TF-MLPNet: Tiny Real-Time Neural Speech Separation

Malek Itani, Tuochao Chen, Shyamnath Gollakota

Paul G. Allen School of Computer Science & Engineering, University of Washington

{malek, tuochao, gshyam}@cs.washington.edu

Abstract

Speech separation on hearable devices can enable transfor-
mative augmented and enhanced hearing capabilities. However,
state-of-the-art speech separation networks cannot run in real-
time on tiny, low-power neural accelerators designed for hear-
ables, due to their limited compute capabilities. We present TF-
MLPNet, the first speech separation network capable of run-
ning in real-time on such low-power accelerators while outper-
forming existing streaming models for blind speech separation
and target speech extraction. Our network operates in the time-
frequency domain, processing frequency sequences with stacks
of fully connected layers that alternate along the channel and
frequency dimensions, and independently processing the time
sequence at each frequency bin using convolutional layers. Re-
sults show that our mixed-precision quantization-aware trained
(QAT) model can process 6 ms audio chunks in real-time on
the GAP9 processor, achieving a 3.5-4x runtime reduction com-
pared to prior speech separation models.

Index Terms: Speech separation, TinyML, quantization

1. Introduction

Over the past decade, two key technological trends have
emerged. First, deep learning has become central to speech sep-
aration algorithms [1} |2} 13 4], which typically require large,
energy intensive resources like GPUs. Second, there is in-
creasing interest in incorporating speech separation into hear-
ables, such as hearing aids, headphones, and earbuds, to develop
advanced augmented and enhanced hearing applications that
program acoustic scenes and address the cocktail party prob-
lem [51 16} 7, 18]. However, these small, power-constrained de-
vices have limited computing capabilities. To bridge this gap,
several hardware efforts have focused on developing tiny, low-
power neural network accelerators [9,|10]. These platforms are,
however, significantly more constrained than both GPUs and
general-purpose embedded CPUs like Raspberry Pi.

State-of-the-art speech separation networks cannot run in
real-time on low-power neural accelerators for hearables. These
networks operate in the time-frequency (TF) domain, modeling
time and frequency components as sequences using recurrent
networks [11} [12]], attention mechanisms [13]], or both [2]]. At
each time interval, the frequency sequence sub-network pro-
cesses the entire sequence of frequencies, while the time se-
quence sub-network independently processes across time, at
each of the frequency bins. Streaming applications like en-
hanced hearing however require neural networks to operate in
real-time on small blocks (<10 ms), which imposes significant
computational and algorithmic constraints.

We introduce TF-MLPNet, the first on-device real-time
neural speech separation network for low-power hearables. We
make two key observations: 1) Using recurrent models to
process frequency sequences sequentially slows computation,
while transformer and state-space architectures are incompati-

MLPNet Block (xB)
Spectral Stage

MLP-Mixer Conv-Batched
Encoder TModule(xM) " LSTM Fe

MLP-Mixer Module

C F

F Frequency Mixing c

Temporal Stage

Decoder

FC

Channel Mixing

Figure 1: The TF-MLPNet architecture has a conv-batched
LSTM in the temporal stage, enabling parallel inference of
batched LSTM inputs via convolutional layers, and a highly
parallel all-MLP-Mixer module in the spectral stage, replacing
the sequential bidirectional LSTM. (FC: fully connected layer)

ble with our target low-power accelerators; 2) Typically, time
sequence modeling at each frequency bin are parallelized using
batched processing. However, our target accelerators are de-
signed for low-power inference and operate on one input at a
time [9,110], i.e., with a batch size of 1. This precludes batched
processing, leading again to slow, sequential computation.

Inspired by all-MLP architectures [[14, 15} [16], our model
(Fig. [T) replaces the recurrent networks used for processing
frequency bins, with stacks of fully connected layers applied
alternately along the channel and frequency dimensions, en-
abling parallel processing across frequency bins for improved
efficiency. We also introduce a hardware-software co-design
method that parallelizes time sequence processing at each fre-
quency bin. By using just convolutional layers with a batch size
of 1, we effectively parallelize batched LSTMs, mimicking the
batched inference of a recurrent network in a single time step.
Finally, we also present a mixed-precision QAT strategy that
balances performance and runtime. Since different modules in
the network have varying sensitivity to quantization and its im-
pact on runtime, we apply distinct quantization configurations
to different sub-components in our network, optimizing perfor-
mance while maintaining real-time constraints.

We evaluate this architecture on two tasks 1) two-speaker
blind speech separation (BSS) and 2) target speech extrac-
tion (TSE). We compare TF-MLPNet with multiple variants of
the causal TF-GridNet model [2] for the BSS task and with
pDCCRN [17], and TinyDenoiser [18] for the TSE task. Our
results show that TF-MLPNet achieves state-of-the-art real-
time on-device performance. Furthermore, our real-time mixed-
precision quantized model results in a performance drop of only
0.6 dB, compared to a fully floating-point network.

2. Related work

Blind speech separation and target speaker extraction. Prior
neural architectures [19} 2 20} 21] use components like convo-
lutional [[19], LSTM [4], transformer [3]], and state-space [22]

layers. However, these models prioritize speech quality over
real-time, on-device, or low-power constraints. Furthermore,
transformers and state-space models have runtimes and mem-
ory demands that exceed our target hardware’s capabilities.

Low-latency speech processing. For augmented hearing, min-
imizing input-to-output latency is crucial but can reduce per-
formance due to the limited information available for predict-
ing output [23]]. Prior work has explored architectures for low-
latency speech tasks [24} 12526, |6} 27, 28], but these are evalu-
ated on devices with much higher clock frequencies, power bud-
gets, and memory footprints than our target hardware. The most
relevant, FSPEN [11]], enhances speech in real-time using gated
recurrent units (GRUs). Our results show that replacing its bidi-
rectional GRU with an all-MLP layer improves efficiency on
our target hardware platform.

TinyML. In the audio domain, prior work has applied TinyML
methods to classification tasks like keyword spotting [29],
speaker verification [30], and sound event detection [31], as
well as regression tasks like speech enhancement and denois-
ing [32, 118} 133} 34} 35} 136} 37]]. These networks however are
not designed for speech separation. They also do not process
the time and frequency components as individual sequences as
has become an essential component in state-of-the-art speech
separation models. [38] designs a quantized audio separation
network but the proposed network is neither causal, real-time
nor can run on low-power accelerators.

3. Methods

3.1. System Requirements and Runtime Decomposition

Real-time on-device enhanced hearing applications impose
strict constraints on model size, runtime, and power consump-
tion. For example, if our model receives 6 ms long audio
chunks, running inference on these chunks should take less than
6 ms for real-time operation. Further, non-volatile storage is
limited, e.g. given the size of GAP9 eMRAM, the model size
can be at most 1.5 MB to avoid using additional memory com-
ponents. Finally, to ensure > 6 hours of continuous use on a
675 hearing aid battery, power consumption must stay below
100 mW.

We start with a causal dual-path model, TF-GridNet, that
operates on the TF-domain [2]. Given our target hardware, we
remove the self-attention module but keep the recurrent mod-
ules. We quantize all nodes in TF-Gridnet into INT8, with the
exception of Layer Normalization and the batched time-domain
LSTM, which are quantized to FLOAT16 since these layers lack
INT8 out-of-the-box support. Fig. [2] profiles the runtime on
GAPO running at 370 MHz. This model requires 23.5 ms to
process one 6 ms chunk. The major contributors to the runtime
are 1) the frequency-domain bidirectional LSTMs and 2) the
time-domain batched unidirectional LSTMs.

3.2. TF-MLPNet

TF-MLPNet is a tiny real-time network for speech separation.
Our network has two main components: a conv-batched LSTM,
that enables parallel inference of a batch of inputs to an LSTM
using convolutional layers, and a highly parallel all-MLP-Mixer
module that replaces the sequential bidirectional LSTM.

In TF-MLPNet, we first apply a short-time Fourier trans-
form (STFT) to convert a time-domain audio signal z € R'**
into a time-frequency (TF) representation X’ € C**F*T over
T frames and F' frequency bins. The real and imaginary com-

Other 3.5%

57.0% 34.3% 5.3%

Time-domain LSTM Frequency-domain LSTM LayerNorm

Figure 2: Runtime profile of an existing dual-path model.

ponents are concatenated along the channel dimension to get
X € R¥>*F*T A shown in Fig. a), a causal 3 x 3 2D con-
volution encoder extracts a C'-dimensional latent representation
X € RO*F'*T" | X is processed by B MLPNet blocks, each
containing an MLP-Mixer and a conv-batched LSTM mod-
ule, producing X € R™F *T" A causal 3 x 3 2D trans-
posed convolution decoder then recovers the TF representations
Y € R*$*FXT for each of the S speakers (S = 2 for BSS and
S = 1 for TSE). This produces two channels per speaker —
the first half corresponds to the real components of the TF rep-
resentation, while the second half corresponds to the imaginary
components. Accordingly, we reinterpret Y as Y’ € C¥*FxT
use inverse STFT and overlap-add operations to reconstruct the
time-domain output signal y € R'*" for each speaker.

3.2.1. MLP-Mixer Module

At the spectral stage of existing dual-path models [2], the key
contributor to the inference time is the bidirectional frequency-
domain LSTM. Due to the nature of RNNs, each frequency
bin in the input must be processed sequentially. One way to
reduce the runtime is to compress the number of frequencies
with strided convolutions before and after frequency-domain
processing [8]. However, this was shown to reduce the algo-
rithm’s performance. An alternative approach is to replace the
recurrent architecture with one that can better utilize the par-
allel processing capabilities of the neural accelerator. While
this can be achieved using transformers or linear RNNS, today’s
low-power hardware accelerators do not support these complex
operations.

We instead replace the bidirectional frequency-domain
LSTM with an MLP-Mixer [14], that applies a sequence of mul-
tilayer perceptions alternately along the frequency and channel
dimensions (Fig. [I). This MLPMixer module is repeated M
times successively in every MLPNet Block. To further reduce
inference time, we replace the GELU nonlinearities with sim-
pler ReLU nonlinearities and omit the layer normalization.

3.2.2. Conv-Batched LSTM

Existing dual-path models [2]] process frequency components
independently in the time domain. During training, GPUs han-
dle this efficiently by treating each frequency bins as a separate
batch. However, inference on low-power accelerators is chal-
lenging since many lack support for batched processing.

During streaming inference, the batched LSTM receives
X € RE*F'*1 and processes a single LSTM step on F” in-
dependent sequences. A naive solution is sequential processing
per frequency bin to maintain a batch size of 1, but this under-
utilizes parallel processing and greatly increases inference time.

Instead of a standard LSTM kernel, we decompose the
LSTM into its building blocks. We use 1D convolutions (kernel
size = 1) for the linear gates, treating the frequency dimension as
the sequence dimension. This allows parallel processing of all
frequencies without special hardware support. Note that since
we process only a single time frame at a time during streaming
inference, batched inference for frequency-domain processing
is not required, and so the batch size, i.e., the number of inde-
pendent time frames, is just 1.

Table 1: Main results. SISDR, PESQ and DNS-MOS are re-
ported for FP32 BSS models. For runtime, we assume the net-
works are fully INT8 quantized, except in the case where they
have Layer Normalization, which is quantized to FP16. Values
in red do not meet our system requirements.

Name Runtime SISDR PESQ DNS Param

(ms) (dB) -MOS (K)

Mixture - 0.00 124 248 -
TF-GridNet [2] 16.4 1478 239 328 173
TFG-LN 15.1 14.08 229 3.12 173
TFG-LN+2F 8.8 13.78 227 3.14 198
TFG-LN+4F 5.6 13.51 225 3.09 222
TFG-LN+6F 4.5 13.16 217 3.07 247

TFG-LN+GRU 124 1447 235 322 147
TFG-LN+2F+GRU 74 12.87 213 3.00 172
TFG-LN+4F+GRU 4.9 1266 2.10 296 197

TF-MLPNet 3.6 1412 223 321 493
TF-MLPNet+2F 2.8 13.06 2.09 3.04 215

3.3. Mixed-Precision Quantization

We use Quantization-Aware Training (QAT) [39] to simulate
quantization errors during training and reduce performance
degradation. We start with a floating-point model and fine-tune
it using the FQSE quantization framework [33]. Our weight
quantization is symmetric and per-channel, while activation
quantization is asymmetric and per-tensor.

Our fully INT8-quantized network with QAT produces a no-
ticeable performance degradation. To bridge the gap between
quantized and floating-point models, we designed a mixed-
precision QAT approach to balance performance and runtime.

We quantize the first input convolution and the last decon-
volution layers to BFLOAT16 instead of INT8 to preserve the
high-precision information from the input in the first layer and
to reconstruct high-quality audio with the last deconvolution.
Additionally, our experiments with batched LSTMs revealed
that convolution layers dominate the runtime and that quan-
tization errors accumulate temporally. So, we use a mixed-
precision LSTM, where we quantize convolution layers to INT8
for efficiency while keeping activation, addition, multiplication
operations, and cell states in BFLOAT16 to minimize quantiza-
tion noise and improve performance.

To ensure real-time operation while minimizing perfor-
mance loss, we use INT16 activations for the MLP modules at
odd-numbered MLPNet blocks and INTS8 activations for those
at even-numbered blocks. The MLP module weights are al-
ways quantized in INTS. Finally, we incorporate the SDR-aware
knowledge distillation loss function [38]] into the QAT process.

4. Experiments and results

Datasets. We train our model using mixtures from Lib-
riSpeech [40]] and evaluate it on the LibriSpeech test set [40] and
VCTK [41]. Each 5-second, 16 kHz speech mixture is created
by sampling two different speaker utterances from the same cor-
pus split. Utterances longer than 5 seconds are cropped, while
shorter ones are padded with silence. For TSE, one speaker is
chosen as the target, and the speaker d-vector [42] embedding
is computed from a different utterance by that target speaker.
The interfering speech is scaled to achieve an input SNR uni-
formly distributed in [-10,10] dB. Training speech files come
from train—-clean-360, validation from dev—-clean, and

Table 2: SI-SDRi (dB) for blind source separation (BSS) as a
function of percentage of training set used for training models.

Training Dataset Percentage (%)
Model 1 2 5 10 25 50 100

TFG-LN+4F 4.52 7.83 11.44 12.99 13.34 13.26 13.51
TF-MLPNet 4.18 6.08 9.65 12.99 13.85 14.04 14.12

testing from test-clean. The training set is generated on-
the-fly, while validation and test sets contain 2k and 1k mix-
tures, respectively.

Evaluation setup. We compare with multiple model variants.
For TF-GridNet, we use the causal implementation from [6]
without self-attention and with hyperparameters B = 6, D =
32 and H = 32. We remove the LayerNormalization modules
to obtain the model TFG-LN. We further introduced frequency
compression on the frequency-domain processing component
used in [8], and we refer to the resulting model with a fre-
quency compression rate o as TFG-LN+aF. We also considered
a variant where we replaced the LSTM with a GRU, referred to
as TFG-LN+aF+GRU. In addition to the hyperparameters enu-
merated above, the TF-MLPNet used in our experiments has an
MLP-Mixer with M = 2 MLP-Mixer repetitions. Addition-
ally, when we apply frequency compression to our TF-MLPNet
architecture, we refer to it as TF-MLPNet+aF.

Following [23], we use a 10 ms output window and a 6 ms
hop size, resulting in a 10 ms algorithmic latency. For BSS, the
decoder outputs two channels (one per speaker), while TSE uses
a single channel. In TSE, the model is conditioned on d-vector
embeddings via a FiLM layer after the encoder. We convert Py-
Torch models into optimized kernels for GAP9 using GAPFlow.

Loss function and training hyper-parameters. We train BSS
models using Permutation Invariant Training with negative SI-
SDR as the loss function. For TSE, we use a combined loss:
LS]_SDR =+ LPESQ, where LSI—SDR is negative SI-SDR,
and Lpgsq is calculated using torch-pesq. Each epoch
processes 20k mixtures before validation. Models are trained
for 400 epochs using a three-stage schedule: (1) linearly in-
creasing the learning rate from le-4 to 1e-3 over 10 epochs, (2)
maintaining le-3 for 200 epochs, and (3) halving it every 30
epochs for the remaining 190. Model parameters are optimized
using AdamW and we use a gradient clipping of 0.1. Model
performance is evaluated using the the epoch with the lowest
validation loss.

QAT hyper-parameters. We start with the trained floating-
point parameters and fine-tune it for 100 epochs. Since QAT
is time-consuming, each epoch processes 4k mixtures. Training
starts with a 1e-3 learning rate using a ReduceLROnPlateau
scheduler (patience = 5, factor = 0.5). Early stopping is trig-
gered if validation loss does not improve for 20 epochs.

Results. Table [I] compares floating-point performance of dif-
ferent models on the BSS task using SI-SDR, PESQ, and DNS-
MOS OVRL [43]. We measure quantized runtime for process-
ing a 6 ms audio chunk on GAP9 at 370 MHz.

The original TF-GridNet achieves the best floating-point
performance (14.78 dB) but requires 25.8 ms runtime at FP16,
reduced to 16.4 ms with INT8 quantization and FP16 layer nor-
malization. Removing LayerNorm (TFG-LN) and applying our
Conv-Batched LSTM method cuts FP16 runtime to 22.3 ms,
with full INT8 quantization reducing it to 15.1 ms—still too
slow for real-time use. Frequency compression meets real-
time requirements, bringing INT8 runtime down to 5.6 ms (x4

Table 3: Quantization results. We measure the SISDRi, model
size, runtime and power consumption for different QAT strate-
gies. MixLSTM refers to quantizing convolution layers to
INT8 while keeping others in BFLOAT16. FPConv refers to
quantizing the input convolution and output deconvolution in
BFLOAT16 instead of INT8. KD refers to using SDR-aware
knowledge distillation as the training loss. MixMLP refers to
quantizing only half the MLP modules into INTI16, while in
FullMLP, we quantize all of them to INT16. The reported model
size includes the memory needed to store the quantized model
parameters, but not the quantization constants.

QAT config SISDRi Size Runtime Power
TF-MLPNet dB) (kB) (ms) (mW)

FP32 14.12 1926 - -
INT8 10.21 481 3.6 54.9
+MixLSTM 1122 481 4.0 58.1
+FPConv 12.57 483 4.2 60.7
+KD 13.07 483 42 60.7

+MixMLP 13.52 483 5.6 80.1
+FullMLP 13.65 483 6.5 -

compression) and 4.5 ms (X6 compression), but at a 0.5-1 dB
floating-point SI-SDR performance drop. Replacing LSTM
with GRU also speeds up INT8 runtime but affects performance.

Our TF-MLPNet model, which replaces frequency-domain
LSTMs with MLP-Mixer, achieves a drastic runtime reduction
to 3.6 ms with INT8 quantization. This improvement is due to
its use of simple, parallelizable MLPs that efficiently leverage
the neural accelerator. TF-MLPNet offers the lowest runtime
while maintaining a floating-point performance at 14.12 dB. A
paired t-test was conducted between our TF-MLPNet and other
baselines which meets the real-time requirements for each met-
ric, showing a significant difference with p < 0.05.

We analyze how training dataset size affects TF-MLPNet
performance compared to TF-LN+4F, the best real-time base-
line model variant. In Table |2} both models are trained for the
same number of epochs, but with varying proportions of speak-
ers seen during training. While TF-MLPNet underperforms TF-
LN+4F with limited data, it surpasses it as more speakers are in-
cluded in training. This indicates that TF-MLPNet scales better
with increased data, which matches the observation in [14].

Quantization impacts model performance, so we exper-
imented with different quantization settings and QAT tech-
niques to assess their effects on performance and run-
time. We evaluate the following configurations: (1)
FP32: original float-pointing model, (2) INT8: fully quan-
tized INT8 model, (3) MixLSTM: Mixed-precision LSTM
(see §B.3), with other modules quantized to INTS8, (4)
MixLSTM+FPConv: mixed-precision LSTM, BFLOAT16
Conv/Deconv, other modules quantized to INTS8, (5) MixL-
STM+FPConv+MixMLP: mixed-precision LSTM, BFLOAT16
Conv/Deconv, mixed-precision MLP (see §3.3), others
in INT8, and (6) MixLSTM+FPConv+FULLMLP: mixed-
precision LSTM, BFLOAT16 Conv/Deconv, fully INT16-
quantized MLP, others in INT8. We trained with SI-SDR loss
and also explored SDR-aware knowledge distillation ("+KD”).
As shown in Table full INT8 quantization with stan-
dard QAT led to around 4 dB drop in SI-SDRi. How-
ever, incorporating KD loss and mixed-precision quantiza-
tion—including mixed-precision LSTM, BFLOAT16 Conv, and
mixed-precision MLP—recovered SI-SDRi to 13.52 dB while
still achieving real-time performance.

Table[]shows that TF-MLPNet’s performance gains gener-

Table 4: BSS results on 2-speaker mixtures from VCTK. All
models were only trained on data from LibriSpeech. SISDR,
PESQ and DNS-MOS are reported for FP32 BSS models. For
runtime, we assume the networks are fully INTS quantized.

Name SISDR PESQ Runtime

(dB) (ms)
Mixture -0.01 1.55 -
TFG-LN+4F 12.36 1.97 5.6
TFG-LN+6F 11.51 1.94 4.5
TFG-LN+4F+GRU 11.68 1.89 49
TF-MLPNet 12.63 1.95 3.6
TF-MLPNet+2F 11.59 1.85 2.8

Table 5: Target Speech extraction (TSE) results. SISDR, PESQ
and DNS-MOS are reported for FP32 TSE models. For runtime,
we assume the networks are fully INTS quantized. Values in red
do not meet our runtime or memory requirements.

Name SISDR PESQ DNS Param Runtime
(dB) -MOS (K) (ms)
Mixture 0.05 126 250 - -

pDCCRN [17] 10.71 2.15 3.05 3218 -

TFG-LN+2F 1222 232 323 213 8.9
TFG-LN+4F 1190 228 3.18 238 5.7
TFG-LN+6F 11.28 224 315 263 4.6
TFG-LN+2F+GRU 12.20 232 3.18 188 7.5
TFG-LN+4F+GRU 12.00 230 3.15 213 5.0

TinyDenoiser [18] 8.15 1.70 2.65 1056 0.464

TF-MLPNet 12.37 237 332 509 3.6
TF-MLPNet+2F 11.77 218 3.12 231 2.9

alize to out-of-distribution datasets. We created 5-second audio
mixtures using VCTK data, following the same process as be-
fore. BSS models trained on LibriSpeech mixtures were then
evaluated on the VCTK mixtures. TF-MLPNet outperformed
baseline models, showing generalization across datasets.

Finally, we evaluated TF-MLPNet on the TSE task, com-
paring it against baseline models and prior work, including
pDCCRN [17] and TinyDenoiser [18]. For a fair compar-
ison, all models used the same STFT configuration and a
FiLM layer right after the encoder for target speaker condi-
tioning. pDCCRN had the number of convolution filters set to
[16, 32,64, 128,256, 256], a 5 x 2 kernel with a 2 x 1 stride,
and an LSTM hidden size of 256. For TinyDenoiser, aside from
the STFT configuration, we use the same hyperparameters de-
scribed in [18]. TF-MLPNet outperformed all models across
metrics while maintaining real-time performance, demonstrat-
ing its effectiveness across both speech separation tasks.

5. Conclusion

We introduce TF-MLPNet, the first real-time speech separa-
tion network for low-power hearables, outperforming existing
streaming architectures. While we use hardware consistent
with prior research [44]], exploring our methods on platforms
like Qualcomm’s S7 series, Analog Devices’ MAX78002, and
Syntiant’s NDP120 offers interesting future directions. Further
work includes enabling other audio tasks such as target sound
extraction, distance-based multi-channel source separation [8],
and directional hearing [45] on constrained hardware.

Acknowledgments. The researchers are partly supported by
the Moore Inventor Fellow award #10617, Thomas J. Cable
Endowed Professorship, and a UW CoMotion innovation gap
fund. This work was facilitated through the use of computa-
tional, storage, and networking infrastructure provided by the
UW HYAK Consortium.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

6. References

K. Zmolikova, M. Delcroix, T. Ochiai, K. Kinoshita, J. Cernock}’/,
and D. Yu, “Neural target speech extraction: An overview,” I[EEE
Signal Processing Magazine, 2023.

Z.-Q. Wang, S. Cornell, S. Choi, Y. Lee, B.-Y. Kim, and S. Watan-
abe, “Tf-gridnet: Making time-frequency domain models great
again for monaural speaker separation,” in /CASSP, 2023.

C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong,
“Attention is all you need in speech separation,” in /CASSP, 2021.

Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path RNN: efficient
long sequence modeling for time-domain single-channel speech
separation,” in /CASSP. IEEE, 2020.

B. Veluri, M. Itani, J. Chan, T. Yoshioka, and S. Gollakota, “Se-
mantic hearing: Programming acoustic scenes with binaural hear-
ables,” in ACM UIST, 2023.

B. Veluri, M. Itani, T. Chen, T. Yoshioka, and S. Gollakota, “Look
once to hear: Target speech hearing with noisy examples,” in ACM
CHI, 2024.

S. Cornell, Z.-Q. Wang, Y. Masuyama, S. Watanabe, M. Pariente,
and N. Ono, “Multi-channel target speaker extraction with refine-
ment: The wavlab submission to the second clarity enhancement
challenge,” in arXiv, 2023.

T. Chen, M. Itani, S. Eskimez, T. Yoshioka, and S. Gollakota,
“Hearable devices with sound bubbles,” Nature Electronics, 2024.

“NDP120 - Syntiant,”
ndpl20,

https://www.syntiant.com/

“GAP9 processor — GreenWaves Technologies,” https://
greenwaves-technologies.com/gap9_processor/,

L. Yang, W. Liu, R. Meng, G. Lee, S. Baek, and H.-G. Moon,
“Fspen: an ultra-lightweight network for real time speech enah-
ncment,” in ICASSP, 2024.

R. Chao, W.-H. Cheng, M. La Quatra, S. M. Siniscalchi, C.-H. H.
Yang, S.-W. Fu, and Y. Tsao, “An investigation of incorporating
mamba for speech enhancement,” arXiv, 2024.

Y.-X. Lu, Y. Ai, and Z.-H. Ling, “Mp-senet: A speech enhance-
ment model with parallel denoising of magnitude and phase spec-
tra,” arXiv, 2023.

I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Un-
terthiner, J. Yung, A. Steiner, D. Keysers, J. Uszkoreit, M. Lucic,
and A. Dosovitskiy, “MIp-mixer: An all-mlp architecture for vi-
sion,” in Neurips, 2021.

F. Mai, J. Zuluaga-Gomez, T. Parcollet, and P. Motlicek, “Hyper-
conformer: Multi-head hypermixer for efficient speech recogni-
tion,” in Interspeech, 2023.

T. Parcollet, R. van Dalen, S. Zhang, and S. Bhattacharya, “Sum-
marymixing: A linear-complexity alternative to self-attention for
speech recognition and understanding,” in Interspeech, 2024.

S. E. Eskimez, T. Yoshioka, H. Wang, X. Wang, Z. Chen, and
X. Huang, “Personalized speech enhancement: new models and
comprehensive evaluation,” in IEEE ICASSP, 2022.

M. Rusci, M. Fariselli, M. Croome, F. Paci, and E. Flamand, “Ac-
celerating rnn-based speech enhancement on a multi-core mcu
with mixed fp16-int8 post-training quantization,” in arXiv, 2022.

Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal
time—frequency magnitude masking for speech separation,”
IEEE/ACM Trans. Audio, Speech and Lang. Proc., 2019.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Zhao and B. Ma, “Mossformer: Pushing the performance
limit of monaural speech separation using gated single-head trans-
former with convolution-augmented joint self-attentions,” in
ICASSP, 2023.

U.-H. Shin, S. Lee, T. Kim, and H.-M. Park, “Separate and recon-
struct: Asymmetric encoder-decoder for speech separation,” in
arXiv, 2024.

K. Li and G. Chen, “Spmamba: State-space model is all you need
in speech separation,” in arXiv, 2024.

Z.-Q. Wang, G. Wichern, S. Watanabe, and J. Le Roux, “Stft-
domain neural speech enhancement with very low algorithmic la-
tency,” Trans. on Audio, Speech, and Language Processing, 2022.

J.-M. Valin, U. Isik, N. Phansalkar, R. Giri, K. Helwani, and
A. Krishnaswamy, “A perceptually-motivated approach for low-
complexity, real-time enhancement of fullband speech,” in arXiv,
2020.

H. Sato, T. Moriya, M. Mimura, S. Horiguchi, T. Ochiai,
T. Ashihara, A. Ando, K. Shinayama, and M. Delcroix,
“Speakerbeam-ss: Real-time target speaker extraction with
lightweight conv-tasnet and state space modeling,” 2024.

H. Schroter, A. N. Escalante-B., T. Rosenkranz, and A. Maier,
“Deepfilternet2: Towards real-time speech enhancement on em-
bedded devices for full-band audio,” in arXiv, 2022.

B. Veluri, J. Chan, M. Itani, T. Chen, T. Yoshioka, and S. Gol-
lakota, “Real-time target sound extraction,” in JCASSP, 2023.

M. A. Akeroyd, W. Bailey, J. Barker, T. J. Cox, J. F. Culling,
S. Graetzer, G. Naylor, Z. Podwinska, and Z. Tu, “The 2nd clar-
ity enhancement challenge for hearing aid speech intelligibility
enhancement: Overview and outcomes,” in ICASSP, 2023.

Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” in arXiv, 2018.

M. Pavan, G. Mombelli, F. Sinacori, and M. Roveri, “Tinysv:
Speaker verification in tinyml with on-device learning,” in Pro-
ceedings of the 4th International Conference on AI-ML Systems,
New York, NY, USA, 2025, Association for Computing Machin-
ery.

Y. Wu, X. Quan, M. R. Izadi, and C.-C. J. Huang, ““it os okay
to be uncommon”: Quantizing sound event detection networks

on hardware accelerators with uncommon sub-byte support,” in
ICASSP, 2024, pp. 281-285.

1. Fedorov, M. Stamenovic, C. Jensen, L.-C. Yang, A. Mandell,
Y. Gan, M. Mattina, and P. N. Whatmough, “Tinylstms: Efficient
neural speech enhancement for hearing aids,” Interspeech, 2020.
E. Cohen, H. V. Habi, and A. Netzer, “Towards fully quantized
neural networks for speech enhancement,” in Interspeech, 2023,
pp. 181-185.

H.-S. Choi, S. Park, J. H. Lee, H. Heo, D. Jeon, and K. Lee, “Real-
time denoising and dereverberation wtih tiny recurrent u-net,” in
ICASSP, 2021.

N. L. Westhausen and B. T. Meyer, “Low bit rate binaural link for
improved ultra low-latency low-complexity multichannel speech
enhancement in hearing aids,” in WASPAA, 2023.

R. D. Nathoo, M. Kegler, and M. Stamenovic, “Two-step knowl-
edge distillation for tiny speech enhancement,” in /CASSP, 2024.

X. Chen, G. Liu, J. Shi, J. Xu, and B. Xu, “Distilled binary neural
network for monaural speech separation,” in IJJCNN, 2018.

E. Cohen, H. V. Habi, R. Peretz, and A. Netzer, “Fully quantized
neural networks for audio source separation,” IEEE Open Journal
of Signal Processing, vol. 5, pp. 926-933, 2024.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, “A survey of quantization methods for efficient neural
network inference,” in Low-Power Computer Vision. 2022.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-

rispeech: An asr corpus based on public domain audio books,”
in ICASSP, 2015.

https://www.syntiant.com/ndp120
https://www.syntiant.com/ndp120
https://greenwaves-technologies.com/gap9_processor/
https://greenwaves-technologies.com/gap9_processor/

[41]

[42]

[43]

[44]

[45]

C. Veaux, J. Yamagishi, and K. MacDonald, “Cstr vctk corpus:
English multi-speaker corpus for speech synthesis,” University of
Edinburgh. The Centre for Speech Technology Research, 2017.

Q. Wang, C. Downey, L. Wan, P. A. Mansfield, and I. L. Moreno,
“Speaker diarization with Istm,” in ICASSP. IEEE, 2018.

C. K. A. Reddy, V. Gopal, and R. Cutler, “Dnsmos p.835: A non-
intrusive perceptual objective speech quality metric to evaluate
noise suppressors,” in /CASSP, 2022, pp. 886—890.

M. Itani, T. Chen, A. Raghavan, G. Kohlberg, and S. Gollakota,
“Wireless hearables with programmable speech ai accelerators,”
in ACM MOBICOM, 2025.

A. Wang, M. Kim, H. Zhang, and S. Gollakota, “Hybrid neural
networks for on-device directional hearing,” AAAI, 2022.

	 Introduction
	 Related work
	 Methods
	 System Requirements and Runtime Decomposition
	 TF-MLPNet
	 MLP-Mixer Module
	 Conv-Batched LSTM

	 Mixed-Precision Quantization

	 Experiments and results
	 Conclusion
	 References

