
Knowledge boosting during low-latency inference

Vidya Srinivas,1 Malek Itani,1 Tuochao Chen,1 Emre Sefik Eskimez,2 Takuya Yoshioka,3
Shyamnath Gollakota1

1University of Washington, 2Microsoft, 3AssemblyAI
{vysri,malek,tuochao}@cs.washington.edu, sefik.eskimez@microsoft.com,

takuya.yoshioka@ieee.org, gshyam@cs.washington.edu

Abstract
Models for low-latency, streaming applications could benefit
from the knowledge capacity of larger models, but edge devices
cannot run these models due to resource constraints. A possible
solution is to transfer hints during inference from a large model
running remotely to a small model running on-device. How-
ever, this incurs a communication delay that breaks real-time
requirements and does not guarantee that both models will op-
erate on the same data at the same time. We propose knowledge
boosting, a novel technique that allows a large model to oper-
ate on time-delayed input during inference, while still boosting
small model performance. Using a streaming neural network
that processes 8 ms chunks, we evaluate different speech sepa-
ration and enhancement tasks with communication delays of up
to six chunks or 48 ms. Our results show larger gains where the
performance gap between the small and large models is wide,
demonstrating a promising method for large-small model col-
laboration for low-latency applications.
Code, dataset, and audio samples available at https://
knowledgeboosting.cs.washington.edu/
Index Terms: Model collaboration, source separation

1. Introduction
Advancements in deep learning, hardware, and algorithms have
enabled models to run on diverse devices, from wearables to
GPU clusters. While some small models can run on-device,
large models require remote servers or the cloud. Resource-
constrained applications can greatly benefit from the knowledge
capacity of larger models, but cannot easily utilize these models
during inference. We pose the following question: Can a remote
large model boost the performance of an on-device small model
during low-latency inference? An affirmative answer would
benefit real-time applications across various domains such as
robotics, self-driving vehicles, and audio and video processing.

In this paper, we explore this question in the context of hear-
ables and augmented audio applications, shown in Fig. 1, target-
ing real-time speech manipulation tasks such as target speech
extraction [1, 2], speech enhancement [3, 4], and blind source
separation [5]. Such applications have low latency requirements
that demand real-time, streaming processing of small chunks of
audio (≤ 10 ms) and must operate on-device with limited com-
putational resources. This requires models with minimal pa-
rameters and computational footprint [6, 7, 8]. Given these con-
straints, we investigate if a large model running, for instance, on
a nearby smartphone, can boost the inference-time performance
of a small model running on a wearable.

A key challenge is that communication latency between two
devices can exceed real-time processing requirements. Data
wirelessly transmitted to a remote device introduces a delay be-

Figure 1: Example use cases for knowledge boosting. During
inference, small models running locally can benefit from the
knowledge capacity of large models running remotely. In these
examples, the communication latency between the local and re-
mote devices can exceed the real-time processing requirements.

tween current inputs of the on-device small model and the re-
mote large model. For example, according to the Bluetooth 5.0
standard [9], the minimum delay is 15 ms roundtrip, but this
can increase depending on wireless network congestion and in-
terference. As a result, low-latency audio Bluetooth chips (e.g.,
Qualcomm aptX) guarantee only 40 ms latency [10]. Thus, the
remote large model must operate on time-delayed input without
access to the current audio chunks.

In this paper, we introduce knowledge boosting, a novel
technique in which delayed hints are provided by a large model
to a small model during low-latency inference. Knowledge
boosting enables a small model to accept hints after a time delay
from a larger model, boosting its performance. Our key insight
is that delayed large model information, when aligned with rel-
evant history, can still enhance the current small model output.
Further, through joint training, the large model can learn to pro-
vide useful hints that can improve real-time performance.

We evaluate our approach with very small models (around
40k parameters) that can fit on-device for wearables and large
models (around 500k parameters) that can fit on-device on
smartphones [6]. We test the performance of our models on
three binaural audio tasks, namely blind source separation (SS),
speech enhancement (SE), and target speech extraction (TSE),
using a streaming version of TF-GridNet [11]. We also ana-
lyze our technique with ablation studies, through training con-
figurations, compression ratios, and delays. Our results demon-
strate that, at a delay of 48 ms (or six audio chunks), knowledge
boosting improves the scale-invariant signal-to-distortion-ratio
(SI-SDR) for SE, SS, and TSE by 0.23, 2.31, and 3.53 dB, re-
spectively, over the corresponding vanilla models with a simi-
lar number of parameters as our on-device models. Our results
demonstrate that the improvement from knowledge boosting de-



Figure 2: Our system architecture. The green arrow is present
only during large model pre-training. The red arrows are
present during knowledge boosting. The black arrows are
present both during pre-training and knowledge boosting.

pends on the performance gap between small and large models,
with large gains observed for TSE, and smaller gains for SE.

2. Related Work
Model partitioning: This involves taking one large model
and determining an optimal partitioning point such that one
part of the model runs on a smaller device, and the other part
runs on the cloud or a larger device. Prior works [12, 13]
have proposed model partitioning to adapt models to resource-
constrained environments, executing only the necessary com-
putation on-device and offloading the rest of the computation to
the cloud. In this setting, both models have access to the same
input at the same time. In contrast, our work aims to utilize a
representation of the knowledge contained in a large model and
use it to assist a small model after a delay. More importantly,
because of communication and inference delay, the large model
does not have access to the current small model input and has
to work on previously received input samples.
Retrieval during inference and speculative decoding: In
retrieval-augmented knowledge distillation [14], a student and
teacher model are trained jointly to minimize divergence be-
tween their probability distributions. Embeddings from the
teacher model are frozen into a database. The student model
uses its output to look up the related embedding from the
teacher database to assist during inference. Another tech-
nique, speculative decoding, provides a prompt to a draft stu-
dent model and then uses a larger teacher model for verifica-
tion [15, 16, 17]. The student model provides a set of propos-
als, or distributions for the target task. These proposals are then
confirmed or denied by the large model. While the idea of using
teacher knowledge to enhance student performance is similar to
our work, these techniques do not take into account communi-
cation delay between the small and large model, the need for
low latency inference, or model viability on small devices.
Knowledge distillation: This technique, first proposed in [18]

transfers the knowledge of a large model to a small model
during training for classification tasks. Variants of the orig-
inal knowledge distillation proposal have been proposed for
regression-based tasks [19], and more specifically for speech
and audio tasks [20, 21, 22]. In contrast to these works, which
distill knowledge during training, knowledge boosting transfers
representations between a small and large model during infer-
ence time for boosting the small model’s performance.

3. Knowledge Boosting
3.1. Problem formulation

Knowledge boosting utilizes two models — a small and a large
model. The small model receives chunks of binaural audio
chunks X1, . . . , Xi, where Xi ∈ R2×τfs , τ is the chunk du-
ration in seconds, and fs is the sampling rate. After receiv-
ing a chunk Xi, the local device sends it to the remote device,
where it is received after a communication delay of cout sec-
onds, or Cout chunks. The remote device processes this chunk
with a neural network GL, computes an embedding Ei, and
transmits it back to the local device. The embedding reaches
the local device after a communication delay of cin seconds,
or Cin chunks. As a result, the embedding computed from
the chunk Xi arrives back at the local device after a delay,
c = cin + cout. During this time, the local device would have
received C = ⌊ cin+cout

τ
⌋ additional chunks. Given our low-

latency streaming requirements, the small model, through GS ,
must produce an output chunk Yi while only using the informa-
tion available to it by the time of input chunk, Xi, namely, the
input chunks X1, . . . , Xi and the embeddings from the large
model, E1, . . . , Ei−C .

3.2. System architecture

We design our network architecture using the multi-channel
causal TF-GridNet implementation [23]. Specifically, we use
this network for both the small and the large models, GS and
GL. Each network takes a time-domain binaural audio signal
x ∈ R2×t of length t samples and uses a short-time Fourier
transform (STFT) to convert it to a time-frequency representa-
tion S ∈ C2×F×T , where F is the number of frequency bins
and T is the number of time frames. Then, a D-dimensional
latent representation Z ∈ RD×F×T is generated and processed
with a sequence of TF-GridNet blocks, where the output of the
j-th TF-GridNet block is Zj . The output of the last TF-GridNet
block is then mapped to K time-frequency domain channels,
Ŝ ∈ CK×F×T , and converted back to the time domain using
an inverse STFT. Further details can be found in [11].

The large model generates embeddings that are received
by the small model during training and inference. The em-
beddings are generated from the intermediate representation,
Ŝ, right before the inverse STFT in the TF-GridNet model.
Specifically, we concatenate the real and imaginary compo-
nents along the channel dimension, K, to generate the embed-
ding, E′ ∈ R2K×F×T . This embedding is passed through
a compression module, which takes an input E′ and outputs
E ∈ R2K/P×F×T where P is the compression ratio. The com-
pression module is implemented as a single casual convolution
layer with a kernel size of 3. The outputs of the compression
module are then passed to the small model.

For a given chunk Xi, the small model computes an in-
put representation Z0

i which it passes through a sequence of
TF-GridNet blocks. The small model incorporates the com-
pressed embeddings coming from the large model via the merge



modules, shown in Fig. 2b. These modules are located in be-
tween consecutive TF-GridNet blocks. The j-th merge module
takes two inputs— the latent representation, Zj , from the output
of the j-th TF-GridNet block and a time-delayed embedding,
Ei−C from the large model. We use a context length V in our
merge modules. Specifically, given the large model embedding,
Ei−C , and the latent representation, Zj

i−C , we compute the
contextual representation, Ẑj

i−C , using a FiLM layer [24]. We

then compute the merged output, Z
′j
i , using multi-head cross

attention between [Ẑj
i−C−V , · · · , Ẑj

i−C ] and Zj
i . Z

′j
i is then

provided as input to the (j + 1)-th TF-GridNet block. During
inference, to minimize computational complexity, we cache the
last C + V contextual representations computed previously.

3.3. Training procedure

We first pre-train the large model on the target task, which yields
a reasonable initial set of weights. To train for knowledge boost-
ing, we first process an input audio sequence with the large
model to obtain the embeddings E1, · · · , EN , where N is the
total length of the audio sequence. Then, we simulate the com-
munication latency by time-shifting the embedding sequence to
the right by C, feeding in zeros to the first time frames where no
embedding is available, and passing this sequence to the small
model along with the original chunks X1, . . . , XN . Both mod-
els are jointly trained, and the small model’s output is used to
compute the loss function for training. During backpropagation,
we update the parameters of both the large and small models.

4. Experiments and Results
Datasets. To generate binaural audio mixtures, we first sam-
pled rooms from one of four binaural room impulse response
datasets – CIPIC [25], RRBRIR [26], ASH-Listening-Set [27],
and CATTRIR [28] – with probability 0.35, 0.05, 0.45 and 0.15.
We then sampled speech utterances from the LibriSpeech [29]
dataset and convolved each of them with a binaural room im-
pulse response from the sampled room. We summed up these
binaural speech signals to obtain a binaural speech mixture.
For the SS and TSE tasks, the resulting mixture was created
from two binaural speech utterances. For SE, we only used
a single speech utterance. Instead of using the room impulse
response on a single-channel noise signal, which would only
simulate a noise source in a single direction, we used a bin-
aural noise signal recorded in the WHAM! [30] dataset as our
ambient binaural noise. We scaled the noise so that the re-
sultant average signal-to-noise ratio across both microphone
channels is uniformly distributed between [−6, 6] dB. For each
task, we generated 100,000 mixtures for training, 5,000 for test-
ing, and 5,000 for validation. Speech utterances were sampled
from LibriSpeech’s train-clean-360, test-clean and
dev-clean, respectively. Noise samples were sampled from
WHAM!’s tr, tt, and cv, respectively. All mixtures were 5 s
long and the sampling rate was 16 kHz. There was no overlap
in the identity of the speakers and the noise sources between the
train, test, and validation splits.

Evaluation Setup. We compared the performance of a small
model augmented with delayed hints from a large model during
inference time with a vanilla model of a similar parameter size.
Following the naming conventions in [11], D is the embedding
dimension for each TF unit, B is the number of TF-GridNet
blocks, I is the kernel size for unfold and Deconv1D, J is the
stride size for unfold and Deconv1D, H is the number of hid-

Table 1: Main results with delay of 48 ms (C = 6). The pre-
fixes “Mx”, and “KB” refer to the input mixture and knowl-
edge boosting, respectively. The prefixes ”S”, ”M”, and ”L”
refer to the small, medium, and large model baselines, respec-
tively.“Param.” specifies the number of model parameters and
“MACs” the number of multiply-accumulate operations. The
MACs reported for KB configurations are for the small model
only, as the small model is the only part that must run on a
local device. For TSE, the speaker embedding parameters are
excluded since they only need to be computed once and cached;
this computation can occur on the remote device.

Name SI-SDR PESQ STOI Param. MACs
(dB) (K) (M)

Mx-SS 0.00 1.28 0.70 - -
M-SS 9.72 2.05 0.85 37.38 3.70

KB-SS 12.03 2.23 0.87 36.54 2.68
S-SS 8.65 1.93 0.84 23.96 2.40
L-SS 13.92 2.59 0.89 518.77 37.98

Mx-SE 0.01 1.12 0.67 - -
M-SE 9.34 1.75 0.82 36.44 3.61
KB-SE 9.57 1.77 0.83 35.70 2.60
S-SE 9.01 1.71 0.82 23.38 2.35
L-SE 11.28 2.12 0.87 516.46 37.76

Mx-TSE 1.05 1.36 0.72 - -
M-TSE 4.00 1.45 0.75 36.44 6.19

KB-TSE 7.53 1.92 0.82 35.70 4.19
S-TSE 3.95 1.42 0.75 23.38 3.94
L-TSE 8.52 2.21 0.84 516.46 44.12

den units in the LSTM layers and L is the number of heads in
self-attention. In all our experiments, we set I = J = 1. We
computed the time-frequency representations using uncentered
12 ms STFT windows with a hop size of 8 ms. We consid-
ered three baseline models per task. We trained a baseline small
model with D = 16, L = 4, B = 3, H = 16, and no attention.
We also trained a baseline medium model with D = 26, L =
4, B = 3, H = 18, and no attention. Finally, we trained a base-
line large model with D = 64, L = 8, B = 3, H = 64 with
attention. We limit self-attention to the last 50 chunks. After es-
tablishing these baselines, we trained knowledge boosting with
a joint model training method. Specifically, we jointly trained
a large model, with the same hyperparameters as our baseline
large model, to boost the performance of a small model with the
same hyperparameters as our baseline small model. In all ex-
periments, we initialized the large model with the baseline large
model weights, while the small model was not pre-trained. We
use a context length of V = 49 for cross-attention modules.
Loss functions and training hyperparameters. For the TSE
and SE tasks, we optimized the network parameters to maxi-
mize the average scale-invariant signal-to-distortion ratio (SI-
SDR) [31] across the two microphone channels. For SS, we
output two speaker channels per microphone, and used permu-
tation invariant training to maximize the average SI-SDR across
speakers and microphones. In all three tasks, since we were
not particularly concerned about binaural cues, we treated the
left and right channels independently when computing the opti-
mal scale factor for SI-SDR. We used this same scale factor to
rescale when computing PESQ and STOI. For all experiments,
in each epoch, we iterated over the entire training and validation
sets, and halved the learning rate if the average scale-invariant



Table 2: Knowledge boosting ablation experiments on SS for
different delay configurations (C) with no compression. The
prefixes “KB”, and “FKB” refer to knowledge boosting and
knowledge boosting with a frozen large model, respectively.

Name C SI-SDR (dB) PESQ STOI

FKB-SS 0 13.50 2.47 0.89
KB-SS 0 13.11 2.45 0.89

FKB-SS 1 10.73 2.04 0.87
KB-SS 1 11.88 2.23 0.88

FKB-SS 3 9.77 1.89 0.84
KB-SS 3 11.21 2.07 0.86

FKB-SS 6 9.27 1.93 0.84
KB-SS 6 10.73 2.04 0.86

Table 3: Knowledge boosting ablation experiments on SS for
different delay values with different compression factors (P ).

Name C P SI-SDR PESQ STOI MACs
(dB) (M)

KB-SS 0 2 13.17 2.46 0.89 2.655
KB-SS 0 4 12.75 2.43 0.89 2.643
KB-SS 1 2 11.98 2.25 0.88 2.655
KB-SS 1 4 11.13 2.08 0.87 2.643
KB-SS 6 2 10.59 2.00 0.86 2.655
KB-SS 6 4 10.28 1.99 0.86 2.643

signal-to-noise ratio (SI-SNR) over the validation set does not
decrease after four iterations. For all training runs, we used a
batch size of 8 and gradient clipping with the norm set to 1.
Our baseline models were trained for 100 epochs with an ini-
tial learning rate of 2e-3. Our main experiments were trained
until convergence of the loss function with an initial learning
rate of 1e-3. All of our ablation experiments were trained for 20
epochs. We used the Adam optimizer. In our evaluations, we
used the best-performing weights on the validation set.
Main results. We tested the viability for knowledge boosting
at a delay of 48 ms, or C = 6, and trained with a joint config-
uration, as specified above, for SS, SE, and TSE. We compared
the results of a small model trained with knowledge boosting
and a vanilla medium model of similar parameter size in Ta-
ble 1. Overall, we observed that knowledge boosting tends to
improve the performance of a small model over a vanilla model
of a similar parameter size without knowledge boosting. We
do so with a notable reduction in MACs. At delay C = 6, we
achieved a relative improvement of 0.23, 2.31, and 3.53 dB for
SE, SS, and TSE, respectively, over the vanilla medium mod-
els for each task. A paired t-test was conducted for each task,
showing a significant difference with p < 0.05. As compared
to the vanilla medium models for SE, SS, and TSE, respec-
tively, we achieved a 1.01 M, 1.02 M, and 2.00 M reduction in
multiply-accumulates (MACs) using knowledge boosting. This
performance improvement despite MAC reduction was due to
the fact that we cut down the length of computationally ex-
pensive units, such as LSTMs, reduced the dimensionality of
embeddings used in TF-GridNet, and replaced these “missing”
parameters with merge modules and delayed, but valuable hints
from the large model.
Ablation studies. We performed ablation studies to evaluate
the effects of large model weight freezing, compression, and
different delays on the SS tasks, and evaluate the performance
at different delays on the SE and TSE tasks. Specifically, for

Table 4: Knowledge boosting ablation experiments on TSE and
SE for different delay configurations (C) with no compression.

Name C SI-SDR (dB) PESQ STOI

KB-SE 0 11.24 0.87 2.11
KB-SE 1 10.64 0.85 1.95
KB-SE 3 9.88 0.84 1.82
KB-SE 6 9.57 0.83 1.77

KB-TSE 0 9.34 0.84 2.31
KB-TSE 1 8.20 0.83 2.05
KB-TSE 3 7.65 0.82 1.86
KB-TSE 6 7.70 0.82 1.89

the SS task, we trained the large model and small model jointly,
with a compression ratio P = 1 in Table 2, and swept delays
C = 0, 1, 3, 6 chunks, corresponding to 0, 8, 24, and 48 ms, re-
spectively. In Table 2, we also investigated the effects of freez-
ing the large model during training on overall performance, us-
ing P = 1 and sweeping C = 0, 1, 3, 6 chunks. In Table 3, we
tested compression ratios P = 1, 2, 4 for C = 0, 1, 6 chunks.
Finally, we also swept C = 0, 1, 3, 6 with P = 1 across SE and
TSE in Table 4.

Our results show performance degradation with larger C
values. We found that freezing the large model during train-
ing led to lower performance than a joinly-trained large model.
We also found that compression of the information sent from
the large model to the small model slightly drops performance
across C values. For C = 6, this drop was only 0.14 dB (p >
0.3) and 0.45 dB (p > 0.001) at compression factors, P = 2
and P = 4, respectively, compared to no compression.

5. Discussion and Limitations
Our work has a few limitations that present opportunities for
future research. The device running the small model has to con-
tinuously stream audio to the remote device. However, it has
been shown that wearable devices can do this over Bluetooth
Low Energy (BLE) and still run continuously for 40 hours with
only a coin cell battery [4]. The compression module impacts
throughput requirements for transmitting embeddings from the
remote to the small device. For the TSE task, uncompressed
embeddings require a data rate of 1.55 Mbps, while a compres-
sion factor of 2 reduces it to 776 kbps. Notably, BLE supports
a maximum rate of 2 Mbps [9]; and, recent work demonstrated
concurrent streaming of compressed audio from seven micro-
phones over BLE [32]. Future work could explore more special-
ized compression techniques like neural vocoders [33] to further
reduce throughput requirements.

We trained different pairs of small and large models for
each communication delay. While it is possible to train a single
pair of small and large models to accept variably delayed in-
put, we defer this to future work along with exploring alternate
merge methods. Finally, we explored delays of up to 48 ms in
the context of Bluetooth streaming from a wearable to a smart-
phone or a home base station. One could have larger models
running on the cloud, but transmission delays would be higher.
However, such models could have a much larger capacity, po-
tentially leading to applications for more complicated tasks; we
leave this exploration to future research.

6. Conclusion
We proposed knowledge boosting, a novel technique for im-
proving the performance of small models at inference time



through delayed hints from a large model. Our results show
that knowledge boosting is a promising approach, worthy of
further exploration, for large-small model collaboration during
low-latency streaming applications.

7. Acknowledgments
The UW researchers are funded by the Moore Inventor Fellow
award #10617, UW CoMotion fund, and the NSF.

8. References
[1] K. Zmolikova, M. Delcroix, T. Ochiai, K. Kinoshita, J. Černocký,

and D. Yu, “Neural target speech extraction: An overview,” IEEE
Signal Processing Magazine, vol. 40, no. 3, p. 8–29, May 2023.

[2] B. Veluri, M. Itani, T. Chen, T. Yoshioka, and S. Gollakota, “Look
once to hear: Target speech hearing with noisy examples,” in Pro-
ceedings of the CHI Conference on Human Factors in Computing
Systems, 2024.

[3] H. Dubey, A. Aazami, V. Gopal, B. Naderi, S. Braun, R. Cutler,
A. Ju, M. Zohourian, M. Tang, H. Gamper, M. Golestaneh, and
R. Aichner, “ICASSP 2023 Deep Noise Suppression Challenge,”
2023.

[4] I. Chatterjee, M. Kim, V. Jayaram, S. Gollakota, I. Kemelmacher,
S. Patel, and S. M. Seitz, “Clearbuds: wireless binaural earbuds
for learning-based speech enhancement,” ser. ACM MobiSys ’22.

[5] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 26, no. 10, pp. 1702–
1726, 2018.

[6] B. Veluri, M. Itani, J. Chan, T. Yoshioka, and S. Gollakota, “Se-
mantic hearing: Programming acoustic scenes with binaural hear-
ables,” in Proc. UIST, 2023.

[7] B. Veluri, J. Chan, M. Itani, T. Chen, T. Yoshioka, and S. Gol-
lakota, “Real-Time Target Sound Extraction,” in Proc. ICASSP,
2023, pp. 1–5.

[8] N. L. Westhausen and B. T. Meyer, “Low Bit Rate Binaural Link
for Improved Ultra Low-Latency Low-Complexity Multichannel
Speech Enhancement in Hearing Aids,” in Proc. WASPAA, 2023,
pp. 1–5.

[9] Bluetooth Core Specification v5.0, 2016.

[10] “Qualcomm aptX audio is designed to improve Bluetooth
sound quality.” [Online]. Available: https://www.qualcomm.com/
products/features/aptx

[11] Z.-Q. Wang, S. Cornell, S. Choi, Y. Lee, B.-Y. Kim, and S. Watan-
abe, “TF-GridNet: Integrating Full- and Sub-Band Modeling for
Speech Separation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 31, pp. 3221–3236, 2023.

[12] E. Li, Z. Zhou, and X. Chen, “Edge Intelligence: On-Demand
Deep Learning Model Co-Inference with Device-Edge Synergy,”
in Proc. MECOMM, ser. MECOMM’18. Association for Com-
puting Machinery, 2018, p. 31–36.

[13] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Co-
operative DNN Inference With Adaptive Workload Partitioning
Over Heterogeneous Edge Devices,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 595–608, 2021.

[14] J. Zhang, A. Muhamed, A. Anantharaman, G. Wang, C. Chen,
K. Zhong, Q. Cui, Y. Xu, B. Zeng, T. Chilimbi, and Y. Chen,
“ReAugKD: Retrieval-augmented knowledge distillation for pre-
trained language models,” in Proc. ACL, 2023.

[15] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference
from transformers via speculative decoding,” in Proc. ICML.
JMLR.org, 2023.

[16] X. Liu, L. Hu, P. Bailis, I. Stoica, Z. Deng, A. Cheung, and
H. Zhang, “Online Speculative Decoding,” 2023.

[17] M. Yan, S. Agarwal, and S. Venkataraman, “Decoding Specula-
tive Decoding,” 2024.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[19] M. Takamoto, Y. Morishita, and H. Imaoka, “An Efficient Method
of Training Small models for Regression Problems with Knowl-
edge Distillation,” in Proc. MIPR, 2020, pp. 67–72.

[20] X. Chen, G. Liu, J. Shi, J. Xu, and B. Xu, “Distilled Binary Neural
Network for Monaural Speech Separation,” in Proc. IJCNN, 2018,
pp. 1–8.

[21] X. Hao, S. Wen, X. Su, Y. Liu, G. Gao, and X. Li, “Sub-band
knowledge distillation framework for speech enhancement,” arXiv
preprint arXiv:2005.14435, 2020.

[22] R. D. Nathoo, M. Kegler, and M. Stamenovic, “Two-Step Knowl-
edge Distillation for Tiny Speech Enhancement,” 2023.

[23] S. Cornell, Z. Wang, Y. Masuyama, S. Watanabe, M. Pariente,
N. Ono, and S. Squartini, “Multi-Channel Speaker Extraction
with Adversarial Training: The Wavlab submission to the clar-
ity ICASSP 2023 grand challenge,” in Proc. ICASSP, 2023, pp.
1–2.

[24] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville,
“FiLM: visual reasoning with a general conditioning layer,” in
Proc. AAAI. AAAI Press, 2018.

[25] V. Algazi, R. Duda, D. Thompson, and C. Avendano, “The CIPIC
HRTF database,” pp. 99–102, 2001.

[26] IoSR-Surrey, “IoSR-surrey/realroombrirs: Binaural impulse re-
sponses captured in real rooms.” https://github.com/IoSR-Surrey/
RealRoomBRIRs, 2016.

[27] S. Pearce, “Shanonpearce/ash-listening-set: A dataset of filters
for headphone correction and binaural synthesis of spatial
audio systems on headphones,” 2022. [Online]. Available:
https://github.com/ShanonPearce/ASH-Listening-Set/tree/main

[28] IoSR-Surrey, “Simulated Room Impulse Responses.” https://iosr.
uk/software/index.php, 2023.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in Proc. ICASSP, 2015, pp. 5206–5210.

[30] M. Maciejewski, G. Wichern, E. McQuinn, and J. L. Roux,
“WHAMR!: Noisy and Reverberant Single-Channel Speech Sep-
aration,” in Proc. ICASSP, 2020, pp. 696–700.

[31] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “SDR –
Half-baked or Well Done?” in Proc. ICASSP, 2019, pp. 626–630.

[32] M. Itani, T. Chen, T. Yoshioka, and S. Gollakota, “Creating speech
zones with self-distributing acoustic swarms,” Nature Communi-
cations, vol. 14, 09 2023.

[33] H. Wang, M. Yu, H. Zhang, C. Zhang, Z. Xu, M. Yang, Y. Zhang,
and D. Yu, “Unifying Robustness and Fidelity: A Comprehensive
Study of Pretrained Generative Methods for Speech Enhancement
in Adverse Conditions,” 2023.


	 Introduction
	 Related Work
	 Knowledge Boosting
	 Problem formulation
	 System architecture
	 Training procedure

	 Experiments and Results
	 Discussion and Limitations
	 Conclusion
	 Acknowledgments
	 References

