VISALOGY: Answering Visual Analogy Questions

Fereshteh Sadeghi, Larry Zitnick, Ali Farhadi
fsadeghi@cs.uw.edu, larryz@microsoft.com, afarhad2@cs.uw.edu

What is Analogy?

(from Greek ἀναλογία, analogia, “proportion”) is a cognitive process of transferring information or meaning from a particular subject (the analogue or source) to another (the target) —wiki

Analogy Questions

A is to B as C is to what?

\[A : B :: C : ? \]

Key to Answer analogy Questions

- Understand the semantic transformation that takes A to B
- Apply the same transformation on C to obtain the answer

Actual Results

Learn to Generalize

- NO textual label is given during training!
- Only analogical image quadruples are seen during training

Formulating Visual Analogy

Image1 to Image2 is similar to Image3 to what image?

\[\begin{align*}
I_1 &= I^{(c_1, p_1)}; & I_2 &= I^{(c_2, p_2)}; & I_3 &= I^{(c_3, p_1)}; & I_4 &= I^{(c_4, p_2)}
\end{align*} \]

I: Image c: Category p: Property

- Discover mapping T from I1 to I2
- Learn parameters \(\theta \)
- Apply T on I3 and search for I4

\[X_{12} \approx X_{34} \]

Double margin contrastive loss to learn generalizable embedding

\[\min_{\theta} \max_{x_{12}, x_{34}} \left[\left| \frac{1}{n} \sum_{i=1}^{n} \left(m_{N} \mathbb{1}_{x_{12, i} < x_{34, i}} + m_{P} \mathbb{1}_{x_{12, i} > x_{34, i}} \right) \right| \right] \]

At test time:

\[\text{rank}_{i} = \frac{T(I_{12, i}) \cdot T(I_{34, i})}{\left(T(I_{12, i}) \right)^{\frac{1}{2}} \left(T(I_{34, i}) \right)^{\frac{1}{2}}} \]

Experiments And Results

Qualitative

- Analogy questions using natural images:
 - Various Attributes & Actions (122 phrases (14 categories, 22 properties)

Quantitative

- Analogy questions using synthesized images of chairs
 - Styles as categories, Poses as properties (~1400 styles, 31 poses)