
Hybrid neural networks for on-device directional hearing

Anran Wang1, Maruchi Kim1, Hao Zhang2, Shyamnath Gollakota1

1University of Washington, 2ETH Zürich
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Abstract — On-device directional hearing requires au-
dio source separation from a given direction while achiev-
ing stringent human-imperceptible latency requirements.
While neural nets can achieve significantly better perfor-
mance than traditional beamformers, all existing models
fall short of supporting low-latency causal inference on
computationally-constrained wearables. We present Hybrid-
Beam, a hybrid model that combines traditional beamform-
ers with a custom lightweight neural net. The former reduces
the computational burden of the latter and also improves its
generalizability, while the latter is designed to further reduce
the memory and computational overhead to enable real-time
and low-latency operations. Our evaluation shows compara-
ble performance to state-of-the-art causal inference models
on synthetic data while achieving a 5x reduction of model
size, 4x reduction of computation per second, 5x reduction
in processing time and generalizing better to real hardware
data. Further, our real-time hybrid model runs in 8 ms on
mobile CPUs designed for low-power wearable devices and
achieves an end-to-end latency of 17.5 ms.

Introduction
Directional hearing is the ability to amplify speech from a
specific direction while reducing sounds coming from other
directions. This has multiple applications ranging from med-
ical devices to augmented reality and wearable computing.
Directional hearing aids can help individuals with hearing
impairments who have increased difficulty hearing in the
presence of noise and interfering sounds (Doclo et al. 2010;
Brayda et al. 2015). It can also be combined with augmented
reality headsets to customize the sounds and noises from dif-
ferent directions, e.g., sensors like gaze trackers can enable
a wearer to be in a noisy room and amplify the speech from
a specific direction, simply by looking at the source.

For decades, the predominant approach to achieving this
goal was to perform beamforming (Krim and Viberg 1996;
Brayda et al. 2015; Chhetri et al. 2018). While these signal
processing techniques can be computationally light-weight,
they have a limited performance (Souden, Benesty, and
Affes 2010; Kumatani et al. 2012). Recent work has shown
that neural networks achieve exceptional source separation

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in comparison (Luo and Mesgarani 2019; Jenrungrot et al.
2020) but are computationally expensive and to date, cannot
run on-device on wearable computing platforms.

Directional hearing applications however impose strin-
gent computational, real-time and low-latency requirements
that are not met by any existing source separation networks.
Specifically, compared to other audio applications like tele-
conferencing where latencies on the order of 100 ms are
adequate, directional hearing requires real-time audio pro-
cessing with much more stringent latency requirements. For
example, medical hearing aid research shows that we need
a latency less than 20 ms to be tolerable (Stone and Moore
1999). This is also true for augmented reality applications so
that any modified sound sources are correctly synced, both
visually and audibly, in the brain (Gupta et al. 2020).

These stringent low-latency constraints are challenging to
meet on wearable and medical devices. Directional hear-
ing requires not only processing the continuous audio in-
put stream, but also generating a continuous output stream
within these real-time constraints. While powerful GPUs
and specialized inference accelerators (e.g., TPU) can speed
up the network run-time (Wang, Wei, and Brooks 2019),
they are usually not available on a wearable device given
their power, size and weight requirements. In fact, even
the CPU capabilities and memory bandwidth available on
wearables can be significantly constrained even compared
to smartphones. For example, the iPhone 12 CPU is more
than 10 times faster than that used in Google glasses and
Apple watch. Offloading computation to other devices (e.g.,
smartphone) is not an option given the additional wireless
roundtrip latency on the order of tens of milliseconds.

In this paper, we show for the first time that real-time di-
rectional hearing using deep learning can be achieved on
computationally-constrained platforms. Instead of design-
ing an end-to-end neural net to perform the task, we cre-
ate a hybrid model that combines lightweight beamforming
algorithms with neural networks. Our key insight is that the
beamforming algorithms can provide spatial hints to a neural
net that can drastically reduce the network complexity and
its computational cost while achieving similar source sepa-
ration performance to state-of-the-art causal neural networks
that are computationally expensive. At a high level, while
neural networks are a powerful tool to approximate func-
tions, approximating beamforming functions like matrix in-



version can increase the network complexity making them
computationally expensive. However, traditional beamform-
ers can provide useful theoretically-derived spatial hints to
the neural net, in a computationally inexpensive manner.

We present the network architecture shown in Fig. 2
where we first input the signals from the multiple micro-
phones into three different beamformers. The output of
the beamformers along with the original signals from the
multiple microphones is then fed into a causal neural net
model that is optimized for memory overhead and inference
time on mobile CPUs. Specifically, we use complex tensors
throughout our network to reduce half of our model size
while achieving a comparable accuracy. Compared to real-
valued networks, complex representation also restricts the
degree of freedom of the parameters by enforcing correla-
tion between the real and imaginary parts, which enhances
the generalization capacity of the model since phase encodes
essential spatial information. We also design a combination
of dilated and strided complex convolution stacks to reduce
memory footprint and memory copy per time step while
keeping a large receptive field. Finally, we simplify the tem-
poral convolutional network to run more efficiently.

Compared to state-of-the-art causal models, we are able
to achieve comparable separation performance with a 5x re-
duction of model size, 4x reduction of computation, and 5x
reduction of processing time, enabling it to run in real-time
on a CPU suitable for wearable devices with low latency.
We also evaluate our model trained entirely on simulated
data on real data recorded in conference rooms using a smart
glasses prototype with a custom six-microphone array and a
gaze tracker, which achieves real-time, gaze-controlled di-
rectional hearing with an end-to-end latency of 17.5 ms.

Related Work
Beamformers based on statistical signal processing.
Beamforming techniques are designed to combine multi-
channel sensor signals to achieve directionality. Linear fil-
ters can statistically create constructive interference at the
direction of interest and destructive interference elsewhere.
Non-adaptive beamformers such as Barlett (delay-and-sum)
beamformers and superdirective beamformers construct a
constant linear filter applied to the signal (Krim and Viberg
1996). Adaptive beamformers such as minimum-variant
distortionless-response (MVDR) beamformers and linearly
constrained minimum variance (LCMV) beamformers ad-
ditionally utilize spatial information from the mixture signal
to inform the filter construction (Souden, Benesty, and Affes
2010). While they can be computationally inexpensive, their
separation result is limited since they use the spatial cues but
do not efficiently capture the acoustic cues.

Blind source separation. Another classical problem for-
mulation is blind source separation where each channel re-
ceives a different unknown linear combination of a few in-
dependent sound sources (Comon and Jutten 2010). With-
out spatial hints such as directions, the problem formula-
tion is often under-deterministic but a few spatial clustering
methods such as independent component analysis (Haykin
and Chen 2005) and Gaussian mixture model (Higuchi

Figure 1: End-to-end latency for real-time hearing enhancement

et al. 2017) can obtain a solution assuming a small num-
ber of sound sources. Recently, neural network architec-
tures have been proposed to achieve blind source sepa-
ration. Frequency-domain approaches learn the frequency-
time mask for each sound source that is applied to the
mixture spectrogram (Chen et al. 2018a; Hu et al. 2020).
The spectrogram as input and output makes it inefficient
for use in our application since it requires lookahead of
tens of milliseconds. Time-domain approaches such as De-
mucs (Défossez, Synnaeve, and Adi 2020), TasNet (Luo and
Mesgarani 2018) FasNet (Luo et al. 2019), TAC (Luo et al.
2020), Conv-TasNet (Luo and Mesgarani 2019) and its vari-
ants(Gu et al. 2019b; Défossez et al. 2019; Luo et al. 2020;
Han, Luo, and Mesgarani 2020) optimize for the learnt fil-
ters that convolve with the mixture signals to separate each
sound source. While time-domain approaches allow causal
construction and more effective separation, they are not de-
signed to match directions with each separated signal from
the mixture, and the computation grows exponentially with
the number of sources. (Jenrungrot et al. 2020) simultane-
ously separates each sound source as well as identify their
directions; their model however is not causally constructed.
They are also an overkill for use with directional hearing
since unlike blind source separation it only requires separat-
ing the speech from a specific direction.

Neural beamformers. To address the specific problem
where the direction is provided as input, beamformer de-
signs have been proposed using neural networks. (Chen
et al. 2018b) presents a multi-pass bi-directional LSTM net-
work using spectral, spatial, and angle features. Similarly,
(Gu et al. 2019a) design a LSTM network on the spectro-
gram and attention mechanisms. Neither of these networks
are causal in structure. (Gu and Zou 2020) extends Conv-
TasNet (Luo and Mesgarani 2019) by feeding spatial fea-
tures along with the first channel and achieves better re-
sults than LSTM-based methods, (Qian et al. 2018) uses
a combination of beamformers and neural networks to en-
hance speech. They are computationally expensive and does
not meet the delay requirements of mobile CPUs. (Fedorov
et al. 2020) achieves low-power speech enhancement using
LSTM, but it is not for multichannel source separation.

Improving MVDR with neural nets. (Zhang et al. 2021;
Xu et al. 2020; Xiao et al. 2017; Tammen, Fischer, and Do-



Figure 2: The architecture of the HybridBeam system. (A): the end-to-end network diagram. (B): the structure of the simplified
temporal convolutional network (TCN).

clo 2019) replace matrix inversion and PCA within a MVDR
beamformer with a neural net. We take the inverse approach
where we utilize the MVDR output for more efficient neural
net feature extraction and design. It is also noteworthy that
the structures of these prior designs are not causal in nature.
Further, they are computationally expensive and can not run
in real-time on a mobile CPU. Our joint beamformer-neural
net approach instead reduces the complexity of the neural
net using the features from the beamformers.

Method
The problem of real-time direction hearing can be formu-
lated as follows. Say, we have N sound sources s1..N emit-
ted from angles θ1..N with respect to an array with c micro-
phones. The signal received by the ith microphone is,

yi(t) =

N∑
j=1

0∑
τ=−∞

Hi,j(τ)sj(t− τ) +N(t)

Here,N(t) is random noise andHi,j is the impulse response
associated with sound source j and microphone i that cap-
tures multi-path and reverberations. At a given time t and a
known θk, our goal is to estimate the acoustic signal, sk(t),
emitted from the direction θk, given y(t−W ) · · · y(t+ L),
where W is the reception field, and L is a small look-ahead.

Latency Requirements
Fig. 1 shows the composition of various sub-components
that contribute to the latency. First, the sound signals get
sampled by the multiple microphones and fed into a mem-
ory buffer. When the buffer is full, the data in the buffer is
then processed by a computation program that consists of
our neural network and signal processing techniques. The
result, i.e., the speech from a specific direction, is then trans-
ferred to be played back through the speakers.

Consequently, to reduce the end-to-end latency to less
than 20 ms, we should 1) reduce the buffer size; 2) mini-
mize the processing time; and 3) reduce the look-ahead du-
ration for the model. Reducing all these parameters while
achieving good performance is challenging for multiple rea-
sons. First, a very short buffer size (say 3 ms) may cause
jitters due to the timing fluctuation in the operating system

scheduling. A smaller buffer size also inversely increases
with the frequency of the computation calls, each of which
involves a constant overhead. Second, to ensure real-time
operation, the computation block has to process the acous-
tic data from each buffer block within the duration of the
block. That is, the computational time to process a 8 ms
buffer should be less than 8 ms. Neural networks however
are known for their heavy computational requirements, and
none of existing models are designed for such a small end-
to-end latency and real-time signal processing on compu-
tationally constrained CPUs. Third, a large look-ahead can
improve source separation but also increases latency.

HybridBeam Architecture
Fig. 2 shows the overall architecture of our hybrid model.
The input multi-channel signals from the microphone array
and the target angle θk are first passed to three lightweight
beamformers that result in three different versions of the
beamformed signals. These beamformed signals are con-
catenated with the original multi-channel signals and fed
into our neural network that is designed to output the sep-
arated acoustic signal from the target direction θk.

Prebeamforming. We use the following beamformers to
extract features: a) superdirective beamformer (Krim and
Viberg 1996) that is optimized under diffused noise; b) on-
line adaptive MVDR beamformer (Habets et al. 2010) that
extracts the spatial information from the past to suppress
noise and interference; and 3) WebRTC non-linear beam-
former (Kleijn 2016) that enhances a simple delay-and-sum
beamformer by suppressing the time-frequency components
that are more likely noise or interference. These three statis-
tical beamformers span the different classes of beamform-
ing techniques from non-adaptive, adaptive and non-linear
approaches. As a result, they provide a diversity of spatial
information as input to the neural network. Moreover, they
are all computationally efficient — it takes 0.8ms to run all
three beamformers for a 8 ms signal block on a mobile CPU.

Additionally, the input channels are shifted to aim at the
input direction, so that each channel samples the direct path
of the signal at the same time in the far-field:

ŷ(f) = y(f) exp(j2πf(ti(θ)− t0(θ)))



ti(θ) is the time-of-arrival from direction θ on mic i. These
shifted channels along with the output of the beamformers
are concatenated together and fed into a neural network.

Neural Network Model. Our neural net is inspired by
time-domain models like Conv-TasNet (Luo and Mesgarani
2019) and has a linear encoder, a linear decoder and a sepa-
rator module, all with 1D convolutional layers. However, we
make significant modifications to the network to reduce its
memory footprint, memory copy overhead and to be compu-
tational lightweight that we describe in detail below.
Complex Tensor Representation. We use complex tensors
throughout our network to halve our model size (each pa-
rameter can be represented as [R,−I; I,R], instead of full
2 × 2 matrices.) while achieving a comparable accuracy.
Complex representation is a powerful tool for acoustic signal
processing. For example, complex multiplication capture ro-
tation in the complex domain and can easily manipulate the
signal phase. Thus, complex neural networks are found to be
more effective for applications such as wireless communi-
cation (Marseet and Sahin 2017) and noise suppression (Hu
et al. 2020; Bassey, Qian, and Li 2021). Compared to real-
valued networks, complex representation also restricts the
degree of freedom of the parameters by enforcing correla-
tion between the real and imaginary parts, which enhances
the generalization capacity of the model in other applica-
tions. Besides the benefit of reduced model size, complex
representation can be especially important for beamforming
since phase encodes essential spatial information.

Fully-complex neural networks however lack the capabil-
ity to efficiently approximate conjugate operation and phase
scaling where the phase of a complex number gets multi-
plied by a constant. To mitigate this, we insert an additional
component-wise operation before each CReLU activation.
We call them together a new TReLU activation. Specifi-
cally, we define TReLU(xc,t) as follows:

ReLU(h(rr)c <(xc,t) + h(ri)c =(xc,t) + b(1)c )

+jReLU(h(ri)c <(xc,t) + h(ii)c =(xc,t) + b(2)c )

Here x is the complex input of the activation function, c, t
are the channel and time indices, respectively, and h, b are
parameters to train. Intuitively, the operation linearly trans-
forms the 2D complex space that can simulate both conju-
gate and phase scaling, and then ReLU activation is per-
formed on real and imaginary parts independently. This is
equivalent to the scaling operation in the complex batch nor-
malization (Trabelsi et al. 2017), but we decouple it from the
batch normalization which is moved after the ReLU oper-
ation. Note that the additional computation of TReLU is
negligible compared to the convolutional layers.
Complex Masking. The separator outputs a complex mask
range from 0 to 1 that is multiplied with the encoder output
to feed into the decoder. While the mask cannot go beyond
1, the trainable encoder and decoder could mitigate this lim-
itation. We apply a tanh operation to the amplitude of the
complex tensor while preserving the angle component:

Ctanh(x) = tanh(||x||) ∗ x

||x||

Figure 3: The strided dilated convolution structure when
M = 3 and k = 2. The total padding size is much reduced
because of the downsampling layer, and skip-connections
get upsampled accordingly before summed up.

Strided Dilated Convolution. Temporal convolutional net-
works (TCN) utilize causal dilated convolution to efficiently
enlarge the audio receptive field and achieve good separation
performance (Luo and Mesgarani 2019). For real-time appli-
cations, while intermediate convolution results from the past
can be cached for fast computation, the memory copy over-
head is significant when our latency requirement is in the
order of milliseconds. For example, Fig. 3A shows how the
Conv-TasNet (Luo and Mesgarani 2019) architecture pro-
cesses a stream of audio buffers. The input padding for each
convolution layer contains temporal information that is com-
puted while processing the previous buffers, and the input is
shifted left and set as the new padding for the new buffer
input. The shifted padding increases exponentially for latter
layers due to a large receptive field. The shift operation is
usually implemented using array copy and the state-of-the-
art Conv-TasNet model requires 25 MB memory copy per
input, that takes approximately 10 ms on a Raspberry Pi.

To reduce the memory copy overhead, we design a com-
bination of dilated and strided convolution stacks. As shown



Configurations Type Hyperparameters recep. field # params # MAC/s lookahead
HybridBeam hybrid k=4, N=3, M=3, H=64, C=64, D=256 0.22s 0.72M 2.1G 1.5ms

HybridBeam+ hybrid k=3, N=4, M=4, H=96, C=64, D=256 0.61s 1.1M 2.8G 1.5ms
TSNF DNN N=512, L=16, H=512, Sc=128, X=8, R=3 0.77s 5.2M 10.4G 390ms
TAC-F DNN H=32, L=64, W=64,K=64 ∞ 2.8M 14.5G ∞

Online MVDR traditional - - - - 0
Mod. TSNF DNN N=512, L=32, H=512, Sc=128, X=8, R=3 0.77s 5.2M 10.4G 1.5ms
Mod. TAC-F DNN H=32, L=64, W=64,K=64 ∞ 2.3M 11.6G 4ms

Table 1: The specification of our model and baselines

in Fig. 3B, the network consists of a stack of N TCNs.
Between each TCN which contains M dilated convolution
layers, we add a 2x1 convolution layer with stride = 2
to downsample the signal and effectively reduce the size of
the padding for the following layers. The skip-connections
get upsampled using the nearest neighborhood method ac-
cordingly to the original sampling rate before summed up.
Similar concept has been explored in (Tzinis, Wang, and
Smaragdis 2020), and we extend it to the TCN structure.
Compared to the original TCN stacks in (Luo and Mesgarani
2019), our strided dilated convolution technique requires the
sameO(kMN) padding to achieve a much largerO(kM2N )
receptive field instead of O(kMN). For the specific param-
eters we implement, this reduces memory copy by >90%.
Simplified Temporal Convolutional Network. We further
simplify the original TCN design. First, we use conventional
convolution instead of depthwise separable convolution (D-
conv) which has lower MACs for the same channel capacity
but is usually memory-bounded and 4-8x less efficient than
normal convolution operations on mobile CPUs (Zhang,
Lo, and Lu 2020). In our experiments with a few state-
of-the-art mobile DNN inference engines, normal convolu-
tion was much faster than D-conv. Second, we apply skip-
connections on only the last convolution layer for each TCN
stack, as shown in Fig. 2B. We found that this reduction
of skip-connections reduces computation by approximately
20%. Third, we relax the dilation growth factor k to more
than 2. Since our receptive field is O(kM2N ), by increasing
k, we would need less M and N , and so lower number of
layers, to achieve the same receptive field.

Evaluation
We prototype and train the neural network in Py-
Torch (Paszke et al. 2019), and rewrite the model in Ten-
sorFlow (Abadi et al. 2016) as TensorFlow supports NHWC
tensor layout which is faster on mobile CPUs. The model
get converted to the input formats of two DNN inference en-
gines, the MNN from Alibaba and Arm NN. The latter sup-
ports NEON and 16 bit float (FP16) primitives for ARMv8.2
CPUs. We use PulseAudio to access the microphones in real
time and use a sampling rate of 16 kHz and 16 bit bitwidth.

Simulated Dataset
To gather a large amount of training data, we use software
to simulate random reverberate noisy rooms using the im-
age source model (Scheibler, Bezzam, and Dokmanić 2018).
The rooms are simulated using absorption rates of real ma-
terials and a maximum RT60 of 500 ms. By default, we use

Configuration SI-SDRi SDRi PESQ
HybridBeam 11.3 dB 10.1 dB 1.61

HybridBeam+ 13.3 dB 11.4 dB 1.92
HybridBeam+ w/ FP16 13.1 dB 11.2 dB 1.92
HybridBeam+ w/o BF 10.9 dB 9.7 dB 1.70

Online MVDR 5.2 dB 5.9 dB 1.52
Mod. TSNF 13.1 dB 11.6 dB 1.94
Mod. TAC-F 12.1 dB 11.1 dB 1.77

Table 2: The quantitative performances of our method com-
pared with baselines using a circular 6-mic array

#mic # sources
1 2 3 4 Overall

4 11.9 dB 10.8 dB 10.5 dB 8.4 dB 10.6 dB
5 11.8 dB 12.0 dB 11.9 dB 9.1 dB 11.7 dB
6 11.6 dB 13.4 dB 13.5 dB 10.2 dB 12.9 dB

Table 3: SI-SDRi performance using three custom micro-
phone array layout under different number of sound sources

a virtual 6-mic circular array with a radius of 5 cm. The dis-
tance between the virtual speakers and the microphone array
is at least 0.8 m, and the direction of arrival differences of the
speakers are at least 10◦. The input direction is modeled as
the groundtruth plus a random error less than 5◦ simulating
the gaze tracking measurement error (Sipatchin, Wahl, and
Rifai 2020). We place virtual speakers at random locations
within the room playing random speech utterances from the
VCTK dataset (Veaux et al. 2017), meanwhile simulating
diffused noise from the MS-SNSD dataset (Reddy et al.
2019) and WHAM! dataset (Wichern et al. 2019). The com-
bined speech power to noise ratio is randomized between
[5, 25] dB. 10%, 40%, 40%, 10% of the generated clips con-
sists of 1-4 speakers, respectively, and we apply random gain
within [−5, 0] dB to each speaker. We guarantee that there
exists speech utterance overlap for 2-4 speaker scenarios.
We render the synthetic audio and generate 4s clips. We gen-
erate a total of 8000 clips as training set, 400 clips as vali-
dation set, and 200 clips as test set. No speech clips or noise
has appeared in more than one of these three sets. To eval-
uate the performance on different microphone number and
array layouts on various wearable form factors, we addition-
ally generate datasets using three custom microphone array
layouts on a virtual reality (VR) headset as shown in Fig. 4.

Model Specification
We use two specifications for our model. The encoder and
decoder both have a kernel size of 32 and a stride of 8. The
rest of the hyperparameters are listed in Table 1. The looka-
head comes from the transposed convolution in the decoder.



Figure 4: Potential mic-array layouts. (A): six-mic hexagon
array on top of a headphone; (B): five-mic sub-array of a six-
mic array (the microphone on the left/right ear is disabled
when the input direction is on the opposite side) on an AR
headset; (C) four-mic linear array on a pair of smart glasses.

Figure 5: The processing time composition. The dashed line
is maximum processing time to achieve real-time operation.

We use three baselines for reference: 1) traditional, online
MVDR beamformer; 2) modified Temperal Spatial Neural
Filter (TSNF) (Gu and Zou 2020), where we replace the Tas-
Net structure with a causal Conv-TasNet structure and use
the identical encoder as ours to achieve the same lookahead
duration; and 3) modified TAC-FasNet (TAC-F) (Luo et al.
2019), where we replace bidirectional RNN with directional
RNN for causal construction, conduct the same alignment
operation to the multi-channel input before feeding into the
network, and output only one channel.

Training Procedure
When synthesizing each training audio clips, we addition-
ally synthesize another version where only one of the sound
source and the first microphone are present, and no rever-
beration is rendered. This version is used as the groundtruth
when the direction input is the direction of the present
source. Hence, our model is trained to simultaneously do
de-reverberation, source separation and noise suppression.
We use a 1:10 linear combination of scale-invariant signal-
to-distortion ratio (SI-SDR) (Le Roux et al. 2019) and mean
L1 loss as training subjective, where the former is used to
measure the speech quality, and the latter regulates the out-
put power to be similar to the groundtruth.

Network Evaluation on Synthetic Datasets
Table 2 shows the SI-SDR (SI-SDRi) and SDR improve-
ments (SDRi). We find that all DNN-based approaches out-
perform traditional MVDR beamformer. Our HybridBeam+
model that uses a slightly larger model achieves comparable

RT60(s) < 0.2 0.2− 0.4 0.4− 0.6 > 0.6
SI-SDRi 13.5 dB 13.3 dB 12.8 dB 11.1 dB

Table 4: SI-SDRi under different reverberation time
Removed BF None SD MVDR Nonlinear

SI-SDRi 13.3 dB 13.1 dB 12.0 dB 12.4 dB
Table 5: SI-SDRi when we remove a beamformer.

results with the causal and low lookahead version of (Gu and
Zou 2020), but using significant less number of parameters
and computation. We additionally evaluate two variants of
our large model. First, we use 16 bit float format (FP16) in-
stead of 32 bits and see only a 0.2 dB drop in both SI-SDRi
and SDRi. Using FP16 drastically reduce the inference time
on platforms that support native FP16 instructions. Second,
we remove the three beamformers and retrain the network.
The SI-SDRi drops by more than 2 dB, which shows the
usefulness of prebeamforming. We used bootstrapping sam-
pling techniques to evaluate our testset 100 times. The 25th,
50th and 75th percentile are 12.99 dB, 13.32 dB and 13.61
dB respectively on our HybridBeam+ model.

Table 3 shows the SI-SDRi results on the custom micro-
phone array layouts under 1-4 sources. Note that the train-
ing set contains all 1-4 source scenarios and each row of
the table shows the performance on the testset under a same
trained model. We see that adding microphones consistently
improves the result of more than one source scenarios.

We also evaluate the performance with different reverber-
ation time (RT60) in Table. 4. We see a performance degra-
dation with a RT60 greater than 0.6 s, likely due to a limited
receptive field. Table 5 shows an ablation study, where we
remove one out of the three beamformers and retrain the
network. We also evaluated HybridBeam+ with only one
reference channel (the first microphone channel) without
shifting along with the output of the beamformers as input.
The resulting SI-SDRi is only 0.2 dB lower, which indicates
the usefulness of pre-beamforming. Table 6 shows how our
model performs with different directional differences be-
tween two sources. The separation performance increases as
the angular difference between the sources increases. When
there is no direction error in the input, the SI-SDRi improves
for smaller angular differences.

We also compared our results with two real-valued net-
works with the same HybridBeam+ structure: (1) a real-
valued version trained with dimensions adjusted to match
the number of trainable parameters in our complex-valued
network and 2) a real-valued network constructed with a
same number of CNN channels (thus, twice the number of
trainable parameters). The first network had a 0.5 dB SI-
SDRi drop compared to our complex network. The second
topline network achieved a 0.6 dB SI-SDRi gain. This shows
that our complex-valued network has a good tradeoff.

On-device Latency Analysis
We deploy the models on two mobile development boards
to measure the processing latency: a Raspberry Pi 4B with a
four-core Cortex A-72 CPU and a four-core low-power Cor-
tex A-55 developement board which support FP16 opera-
tions, both running at 2 GHz. The former is a popular $35



diff (°) 10-20 20-30 30-40 40-50 >50
w/ error (dB) 7.4 10.6 13.3 13.5 13.7
w/o error (dB) 7.9 11.7 13.5 13.8 13.9

Table 6: Different direction differences between 2 sources.

single-board computer, and the latter CPU is designed for
low-power wearable devices and efficient cores on smart-
phones for lightweight tasks like checking emails.

We run the model in real-time and the buffer size is set to
128 samples (8 ms). Recall from Fig. 1 that the processing
time should be less than 8 ms to guarantee real-time opera-
tion. Fig. 5 shows the processing time of of our models as
well as the causal version of (Gu and Zou 2020). We find that
with a comparable source separation performance, inference
using our model takes much less time. Specifically, mem-
ory copy overhead is significantly reduced because of the
strided dilated convolution, so does computation because of
an overall smaller model with vanilla convolution. Finally,
with a lookahead of 1.5 ms, our models can run on our two
platforms in real-time with a 17.5 ms end-to-end latency.

Network Evaluation on Hardware Data
Hardware dataset. To evaluate model generalization, we
implement a headset prototype and test with actual hard-
ware. We modify a Seeed ReSpeaker 6-Mic Circular Array
kit and place the microphones in the configuration in Fig. 4B
around a HTC Vive Pro Eye VR headset in Fig. 6. The head-
set’s gaze tracker provides the direction of arrival for our
model. In addition to generating synthesized data using the
above procedure but with the actual microphone layout, we
also collect hardware data in two different rooms: one large,
empty and reverberate conference room (approximately 5×
7m2), denoted as Room La, and one smaller, regular room
with desks (approximately 3 × 5m2), denoted as Room Sm.
The playback speech is from the same VCTK dataset but is
played from a portable Sony SBS-XB20 speaker. We place
the speaker at 1 m and different angles within −75◦ to 75◦.
We calibrate the speaker-microphone delay and phase distor-
tions in an anechoic chamber using a chirp signal and apply
the calibration to the original signal. After data collection,
we randomly add two recordings whose direction of arrival
difference is more than 10◦ as the mixture signal. We pick
the calibrated original speech and the direction of arrival of
one of them as groundtruth and input direction to our model.

We use our model to test on hardware datasets collected
in the conference rooms. We first see if training on only syn-
thesized data can generalize to hardware data. We choose
the best baseline on the synthetic datasets for comparison.
Table 7 shows that the previous work generalizes poorly and
does not work in real data. Manual inspection indicates that
the the model sometimes predicts wrong sound sources. This
is mostly because the features used by TSNF is highly af-
fected by noise and interference and is not robust in real-
world scenarios. In contrast, our model generalizes and out-
performs MVDR baseline. Our hypothesis is that our model
focuses on improving the already beamformed signals in-
stead of deciding which source to separate, which is a harder
problem. We also mix the 50% actual recordings with 50%
synthesized data as the training set and test on the recordings

Figure 6: Gaze-controlled directional hearing AR prototype.

Model Training Test SI-SDRi

MVDR None Room La 4.5 dB
Room Sm 4.2 dB

TSNF Synthetic Room La 3.1 dB
Mod. TSNF -1.6 dB

HybridBeam+
Synthetic Room La 5.6 dB

Synthetic+Room Sm Room La 8.7 dB
Synthetic+Room La Room Sm 8.2 dB

Table 7: Performance using real world data.

in another room. The model performs better and achieves an-
other 3 dB gain, regardless of the room acoustic properties.

Conclusion and Limitations
We believe that while this paper makes important contribu-
tions in demonstrating low-complexity neural networks for
directional hearing, there is scope for improvements.

Larger real-world datasets. Our model can generalize
to real recordings using synthetic training data, but is not as
good as using synthetic test set, because of audio distortion
like hardware nonlinearity and audio refraction. Generaliza-
tion could be further improved with a larger scale real-world
data collection under various rooms and devices.

Binaural settings. When we retrain the network with 2
microphones and up to 2 sources, we had an overall SI-SDRi
performance of only 6.1 dB. This is likely because we de-
pend on the beamformers to reduce the computational com-
plexity of the neural networks. With 2 microphones, superdi-
rective, MVDR and WebRTC beamformers only provided
1.8, 1.9, -0.6 dB respectively. Binaural beamformers (Liao
et al. 2015; Srinivasan 2008; Hadad et al. 2017) can poten-
tially be used to improve performance.

Specialized hardware. We use low-power CPU to deploy
our model because of its extensive adoption in wearables and
high flexibility. Recent low-power DNN accelerators can run
DNN more efficiently (Wang, Wei, and Brooks 2019) and
can be used to further improve our DNN efficiency, while
running the beamformers on a CPU or microcontroller.

Lower latency. While our target end-to-end latency can
be useful for wearables, close-canal hearing aids or hearing
devices with active noise cancellation, an open-canal setting
requires more stringent latency requirements (Stone et al.
2008). This may need hardware-software co-design.

Runtime optimizations. Techniques like network prun-
ing and quantization may potentially help existing models
run on-device. Those techniques however may also help our
model run on even more resource-constraint hardware.
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