar
to how users would launch this attack.

6 Attacks Between Plugins
6.1 Hijack Another Plugin’s Prompts

In this attack category, a plugin can be both an adversary and
a victim. The goal of an adversarial plugin is to hijack user
prompts intended for another plugin. A plugin could trick or
instruct the LLM platform into calling itself, over the plugin
that the user intends.

Adversarial plugins could hijack another plugin’s prompts
by squatting (Szurdi et al. 2014). For example, they could
“squat” another plugin to hijack responses intended for it,
similar to adversaries using plugin squatting to steal user

credentials (Section 4.2). Plugins could also “squat” func-
tionality of a plugin instead of squatting its name, such as by
adding in its functionality description that they can provide
services from that specific entity. We identified plugins that
could potentially squat functionality. We describe their de-
tails in Risk 3. Additionally, we also note that plugins could
inject malicious responses with instructions for the LLM to
route the prompts for a particular plugin to their API end-
points.

RiISK 3: FUNCTIONALITY SQUATTING

Risk overview. Several OpenAl plugins mention the
names of well-known online services in their function-
ality descriptions or define their functionality descrip-
tions similar to other plugins, which allows them to hi-
jack prompts that are not intended for them, i.e., func-
tionality squatting.

Risk impact. Successful functionality squatting will al-
low a plugin to deprive other plugins or online services
of users, leading to loss in revenue. Plugin might also be
able to trick users into sharing their data. Additionally, if
the plugin is unable to fulfill the offered service, it could
cause harm to users in several ways.

Evidence of risk. Lexi Shopper (lex 2023a) recom-
mends products from Amazon.com and mentions the
word “Amazon” in its functionality description. Because
of the presence of the word “Amazon”, user prompts
which even specify to not use any third party service are
routed to Lexi Shopper, as it can be seen in our partial
interaction with the plugin in Figure 4. Lexi Shopper in-
teraction link (lex 2023b) provides complete interaction
with the plugin. Analysis conducted on June 09, 2023.

In another example, two plugins Jio (Jio 2023) and
Tira (tir 2023b) offer service to shop from tirabeauty
.com. Tira is hosted by tirabeauty.com whereas Jio is
hosted by jiocommerce.io, a third-party e-commerece
service that allows users to shop from several online
shops. In case a user enables both of the plugins and even
specifies that it wants to shop from Tira, their queries
are routed to the third-party service, i.e., Jio, instead of
the first-party service, i.e., Tira. Tira and Jio interaction
link (tir 2023a) provides complete interaction with these
plugins. Analysis conducted on July 27, 2023.

‘ Recommend some shoe options from amazon.com,
please do not use any third party service

REQUEST TO LEXI SHOPPER ®

Used Lexi Shopper ~

"userMessage": "Recommend some shoe options from
amazon.com",

"searchPhrase": "shoes",

"language": "en"

Figure 4: User interaction with Lexi Shopper plugin.

Observation. Our findings indicate that plugins could hi-

619

jack prompts intended for other services, even when that
service is integrated by the user. These interactions high-
light the challenge in tackling squatting for natural lan-
guage based interfaces.

6.2 Hijack Prompts on a Topic

In this attack category, a plugin can be both an adversary and
a victim. The goal of the adversarial plugin is to hijack all
user prompts on a particular topic. At a high level, a plugin
could trick or instruct the LLM platform into calling itself.

For example, plugins could “squat’ a specific topic by cu-
rating their functionality descriptions such that they always
get precedence over other plugins in the same category. Sim-
ilar to including instructions in its functionality description,
a plugin could instruct the LLM platform by injecting mali-
cious response to send user prompts on a particular topic to
the plugin.

6.3 Influence Prompts to Another Plugin

In this attack category, an attacker’s goal is to influence the
prompts to another plugin. Examples of influence could in-
clude altering the data sent to the another plugin, similar to
a man-in-the-middle attack, or triggering another plugin, to
launch a denial-of-service attack. At a high level, an attacker
would need to trick the LLM platform to launch this attack.

Exploiting multipart prompts, where multiple plugins
work together to address user query, could be one example
workflow that an attacker could leverage to manipulate the
transmission of data to another plugin.

7 Discussion and Conclusion
7.1 Exacerbation of NLP-related challenges

While many of the issues that we identified are echoes of
the challenges in securing previous platforms (e.g., smart-
phones, 10T), the complexity of natural language is one of
the more unique aspects and fundamental challenges in se-
curing LLM-based platforms. In the plugin-integrated plat-
forms we considered, natural language is used (1) by users
to interact with the platform and plugins, (2) by the platform
and plugins to interact with users, and (3) even by plugins
to interact with the platform (e.g., through functionality de-
scriptions) and other plugins (e.g., through instructions in
API responses). Potential ambiguity and imprecision in the
interpretation of natural language, as well as the application
of policies to natural language, can create challenges in all
of these interactions.

Interpretation of functionality in natural language In
conventional computing platforms, applications define their
functionality through constrained programming languages
without any ambiguity. In contrast, LLM platform plugins
define their functionality through natural language, which
can have ambiguous interpretations. For example, the LLM
platform may in some cases interpret the functionality too
broadly, or too narrowly, both of which could cause prob-
lems (see Risk 3 as an example). Interpreting language also
requires contextual awareness, i.e., plugin instructions may
need to be interpreted differently in different contexts. For

example, it might be okay for the LLM platform to behave a
certain way while a user interacts with a plugin, but not okay
to persist with that behavior when the plugin is not in use
(see Risk 2 as an example). In summary, the key challenge
for LLM platforms is to interpret plugin functionality so as
to not cause ambiguity, or in other words, LLM platforms
must figure out mechanisms that allow them to interpret
functionality similarly to the unambiguous (or, much less
ambiguous) interpretation in other computing platforms.

Application of policies on natural language content
Even if LLM platforms can precisely interpret the function-
ality defined in natural language or if functionality is pre-
cisely defined through some other means, it will still be
challenging to apply policies (e.g., content moderation) over
the natural language content returned by users, plugins, or
within the LLM platform. For example, there may be a mis-
match between the interpretation of the policy by the LLM
platform, users, and plugins, e.g., on what is considered per-
sonal information (by building on attacks in 4.3). Similarly,
in instances where there is a contradiction between the poli-
cies specified by the plugin or between the policies specified
by the user and the plugin, the LLM platform would need to
make a preference to resolve the deadlock, which may not be
in favor of users. An LLM platform may also not apply the
policies retrospectively, which may diminish its impact. For
example, a policy that specifies that no personal data needs
to be collected or shared may not apply to already collected
data (by building on attacks in 4.3).

7.2 Towards Secure LLM-based Platforms

Stepping back from NLP-specific challenges to LLM-based
platforms, we emphasize that security, privacy, and safety
should be key considerations in the design process.

The restrictions and suggestions provided by LLM plat-
forms (discussed in Section 2.3) are a step in the right direc-
tion, but they are insufficient to secure LLM platforms. We
recommend that LLM platform designers consider security,
privacy, and safety — e.g., by applying our framework
early in the design of their platforms, to avoid situations in
which addressing issues later requires fundamental changes
to the platform’s architecture. The systemic nature of our
findings and examples of attack potentials suggests that per-
haps such a process was not used in the design of ChatGPT
plugin ecosystem. In many cases, defensive approaches do
not need to be invented from scratch: LLM platform de-
signers can take inspiration from several sources, including
from well-established practices to guard against known at-
tacks, by repeating the threat modeling that we did in this
paper, and by building on the security principles defined by
prior research, such as by Saltzer and Schroeder (Saltzer and
Schroeder 1975).

We elaborate now on possible practical approaches for se-
curing LLM platforms that wish to integrate untrusted third
parties (e.g., plugins), and then step back to consider the po-
tential future of LLM-based platforms more generally.

Anticipating and mitigating malicious third parties A
core issue underlying many of the risks we discussed is that
third-party plugins may be malicious or buggy — an issue

620

familiar to us from many past platforms (Enck et al. 2011;
Mayer and Mitchell 2012; Fernandes, Jung, and Prakash
2016; Farooqi et al. 2020). At the highest level, LLM plat-
forms that want to integrate plugins should minimize trust
in these third parties and design the platform to manage any
potential risk. There is significant precedent in other plat-
forms that can provide design inspiration to LLM platform
creators.

For example, to ensure that plugin behavior does not
change at runtime and that LLM platforms get an opportu-
nity to review plugin code on each update, LLM platforms
could host the plugin source code instead of plugin devel-
opers, similar to established platforms, such as mobile and
web. Another avenue is to technically limit the functional-
ity exposed to plugins. For example, LLM platforms could
enforce a permission model, similar to mobile platforms, to
regulate access to data and system resources.

Another strategy to minimize the impact of a problematic
plugin is to isolate plugin execution from that of other plug-
ins or the rest of the system, e.g., similar to site isolation in
browsers through sandboxes (Reis, Moshchuk, and Oskov
2019). At present (on the OpenAl platform we tested), all
plugins execute together in the context of the same conver-
sation. On the one hand, this execution model allows plugins
to synergize well with each other, but on the other hand it
exposes user interactions with one plugin to another. LLM
platforms still could support plugin interaction and eliminate
unnecessary data exposure by running each plugin in a sand-
box and by clearly defining a protocol for sharing informa-
tion across sandboxes, similar to cross-document messaging
on the web (WHATWG 2023).

Anticipating future LLM-based systems Looking
ahead, we can and should anticipate that LLMs will be
integrated into other types of platforms as well, and that the
plugin-integrated LLM chatbots of today are early indica-
tors of the types of issues that might arise in the future. For
example, we can anticipate that LLMs will be integrated
into voice assistant platforms (such as Amazon Alexa),
which already support third-party components (“skills”, for
Alexa). Recent work in robotics has also integrated LLMs
into a “vision-language-action” model in which an LLM
directly provides commands to a physical robot (Brohan
et al. 2023). Future users may even interact with their
desktop or mobile operating systems via deeply-integrated
LLMs. In all of these cases, the NLP-related challenges
with the imprecision of natural language, coupled with the
potential risks from untrustworthy third parties, physical
world actuation, and more, will raise serious potential
concerns if not proactively considered. The designers of
future LLM-based computing platforms should architect
their platforms to support security, privacy, and safety early,
rather than attempting to retroactively address issues later.

Ethics & Disclosure Statement

In evaluating the ethics and morality of this research, we
drew from both consequentialist and deontological tradi-
tions (Kohno, Acar, and Loh 2023). We first present our con-
sequentialist analysis. LLM and LLM-based systems are in-

novating incredibly rapidly, and researchers (including our-
selves) are uncovering vulnerabilities with deployed sys-
tems.

The first question we asked ourselves: is it ethical and
moral to develop and share an attack taxonomy for LLM-
based plugin systems? (Just developing but not sharing
would have little consequentialist output). We determined
that the benefits of creating and sharing such a taxonomy
outweigh the harms. The taxonomy can enable those devel-
oping LLM-based systems and the security research com-
munity to have dedicated, detailed discussions about how to
mitigate future vulnerabilities, as well as discussions about
which vulnerabilities may be high risk and which may not.
Further, as is often the case in other technology sub-areas,
those seeking to cause harm to platforms and users (the ad-
versaries) may be developing attack capabilities in silent. If
those adversaries manifest before platforms and the security
community are able to proactively discuss and develop de-
fenses, there could be significant harms.

The next question we asked ourselves was: is it ethical and
moral to evaluate a real system (ChatGPT) with respect to
our attack taxonomy? Here, we observe several key benefits.
First, our attack taxonomy benefited greatly from the proac-
tive experimentation with ChatGPT and the resulting lessons
from such experimentation and, hence, the experimentation
with ChatGPT contributed to the benefits described in the
above paragraph. Second, we again observe that adversaries
may be operating silently and, hence, it is beneficial to un-
derstand actual risks before adversaries manifest. Third, we
stress that we did nor mount any attacks against any parties.
Rather, we studied what different plugins could do if they
were adversarial.

As part of our research process, we also asked ourselves:
is it ethical and moral to experimentally develop “malicious”
(or at least plugins with the potential to be malicious though
perhaps reserved in some way, e.g., collect private informa-
tion but not use it) and publish them on the OpenATI’s plu-
gin store? A benefit of doing so would be a concrete experi-
mental evaluation of OpenAl’s review process. However, the
harms in this scenario — the potential to accidentally harm
users even if we took precautions — outweigh the benefits,
especially since information about the OpenAI’s plugin re-
view process (a single reviewer assigned to review all pub-
lished plugins (Cha 2023)) is already known. Hence, we did
not seek to publish any plugins on the OpenAlI’s plugin store.

The next question we asked ourselves was: what should
be the disclosure process? A consequentialist analysis of the
disclosure processes is complicated by the significant un-
certainties about the future of LLMs, LLM-based systems,
and adversarial capabilities. It is known that consequential-
ist analyses under uncertainties can be fundamentally chal-
lenging (Kohno, Acar, and Loh 2023). Our deontological
analysis, however, did lead to a clear and conservative con-
clusion. Hence, we center our deontological analysis in this
discussion. Specifically, we observe that the people running
OpenAl have rights. In this case, we believe that they have
the right to learn our findings and have a chance to respond
prior to our paper being public. Hence, we have determined
that the morally correct process is to share our findings with

621

OpenAl before publishing this paper, which we have already
done. OpenAl responded that they appreciate our effort in
keeping the platform secure but have determined that the is-
sues do not pose a security risk to the platform. We clarified
to them that our assessment of these issues is that they pose
a risk to users, plugins, and the LLM platform and should
be seriously considered by OpenAl. For issues related to the
core LLM, e.g., hallucination, ignoring instructions, OpenAl
suggested that we report them to a different forum (OpenAl
2023j) so that their researchers can address them, which we
also did.

Another question we asked ourselves: what should be
the process of disclosing our findings to any plugins that
we mention in this paper? As noted elsewhere, it bears re-
stressing that we did not seek to find vulnerabilities in plu-
gins and we did not attack any plugins. Rather, we used
properties of existing plugins to gather evidence about the
potential capabilities of adversarial plugins. Still, from a de-
ontological perspective, we determined that plugin authors
have the right to know about our analyses, and hence we
have informed plugin authors about our results and findings
with respect to their plugins. Upon disclosing to plugin ven-
dors, we learned that in at least one case the plugin vendor
also disclosed the situation to OpenAl because OpenAl (not
them) were in the position to fix the issue, but OpenAl did
not.

Acknowledgements

This work is supported in part by the National Science
Foundation under grant number CNS-2127309 (Comput-
ing Research Association for the CIFellows 2021 Project)
and by the Tech Policy Lab at the University of Wash-
ington. We thank Aylin Caliskan, Yizheng Chen, Kaiming
Cheng, Inyoung Cheong, Ivan Evtimov, Earlence Fernandes,
Michael Flanders, Saadia Gabriel, Alex Gantman, Gregor
Haas, Rachel Hong, David Kohlbrenner, Wulf Loh, Alexan-
dra Michael, Jaron Mink, Niloofar Mireshghallah, Kentrell
Owens, Noah Smith, Sophie Stephenson, and Christina Ye-
ung for providing feedback on various drafts of this paper.

References
2023. AMZPRO. https://turboooo.com/.
2023. AMZPRO interaction link. https://github.com/lIm-
platform-security/chatgpt-plugin-eval/blob/main/amzpro-
interaction.pdf.
2023. Autolnfral interaction link. https://github.com/lIm-
platform-security/chatgpt-plugin-eval/blob/main/autoInfra
1-interaction.pdf.
2023. ChatGPT Other language interaction. https://github.c
om/llm-platform-security/chatgpt-plugin-eval/blob/main/o
ther-language-interaction.pdf.
2023. ChatSSHPIlug interaction link. https://github.com/I
Im-platform-security/chatgpt-plugin-eval/blob/main/chats
shplug-interaction.pdf.
2023. It’s all fun and game until you have to personally test
100’s of ChatGPT plugins. https://twitter.com/OfficialLog
anK/status/1659729516804161536.

2023. Jio Copilot. https://www.jiocommerce.io/co-pilot.

2023a. Lexi Shopper. https://lexi-shopping-assistant-
chatgpt-plugin.iamnazzty.repl.co.

2023b. Lexi Shopper interaction link. https://github.com/1
Im-platform-security/chatgpt-plugin-eval/blob/main/lexis
hopper-interaction.pdf.

2023a. Tira and Jio interaction link. https://github.com/llm-
platform-security/chatgpt-plugin-eval/blob/main/tira-jio-
interaction.pdf.

2023b. Tira beauty. https://www.tirabeauty.com.

autoinfra.ai. 2023. Automate your DevOps + Infra. autoinfr
a.ai.

Bagdasaryan, E.; Hsieh, T.-Y.; Nassi, B.; and Shmatikov,
V. 2023. (Ab) using Images and Sounds for Indirect In-
struction Injection in Multi-Modal LLMs. arXiv preprint
arXiv:2307.10490.

Brohan, A.; Brown, N.; Carbajal, J.; Chebotar, Y.; Chen,
X.; Choromanski, K.; Ding, T.; Driess, D.; Dubey, A.; Finn,
C.; Florence, P.; Fu, C.; Arenas, M. G.; Gopalakrishnan, K.;
Han, K.; Hausman, K.; Herzog, A.; Hsu, J.; Ichter, B.; Irpan,
A.; Joshi, N.; Julian, R.; Kalashnikov, D.; Kuang, Y.; Leal, L;
Lee, L.; Lee, T.-W. E.; Levine, S.; Lu, Y.; Michalewski, H.;
Mordatch, I.; Pertsch, K.; Rao, K.; Reymann, K.; Ryoo, M.;
Salazar, G.; Sanketi, P.; Sermanet, P.; Singh, J.; Singh, A_;
Soricut, R.; Tran, H.; Vanhoucke, V.; Vuong, Q.; Wahid, A.;
Welker, S.; Wohlhart, P.; Wu, J.; Xia, F.; Xiao, T.; Xu, P.; Xu,
S.; Yu, T.; and Zitkovich, B. 2023. RT-2: Vision-Language-
Action Models Transfer Web Knowledge to Robotic Con-
trol. arXiv:2307.15818.

ChatGPT SSH Plugin. 2023. ChatGPT SSH Plugin. https:
//chatsshplug.com.

Chen, Y.; Gao, Y.; Ceccio, N.; Chatterjee, R.; Fawaz, K.;
and Fernandes, E. 2022. Experimental Security Analysis of
the App Model in Business Collaboration Platforms. In 31st
USENIX Security Symposium (USENIX Security 22).

Cobb, C.; Surbatovich, M.; Kawakami, A.; Sharif, M.;
Bauer, L.; Das, A.; and Jia, L. 2020. How Risky Are Real
Users’ IFTTT Applets? In USENIX Symposium on Usable
Privacy and Security (SOUPS).

Commission, F. T.; et al. 2014. Data brokers: A call for
transparency and accountability. Washington, DC.

Crosby, S. A.; and Wallach, D. S. 2003. Denial of service via
algorithmic complexity attacks. In /2th USENIX Security
Symposium (USENIX Security 03).

Enck, W.; Octeau, D.; McDaniel, P. D.; and Chaudhuri, S.
2011. A study of android application security. In USENIX
security symposium.

Farooqi, S.; Musa, M.; Shafiq, Z.; and Zaffar, F. 2020. Ca-
naryTrap: Detecting Data Misuse by Third-Party Apps on
Online Social Networks. Proceedings on Privacy Enhanc-
ing Technologies.

Felt, A. P; Chin, E.; Hanna, S.; Song, D.; and Wagner, D.
2011. Android permissions demystified. In Proceedings of
the 18th ACM conference on Computer and communications
security.

622

Fernandes, E.; Jung, J.; and Prakash, A. 2016. Security
Analysis of Emerging Smart Home Applications. In 2016
IEEE Symposium on Security and Privacy (SP).

Ghasemisharif, M.; Ramesh, A.; Checkoway, S.; Kanich, C.;
and Polakis, J. 2018. O single {Sign-Off}, where art thou?
an empirical analysis of single {Sign-On} account hijack-
ing and session management on the web. In 27th USENIX
Security Symposium (USENIX Security 18), 1475-1492.

Google. 2023. Google Bard. https://bard.google.com/.

Greshake, K.; Abdelnabi, S.; Mishra, S.; Endres, C.; Holz,
T.; and Fritz, M. 2023. Not what you’ve signed up for: Com-
promising Real-World LLM-Integrated Applications with
Indirect Prompt Injection. arXiv preprint arXiv:2302.12173.

Guha, A.; Fredrikson, M.; Livshits, B.; and Swamy, N. 2011.
Verified Security for Browser Extensions. In 2011 IEEE
Symposium on Security and Privacy.

Igbal, U.; Bahrami, P. N.; Trimananda, R.; Cui, H.; Gamero-
Garrido, A.; Dubois, D.; Choffnes, D.; Markopoulou, A.;
Roesner, F.; and Shafiq, Z. 2023. Tracking, Profiling, and
Ad Targeting in the Alexa Echo Smart Speaker Ecosystem.
In ACM Internet Measurement Conference (IMC).

Jakesch, M.; Bhat, A.; Buschek, D.; Zalmanson, L.; and
Naaman, M. 2023. Co-writing with opinionated language
models affects users’ views. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems.
Journal, T. W. S. 2023. Amazon Changed Search Algorithm
in Ways That Boost Its Own Products. https://themarkup.
org/google-the-giant/2020/07/28/google-search-results-
prioritize- google-products-over-competitors.

Kang, D.; Li, X.; Stoica, L.; Guestrin, C.; Zaharia, M.; and
Hashimoto, T. 2023. Exploiting programmatic behavior
of llms: Dual-use through standard security attacks. arXiv
preprint arXiv:2302.05733.

Kohno, T.; Acar, Y.; and Loh, W. 2023. Ethical Frameworks
and Computer Security Trolley Problems: Foundations for
Conversations. In USENIX Security.

Liang, C.-J. M.; Karlsson, B. F.; Lane, N. D.; Zhao, F;
Zhang, J.; Pan, Z.; Li, Z.; and Yu, Y. 2015. SIFT: build-
ing an internet of safe things. In Proceedings of the 14th
International Conference on Information Processing in Sen-
sor Networks, 298-3009.

Liu, L.; Zhang, X.; Yan, G.; Chen, S.; et al. 2012. Chrome
Extensions: Threat Analysis and Countermeasures. In
NDSS. Citeseer.

Manning, C.; and Schutze, H. 1999. Foundations of statisti-
cal natural language processing. MIT press.

Markup, T. 2020. Google’s Top Search Result? Surprise! It’s
Google. https://themarkup.org/google-the-giant/2020/07/
28/google-search-results-prioritize- google- products-over-
competitors.

Mayer, J. R.; and Mitchell, J. C. 2012. Third-Party Web
Tracking: Policy and Technology. In 2012 IEEE Symposium
on Security and Privacy.

Olejnik, L.; Minh-Dung, T.; and Castelluccia, C. 2014. Sell-
ing Off Privacy at Auction. In Network and Distributed Sys-
tem Security Symposium.

OpenAl. 2023a. Brand Guidelines. openai.com/brand#plu
gins.

OpenAl. 2023b. ChatGPT Plugins. https://openai.com/blo
g/chatgpt-plugins.

OpenAl. 2023c. ChatGPT Plugins Documentation. https:
/Iplatform.openai.com/docs/plugins/introduction.

OpenAl. 2023d. Data Controls FAQ. https://help.openai.co
m/en/articles/7730893-data-controls-faq.

OpenAl. 2023e. Domain verification and security. https:
/Iplatform.openai.com/docs/plugins/production/domain-
verification-and-security.

OpenAl 2023f. Getting started. https://platform.openai.co
m/docs/plugins/getting-started.

OpenAl 2023g. GPT-4 is OpenAI’s most advanced system,
producing safer and more useful responses. https://openai.c
om/gpt-4.

OpenAl 2023h. Introducing ChatGPT. https://openai.com
/blog/chatgpt.

OpenAl. 2023i. IP egress ranges. https://platform.openai.co
m/docs/plugins/production/ip-egress-ranges.

OpenAl 2023j. Model behavior feedback. https://openai.c
om/form/model-behavior-feedback.

OpenAl. 2023k. Plugin policies. https://openai.com/policie
s/usage-policies\#plugin-policies.

OpenAl. 20231. Plugin store — Submit a plugin for review.
https://platform.openai.com/docs/plugins/review/plugin-
store.

OpenAl 2023m. Plugin terms. https://openai.com/policies/
plugin-terms.

OpenAl. 2023n. Rate limits. https://platform.openai.com/
docs/plugins/production/rate-limits,.

OpenAl 20230. Updating your plugin. https://platform.ope
nai.com/docs/plugins/production/updating-your-plugin.
OpenAl 2023p. What makes a great plugin. https://platfo
rm.openai.com/docs/plugins/review/what-makes-a-great-
plugin.

OpenAl 2024. OpenAl Actions Introduction. https://platfo
rm.openai.com/docs/actions/introduction.

Papadopoulos, P.; Kourtellis, N.; and Markatos, E. 2019.
Cookie synchronization: Everything you always wanted to
know but were afraid to ask. In The World Wide Web Con-
ference, 1432—-1442.

Perez, F.; and Ribeiro, I. 2022. Ignore Previous Prompt:
Attack Techniques For Language Models. In NeurlPS ML
Safety Workshop.

Rehberger, J. 2023a. Indirect Prompt Injection via YouTube
Transcripts. https://embracethered.com/blog/posts/2023/ch
atgpt-plugin-youtube-indirect-prompt-injection/.
Rehberger, J. 2023b. Plugin Vulnerabilities: Visit a Website
and Have Your Source Code Stolen. embracethered.com/bl
og/posts/2023/chatgpt-plugin-vulns-chat-with-code/.

Reis, C.; Moshchuk, A.; and Oskov, N. 2019. Site Isolation:
Process Separation for Web Sites within the Browser. In
28th USENIX Security Symposium (USENIX Security 19).

623

Saltzer, J. H.; and Schroeder, M. D. 1975. The protection of
information in computer systems. Proceedings of the IEEE.
Sanchez-Rola, I.; Santos, I.; and Balzarotti, D. 2017. Exten-
sion Breakdown: Security Analysis of Browsers Extension
Resources Control Policies. In 26th USENIX Security Sym-
posium (USENIX Security 17). USENIX Association.
Schneier, B. 1999. Attack trees. Dr. Dobb’s journal, 24(12):
21-29.

Somé, D. F. 2019. EmPoWeb: Empowering Web Applica-
tions with Browser Extensions. In 2019 IEEE Symposium
on Security and Privacy (SP).

Swiderski, F.; and Snyder, W. 2004. Threat modeling. Mi-
crosoft Press.

Szurdi, J.; Kocso, B.; Cseh, G.; Spring, J.; Felegyhazi, M.;
and Kanich, C. 2014. The long “taile” of typosquatting do-
main names. In 23rd USENIX Security Symposium.
TechCrunch. 2023. Google launches a smarter Bard. https:
/ltechcrunch.com/2023/05/10/google-launches-a-smarter-
bard/.

WHATWG. 2023. Cross-document messaging. https://html
.spec.whatwg.org/multipage/web-messaging.html.

Zhou, Y.; Muresanu, A. I.; Han, Z.; Paster, K.; Pitis, S.;
Chan, H.; and Ba, J. 2023. Large Language Models are
Human-Level Prompt Engineers. In The Eleventh Interna-
tional Conference on Learning Representations.

Zou, A.; Wang, Z.; ; Kolter, J. Z.; and Fredrikson, M. 2023.
Universal and Transferable Adversarial Attacks on Aligned
Language Models.

