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Figure 1: Smart home interaction with IRIS. (A) A user unlocks the front door by pointing and clicking IRIS at the smart lock.
(B) Another user points IRIS at a television and rotates their hand to adjust its volume. (C) The user points IRIS at their living
room lights to turn them off before leaving home. (D) A user points and clicks IRIS at the blinds to lower them for privacy.

ABSTRACT

Integrating cameras into wireless smart rings has been challenging
due to size and power constraints. We introduce IRIS, the first wire-
less vision-enabled smart ring system for smart home interactions.
Equipped with a camera, Bluetooth radio, inertial measurement unit
(IMU), and an onboard battery, IRIS meets the small size, weight, and
power (SWaP) requirements for ring devices. IRIS is context-aware,
adapting its gesture set to the detected device, and can last for 16-24
hours on a single charge. IRIS leverages the scene semantics to
achieve instance-level device recognition. In a study involving 23
participants, IRIS consistently outpaced voice commands, with a
higher proportion of participants expressing a preference for IRIS
over voice commands regarding toggling a device’s state, granular
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control, and social acceptability. Our work pushes the boundary of
what is possible with ring form-factor devices, addressing system
challenges and opening up novel interaction capabilities.
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1 INTRODUCTION

As households transition into smart homes, they are outfitted with
an array of interconnected devices, like smart speakers, door locks,
and other smart home appliances [9, 27]. While these devices
promise improved convenience, the means by which users control
them remain ripe for improvement. Issues such as social discomfort
in using voice commands and the unreliability of voice input in
noisy environments hinder seamless interaction [16, 33]. Despite
the availability of smartphone apps for direct control, it is often
more convenient to resort to traditional methods, such as light
switches or dedicated remotes, rather than unlocking one’s phones,
locating the appropriate application, and navigating through its
interface [25, 34].

We introduce IRIS, short for Interactive Ring for Interfacing with
Smart home devices. IRIS is an end-to-end wireless ring system that
supports real-time object instance detection using contextual scene
semantics. The underlying principle is rooted in the age-old adage
that a “picture is worth a thousand words,” asserting that captur-
ing images is far more efficient than verbalizing lengthy auditory
commands. IRIS enables users to control smart home devices by sim-
ply pointing at the target device and performing a corresponding
gesture, offering an intuitive alternative to traditional interaction
methods. Finally, IRIS requires no additional setup beyond standard
smart home device installation, and the experiments and results
presented in this work were all conducted on existing smart home
devices with no modification.

Achieving this is challenging for three key reasons. First, while
sensors integrated in today’s ring devices, such as IMUs, are low-
power, camera hardware can generate significantly more data, lead-
ing to orders of magnitude higher power consumption [45]. It is
unclear if wireless camera systems can be designed to meet the small
size, weight and power requirements (SWaP) of ring form-factor
devices. Secondly, while object detection systems excel in real-time
detection, their limitations become evident when confronted with
multiple instances of the same object class. For instance, merely
determining that a user pointed at a set of blinds is inadequate; the
system must also discern which specific set of blinds in the home
the user intends to control. Therefore, a system capable of precisely
identifying and distinguishing between individual devices of the
same class is necessary. Finally, the entire end-to-end system should
operate in real-time under around one second to be considered a
seamless interaction modality [11, 26].

In IRIS, we address these challenges by making technical contri-
butions spanning hardware, software, and system design. At a high
level, the wearer points at the device of interest and presses the
button on the ring, as shown in Fig. 1. This wakes up the on-board
camera which captures a few frames of the target device, which are
streamed to a nearby smartphone for processing via Bluetooth. The
wearer also performs a gesture (e.g. rotation) to control the device,
the intent of which is captured using the on-board IMU. This is
also transmitted to the phone which then, in real-time, controls the
target device. Specifically, we make three key contributions.

e SWAP-constrained wireless camera ring. We designed the
first wireless ring form-factor device for vision-based smart home
interaction (Fig. 2). Our hardware is equipped with a camera,
Bluetooth radio, IMU, and an on-board battery, while meeting
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Figure 2: IRIS hardware inside 3D-printed enclosure and when
placed beside a quarter. The battery sits inside the band of the ring.
The ring diameter and band thickness are 17.5 and 2.9 mm.

the small size, weight and power (SWaP) requirements expected
in ring form-factor devices. We present cross-layer optimization
methods across wireless camera hardware and firmware, and
a user interface that enables extremely low-power states. We
designed our DIY hardware using open-source eCAD software,
outsourced fabrication and assembly, and 3D printed the enclo-
sures. The final fabrication cost (PCB and components) was $471
for 20 units. The PCB, battery, and enclosure weigh 4 grams. IRIS
is the first ring to stream camera data wirelessly, and operate for
over 16 hours on a single charge.

o Instance-level classification based on scene semantics. Our
machine learning (ML) pipeline surpasses traditional object detec-
tion models by enabling scene-based understanding and detection
of specific instances within a class, all on resource-constrained
devices. To achieve instance-level classification, we start by uti-
lizing a self-supervised vision transformer model, DINOV2 [28],
to generate scene-level embeddings. These embeddings capture
not only the object itself but also the surrounding environment,
providing valuable context and scene semantics. However, DI-
NOV?2’s search runtime increases linearly with the size of the
embedding database, introducing potential latency issues for an
interactive system like IRIS. To address this challenge, we reduce
the search space of DINOV2 by utilizing YOLO [31] to first de-
tect all potential smart home devices within the image frame.
Since YOLO can detect multiple objects, we use a centered-object
detection algorithm (CODA). This analyzes the bounding boxes
generated by YOLO and selects the object (smart device) clos-
est to the image center. The classification from CODA serves to
significantly reduce the search space for DINOV2’s query. Our
results demonstrate that this optimization effectively reduces
DINOV2’s query runtime by hundreds of milliseconds.

¢ End-to-end system optimization for real-time operation
and low-power. Real-time operation is critical for interactive
mobile systems [11, 26]. We optimize our wireless ring’s stream-
ing performance to maximize camera throughput, and show that
the end-to-end system can control devices within one second,
delivering near real-time feedback to users by confirming success-
ful gesture recognition. Furthermore, we extensively optimized
IRIS’s low-power design for all day use, despite the limited on-
board battery capacity.

Put together, we design an end-to-end wearable ring system
capable of (1) smart home device interaction that complements
voice commands, (2) instance-based object detection to correctly
distinguish between individual instances of the same class, and
(3) real-time operation, on-device processing on a standard mobile



IRIS: Wireless ring for vision-based smart home interaction

phone. We evaluate our system in five different homes from var-
ious angles and lightning conditions. Our real-world dataset also
includes 98 examples of blinds, 57 doors, 34 door handles, 228 lights,
24 smart locks, 73 speakers, 64 televisions, 37 windows, and 161
background instances. Our results show that:

e Our wireless ring hardware can stream video at 3.4 frames per
second to a phone, supports context-aware gestures, and can
operate for 16-24 hours on a rechargeable 27mAh battery.
A user study with 23 participants who performed 690 interactions
with our ring hardware shows that participants generally favored
IRIS over a voice assistant for controlling devices and greater
social acceptability. IRIS performs in real-time, outpacing voice
commands by 2 seconds on average, from command initiation.
e Our system enables instance-level detection, while optimizing
for runtime performance. Across 18 unique instances of devices,
including 2 HVACs, 2 blinds, 1 door, 4 lighting systems, 2 smart
locks, 5 speakers, and 2 TVs, the instance-based classification
accuracy was 95% and 98% when provided with 2 and 3 reference
images, respectively. Further, we show an average inference la-
tency reduction from 411ms for the DINOV2 model to 112ms for
our DINO+YOLO+CODA system.

We believe that this paper introduces a novel approach to smart
home device interaction through IRIS - a wireless, low-power,
camera-enabled ring backed by real-time instance detection and
contextual scene semantics. By working across both hardware and
software, IRIS provides an alternate modality to existing voice com-
mand and app-based interactions. Our results highlight IRIS’s via-
bility, showcasing its real-time responsiveness and user experience
achieved with optimization techniques across hardware, firmware,
and ML runtime. With the potential to impact the landscape of
ring-based human-computer interaction, we believe that IRIS has
the potential to be an important step toward a more natural, unob-
trusive, and user-friendly interface for smart homes.

2 RELATED WORK

To the best of our knowledge, we present the first wireless ring
form-factor system for vision-based smart home interaction. Below
we present related works across [oT and ring prototypes.

Voice interaction for IoT devices. A common modality for in-
teraction with Internet-of-Things (IoT) devices in smart-homes
continues to be through voice-based IoT devices such as Google
Home [39], Apple Home Pod [3], and Amazon Alexa [2]. As noted
in [19], as the number of IoT devices in the home continues to grow,
using voice, and associated apps, to control these object places a
burden on the mental load of users which limits their scale.
Cameras for IoT interaction. Cameras can enable contextual un-
derstanding of gestures and intent. Snap-to-It [8] and SnapLink [6],
allow users to take photos of the IoT devices from their smart phone
cameras. However, a fully wireless hand or ring based wearable
integrated with a camera for interaction has not yet been realized
due to SWaP challenges.

CyclopsRing [5] uses a palm-facing wired RBG camera with a fish
eye lens placed between the fingers to capture whole hand gestures.
To identify objects for interaction in the environment, CyclopsRing
detects tags [12] placed on objects. The camera however is wired
to a power source and hence the design do not consider the small
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Figure 3: IRIS in Action: Context-aware smart home control.
This figure illustrates the application of IRIS, a custom-designed,
camera-enabled wireless ring for context-aware control of the smart
home. IRIS utilizes instance-based object detection for real-time
interaction with the environment.

size, weight and power (SWaP) constraints of designing an end-to-
end wearable ring system, which can drastically change the design
decisions. ThermalRing [49] uses a wired infrared (IR) camera to
capture IR energy emitted from the wearer’s opposite hand to track
the hand motion and perform gesture input. For object detection
and identification, ThermalRing requires objects to be retrofitted
with IR reflective patches called ThermalTags similar to the tags
used in in CyclopsRing and elsewhere [23]. As before, ThermalRing
uses wired cameras and does not address the SWaP constraints.
FingerReader and FingerReader2.0 [4, 36] are wired camera rings
designed for visually impaired users to read text or aid in shopping.
FingerSight [38] uses a camera-enabled ring for haptic sensing of
distant objects, and TouchCam [37] combines IMUs and cameras
for gesture support and body location classification. FingerReader,
FingerSight, and TouchCam are all wired devices, tethered to a
host machine or smartwatch. Unlike these works, we create a fully
wireless, standalone, camera-enabled ring that meets the SWaP
requirements expected in this form factor.

EyeRing [24] designs a wireless camera-enabled ring for acces-
sibility applications such as navigation, currency detection, and
color detection. However, the prototype device is significantly large
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(around the size of a smart watch) and does not address the size and
weight constraints for ring devices. Further, EyeRing does not sup-
port interaction and control of IoT devices. Unlike all this previous
work, IRIS does not require instrumenting existing objects in the en-
vironment with fiducial markers and can instead recognize objects
using vision. Contrary to conventional wisdom, we show that a
fully wireless, camera-enabled, wearable ring that meets the SWaP
requirements expected in this form factor is possible. Cameras
consume significant power, and given the small battery capacities
capable of fitting a ring form factor (<27mAh), our work introduces
system-level optimizations necessary to integrate a camera into a
ring without being tethered to another device.

Other sensors for IoT interaction. SeleCon [1], WristQue [21],
and Minuet [19] use ultra-wideband (UWB) equipped watches to
enable pointing gesture detection for IoT device selection and con-
trol. SeleCon requires instrumenting each IoT device with a UWB
radio which limits its scalability. WristQue [21] and Minuet [19]
require UWB modules on the user and in the environment to de-
termine the device selection from pointing gestures. Minuet [19]
utilizes multi-modal interaction by also capturing the users’ voice.
Despite the appeal of these UWB enabled point-to-select wearables,
all these prior prototypes are wired and/or do not demonstrate
real-time operation, and hence do not address the power or latency
requirements of end-to-end interactive ring devices. RingloT [7]
consists of a ring instrumented with an IMU, IR transmitter, ca-
pacitive sensor, and OLED display. This again uses a wired setup
for both power and data transfer and hence does not consider the
SWaP requirments in its design. TRing [48] enables device interac-
tion by sensing embedded magnets placed within everyday objects.
Similar to [7], this approach is limited as it requires instrumenting
devices with specialized sensors. Furthermore, TRing cannot enable
interaction from a distance as the magnetic field sensing is limited
to the near-field. Magic Ring [18] has an onboard radio and antenna
to communicate with an intermediary device that translates the
RF signals from the ring into infrared signals used to control the
IoT devices and appliances in the home such as TVs or fans. Ring
Zero [10] is a commercial ring that proposes to use an onboard
IMU to capture gestures and enable fine grained control over music
volume and light brightness, however it is unclear how the device
selection mechanism is implemented and whether it can enable
ad-hoc control over any IoT device without pairing.

3 1RIS

Here, we begin by outlining the requirements for our system design.
We then present our wireless ring hardware system and finally
describe our real-time neural network pipeline.

3.1 System Requirements

Our proposed interaction modality should be as ubiquitous as voice,
while eliminating the need for lengthy voice commands. The input
modality should be as simple and swift as flicking a light switch or
rotating a dial, ensuring a socially seamless experience. Finally, the
system should require no modifications to the smart home devices
as that would place an unnecessary burden on device manufacturers.
We arrive at three core design principles:

(1) A simple interface as intuitive as flicking a switch

Kim et al.

Figure 4: IRIS on a User’s Hand. (A) Front View, (B) Top View.

(2) Ubiquity comparable to voice interaction
(3) No modifications to existing IoT devices

To address this, we design a wireless, vision-enabled smart ring.
Achieving this requires us to address the following challenges.

o Size, weight, and power requirements. The overall weight and size
of the device should be in a similar ballpark as a regular-sized
ring. While shrinking the ring to fit within these constraints is
challenging, we must also consider all-day battery life so that it
does not need to be charged in the middle of the day.

® Real-time operation. IRIS must be quick and responsive. An upper
bound to not interrupt the user’s flow of thought is around one
second [26]. So, we target the maximum end-to-end latency for
IRIS to be one second, and benchmark it against voice assistant
solutions.

o Instance-based object detection. An image may not necessarily
provide the specificity of a voice command. For example, in a
scenario where a user has a set of identical blinds in two different
rooms, they could say, "lower the blinds in room A" or "lower
the blinds in room B." IRIS instead must detect which instance a
particular object is based on the surrounding visual context.

3.2 Wireless vision-enabled ring hardware

Here, we describe the various aspects of our wireless ring design.

3.2.1 Hardware. Our custom hardware design is comprised of an
ultra-low-power 1/11" 320x320 QVGA CMOS image sensor (Himax
HMO01B0), a 6-axis inertial measurement unit (Bosch BMI270), and
a Bluetooth Low Energy (BLE) microcontroller (Nordic nRF52840).
The system is powered by a 27mAh battery and programmed via
SWD over a Micro-USB connector. Our design is fully recharge-
able through an on-board power management integrated circuit
and provides the system with all necessary voltage rails (Maxim
MAX?77650). A single-pull single-throw (SPST) switch is used for
gesture initiation, and images are streamed to a mobile phone for
input into our neural network (see Fig. 3).

3.2.2  Wireless Latency. The first challenge with our design is meet-
ing a <500ms image acquisition latency target. IRIS utilizes the max-
imum supported data rate of 2 Mbps over BLE [35]. To maximize
throughput, we utilize the shortest connection interval available to
i0S (15 ms) while transmitting 4 packets per interval (maximum
supported by iOS) [41]. With a packet size of 247 bytes the effective
data rate is 526,933 bits per second. The effective BLE throughput
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Figure 5: IRIS image and IMU wireless data streaming. BLE packets are formed with the following structure: ST-Status Flags (Start of
Frame, IMU Valid, Button State), AD-Accelerometer Data, GD-Gyroscope Data, CD-Camera Data.

can be written as:
1000 ms X packets_per_interval X packet_size X 8

Throughput =
&P connection_interval (ms)

The challenge is that a full 320x320 image is 819,200 bits, trans-
lating to 1562.5ms of latency (0.64fps) for the full image to be trans-
mitted to the phone. So, we need to reduce the image size while
preserving as much information as possible. To do this, first, we
enable the QVGA window readout on the image sensor, which
reduces the resolution to 320x240. This is still insufficient, so we
utilize pixel binning to improve image acquisition time. Pixel bin-
ning is the concept of combining electrical charges from multiple
adjacent pixels into a single "superpixel” [20, 47]. Pixel binning
essentially increases the effective pixel size, providing an improve-
ment in SNR (signal-to-noise ratio) and low light. Furthermore,
pixel binning also enables faster frame rates. By combining pixel
data, the sensor can read out information from a smaller number of
"superpixels" compared to the original number of individual pixels.
This reduced readout time effectively leads to faster frame rates.!
Thus, while binning reduces the resolution of our system by a factor
of four to QQVGA (160x120), it offers two key advantages: (1) a 4x
improvement in signal-to-noise ratio, and (2) a 4x increase in frame
rate. In this configuration, our image resolution is now 160x120
bringing the frame rate to 3.43fps, or about 290ms of end-to-end
latency. This meets our design goal of less than 500ms of latency
with some margin to spare.

3.2.3 CMOS image sensor integration. Since the BLE SoC (nRF52840)
has no dedicated camera interface, we configure the CMOS sensor

(HMO01B0) to operate in a 1-bit data transfer mode. The HM01B0

can then effectively act as a SPI controller and pass data to the

nRF52840 through a SPI (SPIS) port. This is achieved through sig-

nalizing the start of frame with a rising edge of Frame Valid (FVLD),

and receiving the image bits through Pixel Clock Out (PCLKO) and

Data (D0). These map to CS, SCLK, and MOSI, respectively. The

table below shows a clearer representation of the mapping between

a 1-bit camera interface and SPI:

1-Bit Camera Interface Serial Port Interface (SPI)
Pixel Clock Out (PCLKO) Serial Clock (SCLK)
Data (D0) Master-Out-Slave-In (MOSI)
Frame Valid (FLVD) Chip Select (CS)

Since the maximum SPI port clock frequency on the nRF52840 is
8MHz, we limit the pixel clock frequency accordingly. We achieve
'In RIS, the BLE throughput is 527kbps, while the HM01B0 camera can stream a

320x320 image at 60fps (6Mbps). Reducing the resolution down to 160x120 allows IRIS
to transfer more total frames over time.

this by inputting an 8MHz signal into the HM01B0’s clock (MCLK)
pin from the nRF52480. This synchronizes the two chips together
and also limits PCLKO to 8MHz. The final detail to make this bus
work is to invert the FVLD signal. The nRF52840 only supports
an active low CS line, whereas FVLD is an active high signal. We
circumvent this by triggering an active-high interrupt from FVLD
and loop an external GPIO back to the nRF52840 to trigger an active-
low interrupt for the SPI port to start receiving data. This could be
optimized by incorporating a NOT gate between FVLD and CS [15].

3.24 Low-power design. IRIS manages power consumption through
its three distinct power states: SLEEP, IDLE, and ACTIVE. In the
SLEEP state, IRIS conserves energy by deactivating all hardware
components except for an internal timer within the nRF52840 chip.
This timer periodically awakens IRIS to check for the presence of a
home WiFi network by receiving data from the connected mobile
phone. While away from the user’s home WiFi network, IRIS re-
mains in this energy-saving mode, transitioning to IDLE only when
a home WiFi connection is established.

In the IDLE state, IRIS enables all power rails and readies all
peripherals, but clock-gates the camera and suspends the IMU.
This ensures responsiveness while minimizing energy consumption.
IRIS exits the IDLE state with a single button press via a hardware
interrupt, transitioning it into ACTIVE mode. During this mode
of operation, IRIS continuously streams data such as button state,
IMU data, and camera pixels to the connected mobile device. After
3 seconds of streaming and inactivity from the button, IRIS exits
ACTIVE and returns to IDLE to optimize low-power performance.

Our low-power design allows IRIS to operate continuously for
16-24 hours, depending on usage. Additionally, IRIS supports rapid
charging capabilities, achieving a full recharge in just one hour
with a 1C charge current, ensuring usage for extended periods.

3.25 Fabrication. The hardware schematic and layout for IRIS
were designed using the open-source eCAD tool KiCad. A 2-layer
flexible printed circuit was fabricated by PCBWay, while assembly
was done by a local assembler. The 3D-printed enclosures were de-
signed using AutoDesk Inventor and printed with a Formlabs Form
3 B printer using a liquid resin fabrication process. As illustrated
in Fig 4, the camera sits behind the lid on the ring’s outer surface,
and the button is placed closer to the user’s thumb while remaining
horizontally aligned with the camera.

3.2.6 Context-aware gestures. We employ a simple gesture set that
is adapted to the detected device. This set comprises two intuitive
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Figure 6: IRIS pipeline. (1) A user points and clicks at the smart device they would like to control. (2) IRIS wirelessly streams the images to
a smartphone, and (3) runs YOLO and DinoV2. (4) The centered object detection algorithm (CODA) filters out the multiple objects YOLO
may detect and outputs the object closest to the center of the frame. IRIS then queries the smart device library, but since, in this example,
there are two instances of Blinds in the home it stops here and utilizes the Dinov2 path. Next, the output embedding from Dinov2 is passed
as input to (5) the Embedding + UUID database to find the embedding with the highest similarity, and the output of CODA is also passed as
input to reduce the search space. The highest similarity corresponds to Blinds 2 UUID, and the (6) Home Device Manager controls Blinds 2.

gestures: a single press for toggling device state and a press-and-
hold with rotation, mimicking the action of a physical dial, for
fine-grained control. Table. 1 illustrates how these two gestures
can be used across an array of IoT devices. A single press toggles
the binary state of the device, while a press-and-hold with rotation
allows for granular control. The rotation gesture was calculated by
first deriving the tilt (in degrees) for the IMU axis that corresponded
to rotation about the wrist from the accelerometer values using
trigonometry. This tilt value was then offset by 90 degrees and
scaled between 0 and 180 degrees. A running-difference of changes
in this scaled tiled value was maintained and each incremental
change in tilt was mapped to an increment change in volume or
brightness. While the gesture set could be readily extended to ad-
ditional devices such as garage doors, HVAC systems, and smart
appliances, this work focuses on these five devices to maintain a
manageable scope and data collection effort.

Device Single Press | Rotation
Lights On/Off Brightness
Speaker Play/Pause Volume
Smart Lock | Lock/Unlock -
TV On/Off Volume
Blinds Up/Down -

Table 1: Context-aware gesture set.

3.3 Neural Network Pipeline

Our system was designed with several key requirements. First,
we aimed for a baseline level of "out-of-the-box" functionality to
minimize setup for end-users, addressing one of the main pain
points associated with new devices [46]. Secondly, the vision model
needs to support instance-based object detection to differentiate
between multiple smart devices of the same class within the same
environment.

Our pipeline consists of a fused model comprised of YOLOv8 [43]
and DinoV2 [28]. A YOLOv8 model was fine-tuned on a custom

dataset of 10 classes to control a set of five common smart home
devices. A fine-tuned YOLO model enables us to address the first
requirement of out-of-the-box functionality. However, we still need
to address our other requirements, and YOLO fails to distinguish
between two instances of the same class and also doesn’t improve
without training on additional data. Thus, we augment our system
with Dinov2 to address the shortcomings of YOLO. To distinguish
between two instances of the same class, IRIS provides a scanning
feature, which enables users to take pictures when they have mul-
tiple instances of the smart device in their home. We create an
embedding database with these collected pictures, and users can
map reference images to a specific instance of a smart home de-
vice. Finally, users can address specific failure scenarios by adding
additional reference images into the embedding database.

3.3.1 Out-of-the box object detection. Our primary focus was on
object detection of five household objects: TVs, smart locks, blinds,
lights, and speakers. We experimented with several well-known
model architectures such as ResNet18 [14], ResNet50 [14], Efficient-
NetB0 [40], and YOLOvV8 [43]. We moved forward with YOLO as it
is an object detection model, allowing us to design a heuristic to
control a specific device when multiple objects of interest are in
the image. While YOLOVS is trained on the COCO dataset [43], it
lacked support for the five smart home devices we aimed to detect.
To overcome this limitation, we collected over 2,000 images using
a scraper on Google Images and approximately 500 images directly
from IRIS’s camera. The output of YOLO goes into an algorithm
which iterates through each bounding box to retrieve the object that
is closest to the center of the frame. This is achieved by calculating
the Euclidean distance between the center of each bounding box
with respect to the center of the image. This heuristic called CODA
(Centered Object Detection Algorithm), allows IRIS to return the
object that is closest to what the user pointed at.



IRIS: Wireless ring for vision-based smart home interaction UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Query

Reference images sorted in decreasing order of similarity

Figure 7: DINOV2 queries based on semantic similarity. Row (A) shows a query image of a blind (A1), while the maximum similarity
reference image shows the same instance of the blind (A2). Row (B) shows a different instance of a blind (B1), and similarly shows how
semantic similarity is used to find the reference image that represents the same instance (B2). Row (C) shows an image of an HVAC unit (C1),
a class which is unlabeled in our YOLO dataset. Again, we observe that the same instance of the HVAC is returned (C2). A different instance
of an HVAC (C5) further shows that semantic scene understanding can be used to distinguish between two instances of the same class.

3.3.2  Human-in-the-loop learning with semantic similarity. The
above bounding box results combined with our heuristic disam-
biguate input frames with multiple objects, and provide us with a
single object classification. This classification is sufficient in scenar-
ios where there is one object (device) per class that the user wishes
to control. However, if a user seeks to control multiple devices be-
longing to the same class (e.g., two TVs, one in the living room and
the other in a bedroom), we would need to classify specific instances
of the objects; beyond just object-level classification. Taking this
into account, in addition to our out-of-the-box solution based on a
pre-defined set of classes, we implemented a human-in-the-loop
model that allows users to define a separate class for each device.

The intuition behind such a capability is that a device in a home
is characterized by not just its own visual features but that of
the surroundings it is placed in as well. For example, two smart
speakers of the same make could be distinguished by the visual
characteristics of the room it’s placed in. This necessitates us to
extract not just the features of the object of interest in the frame,
but the features of the entire frame. We leverage advances in large-
scale self-supervised learning of visual features such as CLIP [30]
and DINOv2 [28] to compute semantic features at the image level.
Specifically, we use the open-source DINOv2 [28] model in our
implementation, to obtain image-level semantic features. For a
given image resized to 224x224 resolution, we split the image into
4x4 grid and compute a R3%? embedding for each patch in the grid.
We note that the embedding corresponding to each patch considers
not just the visual features within the patch but their relation to
the rest of the image patches as well.

The user would first perform a setup with the IRIS system by
capturing a few (1-5) images for each device they wish to con-
trol. During this setup, the IRIS app computes a R**#*382 DINOv2
embedding for each reference image. For a smart home with N
connected devices placed at certain locations in the home, our
system would create a database of a set of reference embeddings

X = {rni € R¥*¥382 | p e {1,2,.,N};i € {1,..,5}} on the smart-
phone. Then during the regular use, the user points at the device
they wish to control by pointing the IRIS ring at the device. This
action leads the ring to capture the image of the scene and send
it to the IRIS app. Then, as shown in step 3 in Fig. 6, the app com-
putes a query embedding q € RAX4x382 corresponding to the frame
captured by the user. In parallel, the YOLO model predicts which
class the query belongs to. Based on this prediction, we compute
a semantic similarity score between q and each of the embedding
belonging to the predicted class in X using the following algorithm:
import torch
import torch.nn.functional as F
def compute_similarity(q: torch.Tensor,
r: torch.Tensor):
q = q.view(-1, 382) # shape = [16,382]
r = r.view(-1, 382) # shape = [16,382]
scene_sim = 0.0
for pe in q:
# pe is patch embedding
scene_sim += F.cosine_similarity(
pe.unsqueeze (@), r, dim=-1
).max ()
scene_sim /= q.shape[0]
return scene_sim

This step results in a set of similarities corresponding to each of
the reference embeddings in X. If s,; is the similarity corresponding
to the ith reference image of nth device, then the device that the
user wants to control, A, could be inferred with:

fi = argmax {sp; € [0.0,1.0] |n € {1,2,.,N};i € {1,.,5}}
n

This approach is illustrated in Fig. 7. On the left most column, we
show query images that the ring captured during its regular use.
The rest of the columns show different reference images captured
during the setup. In each row, the reference images are sorted in
decreasing order of similarity with the query image on the left. We
can observe that the similarity accounts for not just the objects of
interest, but also the surroundings the object is placed in.
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3.3.3 Latency reduction by combining the models. A key challenge
associated with embedding-based retrieval methods (like DINOV2),
lies in the search time increasingly linearly with database size. To
address this, IRIS leverages the output from YOLO+CODA, which
identifies the object closest to the image center. The output classifi-
cation from CODA serves as a proxy for the user’s point of focus,
enabling us to reduce the search space within the user-collected ref-
erence images. This targeted search strategy noticeably reduces the
runtime required for DINO’s query, enhancing end-to-end system
latency without compromising accuracy. We evaluate this method
across 86 reference images in §4.3.1.

3.4 Training Methodology

While the COCO dataset YOLOVS is trained on includes appliances
in its set of 20 classes, it lacked support for the five smart home
devices we aimed to detect. Furthermore, we do not require the de-
tection model to predict bounding boxes for objects not in our five
classes of interest. To address these aspects, we fine-tune YOLOv8
by collecting pictures using a scraper on Google Images. While
these web-scraped images were easy to collect, they fail to model
our camera’s characteristics like field-of-view, dynamic range, and
low-light sensor noise. Thus, we also collected and created a dataset
directly from IRIS’s camera. We adopt a hybrid training method-
ology where we first train on our web-scraped dataset, and then
fine-tune on real data from our hardware. Our results show that
our network trained in this way generalizes to real-world images
captured from IRIS’s camera.

3.4.1 Web-scraped data. We collected over 2000 images of our de-
sired classes. In total, this dataset contains 287 lights, 309 speakers,
521 smart locks, 178 door handles, 32 doors, 198 blinds, 197 televi-
sions, and 210 windows from Google Images. We include doors and
door handles as it is difficult for YOLO to accurately detect smart
locks from far away due to their small size, ultimately resolving to
few features from far distances. Additionally, being able to detect
windows allow us to reject false positives (e.g. sunlight being recog-
nized as a home light source). The system can fall back to detecting
doors at far distances to ultimately trigger a smart lock. These
images were then converted to greyscale and resized to 160x160.
These transformations were done to mimic IRIS’s camera specifica-
tions. Further, we applied data augmentations such as horizontal
flipping, cropping (0-20%), rotations (-15 deg, 15 deg), brightness
(-15%, 15%), and exposure (-10%, 10%). These data augmentations
bring the web-scraped dataset to a total of 3,526 images. We split
this data into 90% training and 10% validation subsets.

3.4.2 In-the-wild data. While the model trained on our web-scraped
data was able to detect objects from our 5 desired classes correctly,
it failed to adapt to image characteristics of IRIS’s camera. This is
because the web-scraped images do not contain characteristics such
as the camera’s dynamic range, resolution, and sensor noise. To ad-
dress this, we further fine-tune on a dataset of captured images from
our ring. We collected 513 images across 5 different homes from
various angles and lightning conditions to generalize to unseen
environments. This dataset includes 98 blinds, 57 doors, 34 door
handles, 228 lights, 24 smart locks, 73 speakers, 64 televisions, 37
windows, and 161 background (null) instances. Background images
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Figure 8: IRIS mobile app. (Left) Default view when user opens
the app. Users can observe the IRIS camera output; primarily for
debugging and experimental use. (Middle) User can select a specific
device to take new reference images for. (Right) User views the IRIS
camera through the app to create new reference images.

contain none of the objects that IRIS aims to detect; this is so that
the model outputs fewer false positives. After data augmentations,
our in-the-wild dataset comprised of 1225 total images. This dataset
was split for 86% training, 7% validation, and 7% testing subsets.

3.5 Mobile Device Integration

Upon initial app launch and relevant user permissions, i.e., access-
ing control of smart home devices and Bluetooth, the HomeKit
framework retrieves information on user-registered homes, smart
home devices, their capabilities, configurations, and unique iden-
tifiers. Using this metadata, we build a smart device library and
an embeddings+UUID database which our Home Device Manager
uses to control the desired end device.

After IRIS connects to the iPhone, it waits for the button to
be pressed prior to sending data wirelessly. Once a user presses
the button to initiate a gesture, IRIS enters the ACTIVE state and
starts streaming wireless data packets, which contain a sequence
number, status flags, IMU vectors, and image pixels. Each image
frame is split and transmitted across multiple data packets, and the
sequence number is a monotonically increasing 8-bit value used
to invalidate image frames in the event of dropped packets. Status
flags include fields such as the button state and start-of-frame. Since
IRIS continuously streams images, the start-of-frame flag marks
the starting packet of a new image frame and acts as the boundary
between consecutive frames. The start-of-frame flag also signals
the end of the previous frame to start inference. The data pipeline
is shown in Fig. 5.

Our fine-tuned YOLOv8 model’s weights are transformed to a
CoreML Package which we then load into Apple’s VNCoreMLModel
to perform requests and receive predictions and their bounds/bound-
ing boxes. The raw pixel values of the streamed images are trans-
formed into a bitmap image called CGImage and preprocessed into
the desired shape requested by the model. CODA then finds the
center object by searching for the bounding box closest to the image
center, and returns this as the classified object.
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Figure 9: IRIS User Study. A participant from our user study
interacts with a light and a speaker using our IRIS hardware.

For IRIS to detect between multiple instances of the same class,
the system requires reference images (embeddings) of the device
to be saved to persistent storage. We implement a "scan mode"
through the app, during which the user can point-and-click at the
target device and scene to create embeddings via DINOv2. Users
can then associate these reference images with a target device in
their home. Due to limitations of CoreML, we relied on ONNX
Runtime for simplified cross-platform machine learning integration
to host our DINOv2 model. With the image preprocessing baked
into the DINOv2 ONNX model, we pass in the raw pixel values to
create the embeddings which will then be automatically compared
against stored references.

Ultimately, the retrieved embedding with the highest similarity
acts as a key, which is then used to fetch the unique identifier (UUID)
of the targeted smart device within the user’s home. After retrieving
the UUID, we control the corresponding device via HomeKit.

4 EVALUATION

4.1 User Study

We recruited 23 participants (16 male, 7 female) aged 18-35 (6=4.72)
for a user study. Our study included an initial placement study
to understand user preferences for the placement of IRIS along
the index finger. The second part involved participants interacting
in real-time with smart devices with IRIS and their voice. The
participants were also provided a short questionnaire asking them
about their overall experience and to compare IRIS against voice
interaction. Prior work [32] has shown that smartphone apps and
screen-based interactions are even slower than voice control, and
as such, were omitted from this study.

Question | Middle | Proximal | P-value
Comfort 52.2% 47.8% 0.339
Targeting | 73.9% 26.1% 0.005

Preference | 43.5% 56.5% 0.202

Table 2: Placement study results.

4.1.1  Placement study. Rings are typically worn on the proximal
digit of a user’s finger. However, conventional rings are not de-
signed for aiming and controlling smart devices. While creating our
hardware, we hypothesized that it would be easier to aim at devices
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Figure 10: User interaction with our IRIS hardware. Y-axis
shows number of participants who ranked using a score from 1-5.
Scores for 1 have been omitted as no participants responded with 1.

and have more range of motion in one’s hand if IRIS were placed on
the middle digit of the index finger. We provide participants with a
set of metal rings (similar to IRIS’s weight) for sizing their middle
and proximal digits. Two markers on the rings indicate camera and
button positions.

Once two rings were chosen, we asked participants to imagine
that these mock rings were smart rings designed to control smart
devices. We informed participants of the gesture set (point-and-
click, point-hold-rotate, double-click), and had them perform these
gestures on a lamp and a speaker. After evaluating both placements,
they were provided with a short qualitative questionnaire.

The question set included: (1) Which configuration felt more com-
fortable for use?, (2) Which configuration did you have an easier time
"aiming" the camera with?, and (3) Between the two configurations,
which did you prefer?. The responses to these questions are shown
in Table 2. For each question, we conducted a one-tailed binomial
test to understand if the result was statistically significant. Overall
comfort was comparable between the two configurations with ba-
sically an even split across the 23 participants (52.2%/47.8%). While,
56.5% of participants preferred the proximal position due to con-
vention, this result isn’t statistically significant enough to design
the ring in this position. Ease of targeting the smart device between
the two configurations was the one statistically significant result
of this study where 73.9% of participants preferred the middle digit.
This result corresponds to a p-value of 0.005.

4.1.2 Interaction using IRIS hardware and voice. The goal of the
next part of our study was to compare IRIS against a commercial
voice assistant. As our neural network implementation and home
device management were implemented on iOS, we opted to com-
pare against Siri. Benchmarking against Siri guarantees that the
communication under the hood (i.e., HomeKit) remains the same
between the two interfaces.

This next phase of our study begins with introducing IRIS to
the participants. To familiarize the participants with IRIS, we first
play a short 30-second demonstration video. Next, we permitted
them to try out IRIS by controlling a pair of smart devices, lights
and speaker. After confirming their comfort and confidence using
IRIS, participants engaged in a series of trials. The first trial in-
volved a proctor who directed the participants to control either
the lights or the speaker, toggling the device’s state in response
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IRIS Siri No Diff | P-value
Toggling State | 56.52% | 39.13% | 4.34% 0.202
Granular Control | 78.26% | 17.39% 4.34% 0.001

Social Acceptability | 69.57% | 13.04% | 17.39% 0.017
IRIS Siri Both | P-value
Day-to-day Use 34.78% | 17.39% | 47.82% 0.196

Table 3: Head-to-head subjective performance.

to cues. 10 of these trials were conducted for both IRIS and voice.
IRIS trials involved a hands-at-rest step to ensure that each event
starts independently of the previous. The second trial evaluated the
granular control performance between IRIS and voice. Participants
were told to set the speaker volume to that of a loud gathering or a
pleasant ambient level based on if the proctor said "loud" or "quiet".
In total, we collected 690 IRIS and voice trials. Finally, these trials
were all collected over video, which we use to assess the speed and
efficiency between IRIS and a commercial voice assistant, later.

4.1.3  Qualitative results. We conducted a qualitative analysis of the
overall user experience, measured by Mean Opinion Score (MOS),
and assessed subjective preferences between IRIS and voice among
participants in our study. Participants were given 3 questions:

(1) How was your overall experience using the smart ring? (1:
Awful, 5: Amazing)

(2) How difficult was it to use the smart ring? (1: Very difficult,
5: Very easy)

(3) How natural was it to use the smart ring? (1: Very unnatural,
5: Very natural)

Across our participants, the mean opinion scores were 4.22, 3.96, and
4.17, respectively. The distribution of scores across each category
is shown in Fig. 10. While these scores indicate a generally positive
response, it is difficult to confirm without a direct comparison.
To address this, we asked four specific questions regarding user
experience between IRIS and a traditional voice assistant.

(1) Between using your voice and the smart ring, which would
you prefer to use to toggle a device’s state (i.e. turning a light
ON or OFF)?

(2) Between using your voice and the smart ring, which would
you prefer to use to granularly control a device’s output (i.e.,
a speaker’s volume)?

(3) Between using your voice and the smart ring, which would
you find more socially acceptable?

(4) Which would you be more inclined to use day-to-day?

As shown in Table. 3, IRIS outperforms voice across all questions
within our user study. Out of the participants surveyed, 13 expressed
a preference for using IRIS for toggling the device’s state, while 9
favored Siri. While the p-value is not statistically significant (0.202),
we believe that this is attributed to the fact that our prototype’s
camera was angled slightly higher than it should have been. This
caused some participants to have to point lower than they expected,
causing retries. Despite this, more than half of our participants
surveyed still preferred IRIS to Siri. In terms of granular control
and social acceptability, participants preferred IRIS with p-values
of 0.001 and 0.017, respectively. Considering that participants were
using a prototype compared to a shipping commercial product, we
believe this to be a notable result.
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Figure 11: Histogram of User Input to Device Output. (UIDO)
(a) and times to set desired volume (b) for IRIS and voice.

Finally, we surveyed participants and asked if they would pre-
fer to use IRIS, Siri, or both for day-to-day use. 11 out of the 23
participants surveyed mentioned that they would use both, and 8
participants preferred IRIS, while 4 favored Siri. A p-value of 0.196
indicates that IRIS is not posed to replace voice assistants outright,
but rather coexist alongside them. Participants who preferred to
use both systems day-to-day were asked a follow-up question to
explain further. Overall, they said that while controlling devices is
easier and faster with the ring, there may be times when the ring
is not worn, in which case the ubiquity of voice would be advan-
tageous. Another popular comment was that there may be times
(i.e., in a conversation) when using voice to control a device would
be inappropriate as compared to the ring. A few participants high-
lighted how much easier it was to control volume with IRIS, and a
single participant reported that voice control would be preferable
if their hands were occupied and carrying other items.

4.14 Quantitative results. We conducted a quantitative analysis of
the user input to device output (UIDO) time between IRIS and Siri
for toggling the state (on/off) of a smart-light and smart-speaker as
well as setting the volume for the smart-speaker. We measured the
UIDO time for toggling the device state manually using a stopwatch.
We started the timer at the end of each proctor’s command issuance
and ended it immediately after the light or speaker state changed.
For the granular control, the end of the trial was determined by
a visual confirmation from the participant that they had set the
volume to a level that they deemed appropriate.

The histograms in Fig. 11 show the UIDO time for state toggling
and volume control across all participant trials for IRIS and Siri
control. Fig. 11(a) shows that most participants were able to control
the device state within 0 to 2 seconds using IRIS compared to 2
to 4 seconds when using Siri. Fig. 11(b) shows that for granular
volume control a majority of participants were able to set their
desired volume within 3 to 6 seconds when using both IRIS and Siri.
However, when using Siri there was a wider distribution of times,
with a wider positive skew.
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Figure 12: Confusion matrix results across our five supported
smart device classes and background. We report a classification
accuracy of 95.3% after processing the image through CODA.

For both control scenarios, the median UIDO and time to set
desired volume was lower for IRIS (2.2 and 4.7 seconds respectively)
than Siri (4.1 and 7.6 seconds respectively). This can be attributed
to the fact that it took longer for participants to utter a full voice
command than perform the button press and rotation gestures.

Since IRIS is impacted by the pointing accuracy of the user, we
also calculated the angular error between the center of the image
frame and the center of the bounding box for the intended device.
The angular error was calculated by dividing the field-of-view (FOV)
of the camera (87 degrees) by the resolution, which was 160 to arrive
at an angular-FOV/pixel of 0.54 degrees/pixel. We then multiplied
this value by the x and y pixel errors calculated for 2344 photos
gathered throughout the duration of the study. The median angular
error was 7.6 degrees in the horizontal direction and 23.4 degrees in
the y direction. We attribute the larger error in the vertical direction
due to the relative position of the button and the camera on IRIS. In
the current design, the button is positioned too far forward which
required participants to have to rotate the camera towards them
for their thumb to reach the button, resulting in the camera being
angled higher vertically than intended.

4.2 Vision Pipeline Evaluation

We first assess the performance of YOLO+CODA and DINOV2.
These models were evaluated independently as their joint perfor-
mance primarily reduces runtime by reducing the search space
in the DINOV2 (Embedding) database (see Fig. 6). Classification
accuracies of our models are independent of one another. We later
evaluate the latency of jointly running the models (§4.3.1).

4.2.1 Out-of-the-box object detection. We evaluate our object de-
tection performance across 5 homes, and the 5 classes IRIS supports
out-of-the-box (blinds, smart-lock, speaker, tv, lights) along with
background (null). The objects were located in a variety of rooms
(bedrooms, living rooms, kitchen, and office) and varying lighting
conditions and angles. There was no overlap in images between
our training and test datasets.
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Figure 13: Accuracy of semantic similarity based search as
the number of reference images per instance increases. . We
report an accuracy of 98% after 3 reference images.

As IRIS’s YOLO network is a fine-tuned model on an existing
architecture, we validate its performance based on mean average
prediction (mAP) values on the hardware dataset’s test set. We
used the existing YOLOv8 weights and fine-tuned it on both the
web-scraped data and in-the-wild data for 75 epochs each. After
completing the training against the in-the-wild dataset, the model
achieved the following results: 0.793 Precision, 0.784 Recall, 0.81
mAP50, and 0.462 mAP50-95.

While the mAP50-95 score may not necessarily indicate strong
overall performance, IRIS is dependent solely on the correct classi-
fication of the centered object. This is because if multiple detected
objects exist in a frame, IRIS rejects the outlier objects and opts to
control the object in the center of the frame. Thus, we computed a
confusion matrix to show if the object in the center was classified
correctly. Fig. 12 shows the performance of our YOLOv8 model af-
ter CODA. Across 86 images, IRIS’s YOLO+CODA implementation
shows an accuracy of 95.3% for center object classification. With
only 3 false negatives and 1 false positive across the test set, we
believe that the model performs sufficiently well for in-the-wild
applications. We note that with a larger in-the-wild dataset, the
performance of this part of our model could improve.

4.2.2  Human-in-the-loop with semantic similarity. For evaluating
our instance-based detection method, we collect a user-defined test
set of 96 images. These are all collected with the ring and contain
18 unique instances (devices): 2 blinds, 1 door, 4 lighting systems,
2 smart locks, 5 speakers, 2 TVs, and 2 HVACs. Each instance has
3-7 images associated with it taken from different perspectives. We
sample one of these images without replacement and use it as a
query image. The rest of the images are considered references. We
then predict the instance associated with the query image using the
semantic similarity based search algorithm described in §3.3.2. This
prediction is compared against the ground-truth instance this query
was sampled from, and marked as a correct or incorrect detection.
This process is repeated across all 18 unique instances in the test
set. Accuracy is computed over the entire set as the ratio of correct
predictions over the total number of queries.

To evaluate how many reference images a user needs to collect,
we repeat this process while limiting the number of reference im-
ages per instance. This experiment allows us to gain insight by
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Figure 14: An example failure scenario with semantic similarity search. This primarily occurs due to the lack of sufficiently diverse
references. In the top row’s inference with 3 reference images, the reference images corresponding to the correct instance do not contain the
smartlock of interest in the on-state. So semantic similarity search wrongly picked a different smartlock instance in the on-state. In the
bottom row, when we add a reference with the correct smartlock in the on-state as well, we pick the correct smartlock instance.

measuring the accuracy as a function of the number of reference
images available per instance. The accuracy obtained from this
evaluation is observable in Fig. 13. Our results indicate that 2 ref-
erence images are required per instance for 95% accuracy and 3
images reaches an upper bound of 98% accuracy. We note that these
reference images are only required for when multiple instances of
the same class are within the home and/or a new/unseen IoT device
(e.g. HVAC) needs to be detected.

This approach results in very few inaccurate predictions (2%),
an example of which are shown in the Fig. 14. Failures with se-
mantic search primarily occur due to a lack of sufficiently diverse
references. In the top row example, the model incorrectly predicts
a different smart lock as the best match. We can observe that this is
caused because none of the references contain the smart-lock in its
on state, but another reference of a different smart-lock contains
an example in its on-state. We observe that when we include a
reference with the queried smart-lock in its on-state, the prediction
is accurate as shown in the bottom row of Fig. 14.

4.3 System Evaluation

4.3.1 Latency. End-to-end latency in our system is defined as the
time elapsed between a participant completing a gesture (e.g. click-
ing the button) and the corresponding HomeKit command (e.g.
toggling lights) being transmitted via an iPhone. This includes mul-
tiple components as shown in Table. 4. We start our measurement
by first putting IRIS into the IDLE state (camera clock-gated and
IMU suspended) as this is the default state of IRIS when not in
use. A hardware interrupt triggers upon image transfer completion
through the nRF52840’s BLE stack. We measured the hardware
latency using an oscilloscope, calculating the delta between the
button’s falling edge and the image completion interrupt pin. This
experiment yielded a hardware latency of 293ms, closely aligning
with the expected value discussed in §3.2.2.

The other contributors to latency in our system are YOLO and
DinoV2. We measured YOLO latency on the iPhone and observed
values between 24-28ms. For Dinov2, we first measured the em-
bedding computation time, which was 7.69ms. Next, we evaluated
the time required to query the embedding database, noting that

Embedding database size 4 50 100
Hardware 293ms | 293ms | 293ms
YOLOvVS 28ms | 28ms | 28ms

Embedding Generation 8ms 8ms 8ms
Embedding Query 9ms | 244ms | 423ms
Total latency 338ms | 573ms | 752ms

Table 4: Latency Breakdown. Query times are across the entire
database (DINOV?2 only) and are reduced via YOLO+CODA search
space reduction. Results are shown in the figure below.

500
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g 300
o
£
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g 200
c
o
&
£ 100
0
Lights Door Blinds SmartLock Speaker TV DINOV2
(n=20) (n=4) (n=9) (n=10) (n=30) (n=13) Only
(n=286)

Figure 15: Query times for specific classes against the entire
embedding database. With only DINOV2, we report a runtime
of 411ms. Utilizing the classification output from YOLO+CODA
allows us to reduce the search space to a specific class, reducing
latency by hundreds of milliseconds.

this latency scales linearly with the database size. We measured
query times across a range of database sizes (4 to 100 embeddings),
resulting in values ranging from 9ms to 423ms, respectively. Even
in the scenario where IRIS queries 100 embeddings, the total system
latency remains at 752ms. These measurements were all performed
on an iPhone 13.

To further optimize inference latency, we utilized the YOLO+
CODA output to reduce the search space for relevant embeddings
that solely align with the classified device. We measure the run-
time using this technique across an embedding database size of 86



IRIS: Wireless ring for vision-based smart home interaction

Component SLEEP IDLE ACTIVE

SoC (ISP1807) 4.23 ptW 3.53 mW 19.2 mW

IMU (BMI270) 6.3 UW 634W 076 mW
PMIC (MAX77650) 23.5 yW 235 W 0.148 mW
Camera (HM01B0) - - 1.1 mW
Estimated Total >34.03 yW >3.76 mW  21.2 mW
Measured Total 86.5 uW 6.63mW  26.1 mW

Table 5: IRIS hardware power consumption.

Gestures/hr Battery Life Battery Life (SLEEP>8 hrs)

10 16.6 hrs 32.9 hrs
30 15.9 hrs 31.5 hrs
60 14.9 hrs 29.5 hrs

Table 6: Battery life (hours) across different gesture rates for the
27 mAh battery on our ring hardware.

images, corresponding to 16 unique device instances (2 blinds, 1
door, 4 lights, 2 smart locks, 5 speakers, and 2 TVs). We show in Fig.
15, that reducing the search space in this way reduces the query
runtime on the order of hundreds of milliseconds. This latency
optimization can be quite significant for interactive mobile systems.
Finally, we note that further latency optimization could have been
achieved by utilizing both a dedicated vectorized matrix library and
parallelization. However, we leave this to future work.

4.3.2  Power consumption. To calculate the expected battery life
during usage, we first connected the battery terminals of IRIS to
a power supply that has A resolution. We measured the current
draw of IRIS at 4.2V during each of the three power states (ACTIVE,
IDLE, and SLEEP) for at least 25 seconds. For each operating mode,
we averaged the current draw and derived the power consumption
numbers shown in Table 5.

To calculate the expected battery life of IRIS, we began by as-
suming an average gesture duration of approximately 3 seconds
in ACTIVE mode (26.1mW, 6.23mA). Over the course of a minute,
this leaves 57 seconds for which the system is in its IDLE state
(6.63mW, 1.58mA). From these measurements, we calculated the
average power consumption for N gestures over the course of an
hour, giving an average current draw of 1.58mA for a single ges-
ture for one hour. Table 6 shows the expected battery life of IRIS
for different numbers of gestures performed per hour. Even at 60
gestures per hour or 1 gesture a minute, IRIS can last 15 hours on a
full charge. Finally, we model IRIS’s battery life for users who are
away from home for up to 8 hours a day. This allows us to enter
SLEEP mode (IRIS’s lowest power state), as the user is away from
their home Wi-Fi, and IRIS need not be constantly waiting for user
input. In these use cases, IRIS is able to last beyond 24 hours.

While the IRIS network consumes 774 MIPS during operation,
this is exclusive to the ACTIVE state. Since IRIS’s use case is episodic,
the overall impact on a smartphone’s battery life is minimal.

4.3.3 Distance. Our implementation enables us to observe IRIS’s
detection capability in real-time using an iPhone display. Thus, the
effective detection range of IRIS was evaluated for various smart
home devices through a visual feedback-based approach. For each
device, we started at the minimum distance at which a bounding box
was observed and progressively stepped backward. IRIS’s detection
capability at farther distances was evaluated based on the presence
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Figure 16: IRIS Distance Performance.

or absence of a bounding box around the target device. The furthest
distance at which a bounding box was consistently generated for
the device was recorded as the maximum detection range. Full
detection range performance is observable in Fig. 16.

This approach offered a practical way to assess IRIS’s perfor-
mance in a real-world setting. Our results aligned well with our ex-
pectations as small devices with few features failed first (HomePod
Mini). Similarly, larger objects like blinds, televisions, and bright
lights could still be picked up by YOLO at farther distances but fail
once the object became small with respect to the image dimensions.
The techniques described in [17] could potentially be used in future
to improve performance further for small object detection.

4.3.4 Low-light conditions. We evaluate IRIS’s object detection
performance in low-light environments with a series of controlled
experiments. We assessed IRIS’s ability to detect smart home objects
across a range of illuminance levels (lux). A controllable lighting
system capable of adjusting brightness from 0 to 100% was used
to create a controlled testing environment during nighttime hours.
We systematically decreased light intensity within the room until
IRIS failed to detect the target device. The minimum lux at which
a bounding box was consistently generated for each device was
recorded as the minimum lux required for proper functionality.

Across the devices tested, we observed that IRIS detection fail-
ures began when the room’s illuminance level (lux) approached
or fell below 1. This indicates successful operation in quite dark
environments. These results are largely due to two reasons. First,
our camera is configured for auto-exposure, reducing its shutter
speed in bright scenarios, while increasing its shutter speed in dark
scenarios. We note that the camera’s maximum exposure time is
1/160th of a second, or 6.3ms. This is typically the upper bound
for modern DSLR cameras, without in-body image stabilization, to
be able to take images without motion blur from the user’s hand.
Second, YOLO’s feature extraction capabilities remain relatively
strong until there is an absence of light. Overall, IRIS is able to
maintain some level of detection for the target devices even in ex-
tremely low-light conditions. Passing and failing examples from
this experiment are shown in Fig. 17.

5 LIMITATIONS AND DISCUSSION

Our work with IRIS lays the groundwork for several exciting future
directions, which stem from the limitations of our current imple-
mentation. One area of exploration involves expanding the gesture
set to incorporate more intuitive interactions or additional utility.
The results from the ring gesture elicitation study [13] show end
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Blinds

Speaker

Lights Off

Figure 17: Low-light testing examples. Rows ordered in in-
creasing illuminance. 50% brightness set by our lighting system is
approximately 12 lux, 20%-2 lux, and 10%-1 lux. Failures for speaker
and lights occurred when our lighting system was turned to 0%,
while blinds failed at 10%. All examples were collected at night.

users’ preferences for an extensive referent gesture set performed
with a ring to control various devices within a smart home. Many
of these controls can be mapped to IRIS’s simple gesture set, but
additional gestures could enable IRIS to scale for devices that of-
fer more functionality. For instance, a press-hold-and-drag gesture
could enable users to precisely control the stopping point for blinds.
Similarly, sliding or flicking vertically and horizontally could be
used to modulate light brightness or speaker volume, offering an
alternative to rotation akin to a physical dial. Adding redundancy
through additional gestures would be beneficial for users to pick
and choose gestures that feel most natural (i.e. IRIS could offer
several gestures for controlling volume). Finally, GestuRING [44]
presents hundreds of potential gestures for wearable rings, and
in-air or on-body input could be utilized for controlling wearable
devices, like headphones.

Detecting small objects across far distances (Fig. 16) and/or un-
seen devices remains a challenge for our current implementation.
In IRIS, users could take reference images of a desired device from
farther distances, and the system would learn to utilize information
from the scene to control the object. For unseen classes in our YOLO
dataset, users could potentially take reference images of the unseen
device and associate them with the device’s corresponding UUID.
While Fig. 7c shows the technically feasible of this for HVACs with
our existing system, we did not test this extensively and leave this
exploration to future work.

Expanding IRIS’s hardware presents another promising avenue
for future research. Integrating a capacitive touch surface in place
of, or alongside, the current button could enable users to navigate
digital screens when pointing IRIS at the device. This could en-
able functionalities like navigating a television menu. Additionally,
swiping across the touch surface could provide another alternative
to rotations for scenarios requiring granular control. Finally, inte-
grating a digital microphone could lead to a multimodal interface,
and provide users the additional option of voice input.

Kim et al.

Running the neural network on the mobile phone affects its bat-
tery life. Offloading inference from the mobile device to the smart
home hub is another promising avenue for improvement. This ap-
proach would benefit battery life by minimizing the computational
demands placed on the user’s phone. Alternatively, embedding the
inference on the ring could be a more privacy-preserving approach,
alleviating the need to stream images wirelessly. With the recent
advances in accelerator hardware, this could be a possibility in the
near future.

Since IRIS has limited use cases outside the home, incentivizing
users to wear the ring all day is of notable importance. Integrating
IRIS’s features with existing health-tracking smart rings, such as
Oura, Ultrahuman, or the Samsung Galaxy Ring [22, 29, 42], would
provide users a reason to wear the ring all day. IRIS would then
augment existing smart rings by providing smart home control
in addition to tracking daily health metrics. Another application
would be to control on-the-go accessories like Bluetooth speakers
and headphones. An accessibility application of IRIS could be for
individuals experiencing speech difficulties due to conditions like
stuttering, apraxia, or dysarthria. IRIS could offer a valuable alter-
native to the conventional voice assistant for the speech-impaired
population. Exploring this however is not in the scope of this paper.

6 CONCLUSION

We presented IRIS, the first wireless ring form-factor system for
vision-based smart home interaction. To achieve this, we made
multiple technical contributions, including a SWaP-optimized wire-
less hardware design that integrates a camera within a low-power,
wireless ring form factor. Additionally, we achieved instance-level
classification that leverages contextual scene semantics. We do this
through a combination of YOLO for object detection and CODA
for centered object selection. This significantly reduced the search
space for the DINOV2 model, optimizing for runtime latency while
not sacrificing instance classification performance. Finally, system-
level optimizations ensured real-time responsiveness and extended
battery life to 16-24 hours. Evaluations from our user study and
experiments demonstrate IRIS’s effectiveness and user preference
over traditional voice control interfaces. We believe that this work
represents an important step that can influence the landscape of
ring-based human-computer interaction.
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