Wireless Hearables With Programmable Speech Al
Accelerators

Malek Itani
Paul G. Allen School, University
of Washington, Seattle, WA, USA
malek@cs.washington.edu

Gavriel Kohlberg

Department of Otolaryngology,
University of Washington, USA
kohlberg@uw.edu

Abstract

The conventional wisdom has been that designing ultra-
compact, battery-constrained wireless hearables with on-
device speech AI models is challenging due to the high
computational demands of streaming deep learning models.
Speech Al models require continuous, real-time audio pro-
cessing, imposing strict computational and I/O constraints.
We present NeuralAids, a fully on-device speech Al system
for wireless hearables, enabling real-time speech enhance-
ment and denoising on compact, battery-constrained devices.
Our system bridges the gap between state-of-the-art deep
learning for speech enhancement and low-power Al hard-
ware by making three key technical contributions: 1) a wire-
less hearable platform integrating a speech Al accelerator for
efficient on-device streaming inference, 2) an optimized dual-
path neural network designed for low-latency, high-quality
speech enhancement, and 3) a hardware-software co-design
that uses mixed-precision quantization and quantization-
aware training to achieve real-time performance under strict
power constraints. Our system processes 6 ms audio chunks
in real-time, achieving an inference time of 5.54 ms while
consuming 71.6 mW. In real-world evaluations, including
a user study with 28 participants, our system outperforms
prior on-device models in speech quality and noise suppres-
sion, paving the way for next-generation intelligent wireless
hearables that can enhance hearing entirely on-device.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ACM MOBICOM °25, Hong Kong, China

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1129-9/2025/11
https://doi.org/10.1145/3680207.3765251

Tuochao Chen
Paul G. Allen School, University
of Washington, Seattle, WA, USA
tuochao@cs.washington.edu

863

Arun Raghavan
Department of Otolaryngology,
University of Washington, USA

amraghav@uw.edu

Shyamnath Gollakota
Paul G. Allen School, University
of Washington, Seattle, WA, USA

gshyam@cs.washington.edu

i~ A

PERIPH

A\

Figure 1: NeuralAid hardware. The device has five inter-
connected flexible and rigid circuit boards that together form
an Al-enabled hearable. PWR (2-layer flexible PCB): man-
ages power, charging, and programming, BT (2-layer rigid
PCB): houses the BLE SoC, Al (6-layer rigid PCB): contains
a low-power Al accelerator for real-time speech AI, PERIPH
(4-layer rigid PCB): hosts peripherals including RAM, NOR
flash, IMU, and I2S DAC, MIC (2-layer flexible PCB): has a
microphone array with three mics and two push buttons.

CCS Concepts

« Computing methodologies — Artificial intelligence;
Machine learning; « Computer systems organization
— Embedded and cyber-physical systems; « Human-
centered computing — Ubiquitous and mobile devices.

Keywords

Enhanced hearing, quantization-aware training, hearing aids

ACM Reference Format:

Malek Itani, Tuochao Chen, Arun Raghavan, Gavriel Kohlberg,
and Shyamnath Gollakota. 2025. Wireless Hearables With Pro-
grammable Speech AI Accelerators. In The 31st Annual International
Conference on Mobile Computing and Networking (ACM MOBICOM
’25), November 4-8, 2025, Hong Kong, China. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3680207.3765251

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3680207.3765251
https://doi.org/10.1145/3680207.3765251

1 Introduction

In recent years, intelligent hearables have made significant
advances in enhanced hearing, leveraging deep learning
to program acoustic scenes in real time [7, 10, 57]. These
advancements enable capabilities such as speech enhance-
ment [51], noise suppression [7], and even target speech
hearing [58]. However, current implementations rely on
wired headsets and computationally demanding platforms
like smartphones or high-power embedded systems [10, 57,
58]—devices with far greater processing power, memory,
and energy budgets than what can realistically fit within
ultra-compact, battery-constrained hearables like earbuds
and hearing aids.

The fundamental challenge is that streaming deep learn-
ing models are traditionally associated with high compu-
tational demands and power consumption. This raises key
questions about whether real-time speech Al models can
be deployed on small, battery-powered hearables. Offload-
ing computations to a smartphone is unreliable due to the
stringent sub-10 ms algorithmic latency requirements of en-
hanced and augmented audio applications, which are highly
sensitive to wireless network variability, I/O delays, and oper-
ating system overhead on smartphones. Meanwhile, running
speech Al models on-device has so far been constrained by
the limited availability of Al accelerators that are both pow-
erful enough for real-time speech Al and small enough to fit
within these miniature wireless devices. Overcoming these
barriers is essential to unlocking the next generation of truly
intelligent and self-sufficient wireless hearables.

In this paper, we explore whether it is possible to design
wireless hearables that can run real-time speech Al mod-
els entirely on-device while understanding the trade-offs
between power consumption and efficiency. Achieving this
requires addressing three key challenges.

o Existing research platforms for hearables lack the compu-
tational capabilities required to run deep learning models for
augmented and enhanced audio applications. In contrast to
classification tasks, these models must continuously operate
in a streaming manner, processing audio input at a minimum
sampling rate of 16 kHz. To do this, they should process
audio in small chunks of around 6 ms, maintain an inference
time of under 6 ms to ensure real-time performance, and
continuously output audio at the same sampling rate. Meet-
ing these requirements imposes significant computational
and I/O constraints. Further, due to the limited non-valatile
storage available on these compact devices, the model size
must not exceed 1.5 MB and to enable more than six hours
of continuous operation on a 675 hearing aid battery, deep
learning power consumption must be below 100 mW.

e Tiny, low-power Al accelerator hardware [1, 3] is inher-
ently far more constrained than GPUs and general-purpose

864

Figure 2: A person ;vearing a NeuralAid, which rests behind
the ear, with a receiver inserted into their ear canal.

embedded CPUs like the Raspberry Pi. On the other hand,
effective neural architectures for speech enhancement rely
on components such as convolutions [30], LSTMs [28], trans-
formers [54], and state-space layers [27]. These models prior-
itize speech quality over real-time, on-device, or low-power
constraints — indeed, transformers and state-space models
exceed our target hardware’s runtime and memory limits.
While efforts like TinyLSTM [19] and its successor Tiny-
Denoiser [45] aim for on-device deployment, their 25 ms
algorithmic latency falls short of the low-latency require-
ments for enhanced hearing applications.

e While smartphones and general-purpose embedded de-
vices can run floating point operations, this increases the
runtime and power consumption on low-power hardware.
In general, low-power Al accelerators function as a compute
cluster with standard processors for general-purpose tasks
and a dedicated neural accelerator optimized for low-power,
highly quantized integer computations. However, quantiz-
ing all neural network weights, activations, and inputs can
significantly degrade audio quality. Further, different neural
network layers are affected differently by quantization errors,
necessitating mixed-precision quantization and compensa-
tion for non-linear errors at each layer. Thus, achieving opti-
mal performance requires a low-power hardware-software
co-design approach.

We introduce NeuralAids, which makes three key contribu-
tions across wireless hearable hardware, embedded systems,
deep learning, and hardware-software co-design.

e Wireless hearables with speech AI accelerators. We
design NeuralAids, a real-time speech Al system built on
a modular hardware architecture with five stacked PCBs
(Fig. 1). It integrates a low-power Al accelerator (Green-
Waves GAP9) with an nRF53-based System-on-Chip (SoC)
for Bluetooth Low Energy (BLE) connectivity, audio pro-
cessing, sensors, and both volatile and non-volatile memory.
The system runs speech Al models, using GAP9’s compute
cluster for real-time neural network inference. Optimized

power management, high-speed audio interfaces, and flexi-
ble storage enable continuous operation in a behind-the-ear
compact form factor (Fig. 2), making NeuralAids a unique
platform for real-time speech Al applications.

¢ Real-time on-device efficient neural network. Prior
on-device models like TinyDenoiser [45] are constrained by
their limited complexity and inability to achieve effective
performance with sub-10ms latencies. Instead, we begin with
dual-path models that process audio in the time-frequency
(TF) domain, treating time and frequency components as
sequences using recurrent networks [6, 65]. These architec-
tures achieve state-of-the-art performance by modeling both
temporal and frequency relationships. However, they are
computationally expensive, as running recurrent networks
across each frequency prevents real-time operation. Thus,
they cannot run in real time on our hardware. To address
this, our proposed architecture compresses frequencies us-
ing a linear layer and replaces LSTMs with Gated Recurrent
Units (GRUs). These architectural changes and others listed
in §2.2.2 achieve real-time performance by reducing runtime
while outperforming TinyDenoiser for the denoising task.

e Hardware-software co-design. Floating-point speech
denoising models cannot achieve real-time operation on our
target accelerator hardware. To address this, we explore var-
ious quantized model configurations and use quantization-
aware training (QAT) to simulate non-linear quantization er-
rors and fine-tune the network to mitigate error propagation
across layers. This narrows the performance gap between
our mixed-precision and fully floating-point speech models.

We evaluated our system for speech enhancement in noisy
scenarios. Our results are as follows:

e Before quantization, our floating-point dual-path network
architecture improves speech quality by 2.41 dB over Tiny-
Denoiser. Applying quantization-aware training reduces the
performance gap between our mixed-precision and floating-
point networks from 7.86 dB to 0.57 dB.

e Our proposed mixed-precision network can process 6 ms
audio chunks within 5.54 ms on the GAP9 processor, achiev-
ing real-time operation. Furthermore, the model uses only
299 kB of memory and consumes 71.64 mW on our hardware.

e Our system generalizes to six real-world indoor and out-
door environments, as well as to wearer head motion. Our
training relies solely on synthetic data and does not require
any training data collection using our hearable hardware.

e In a user study with 28 participants, our system achieved
a higher mean opinion score and better noise removal com-
pared to both the raw, unprocessed input and TinyDenoiser.

This paper demonstrates that effective speech Al models
can indeed run on low-power wireless hearables. We believe
that this paves the way for integrating on-device Al models

865

for enhanced hearing into billions of wireless earbuds and
hearing aids, unlocking exciting new opportunities.

2 System Design

We present our hearable hardware, an efficient streaming
neural network and a hardware-software co-design.

2.1 NeuralAids Hardware

The hardware has a low-power BLE SoC that controls a tiny
AT accelerator to process incoming audio in real-time.

2.1.1 Stacked printed circuits boards. The systems are dis-
tributed across the 5 printed circuit boards (PCBs) shown in
Fig. 1, referred to as PWR, BT, Al, PERIPH and MIC. These
circuits are stacked on top of each other and placed in the
hearing aid case. The board functionalities are as follows:

e PWR: A 2-layer flex board that houses components for
power management, battery charging, and monitoring. It
also exposes programming pads for the BLE SoC and Al
accelerator. The board is powered by a 3.85V battery pack
consisting of four CP1254 batteries (75 mAh each, 300 mAh
total). A Texas Instruments BQ25120 power management
and charging IC is integrated to charge the battery and gen-
erate a regulated 1.8V supply required to power the device
components. This chip can also produce a 3.3V voltage do-
main on demand via I2C to power indicator LEDs on other
circuits. A switch is included to manually turn the device
on and off. The programming pads are designed for interfac-
ing with a 2 X 7 array of 1.27 mm pogo pins, with one pad
also serving as a charging interface for the battery via a 5V
source. The board has a long flexible section with a Molex
2167010209 board-to-board connector at the tip that con-
nects to the BT board. Since the board exposes programming
pads, it is placed along the edge of the case.

e BT: A 2-layer rigid board containing an ISP2053, which
is a BLE SoC based on nRF5340 that integrates additional
components such as capacitors, oscillators and an antenna.
A resistor is soldered in one of two possible positions to
hardcode the device’s side (i.e. left or right device). A board-
to-board connector (Molex 513382674) attaches this circuit
to the Al board, enabling power and data exchange between
the two boards.

e AL A 6-layer rigid board houses the low-power Al accel-
erator (GreenWaves GAP9). An FPF1204UCX load switch is
used to enable the BLE SoC to control power to the Al chip,
allowing it to connect and disconnect power as needed. This
board connects to the PERIPH circuit.

o PERIPH: A 4-layer rigid board contains peripheral devices,
including an AP Memory APS256XXN 256 Mbit RAM chip
and an SSM6515 ultra-low-power 12S DAC and amplifier. The
AT accelerator can control power to the RAM chip using a

load switch (FPF1204UCX) when the RAM is not needed.
Additionally, this board includes a NOR flash (Macronix
MX25UW12845G) and an IMU (BMI323), which are reserved
for future research. A right-angled 1 mm pitch connector is
used to connect a Phonak Audeo Marvel M Receiver-in-canal
(RIC), allowing audio playback into the ear canal. The board
connects to the MIC circuit using Molex 5050661022.

o MIC: A 2-layer flexible microphone array with 3 PDM mi-
crophones (TDK T5837) and 2 buttons (Omron B3U-1000P).

2.1.2 Hardware subsystems. The NeuralAid system consists
of three main subsystems: Bluetooth, Al, and Audio.

o Bluetooth subsystem: This is built around the BLE SoC,
which is the first chip to boot when the device powers on
and manages power delivery to the Al chip. It has direct
access to the buttons on the MIC board and receives system-
level interrupts such as wake-up and reset signals. There are
two channels between the BLE and Al chips: 1) A 115200
baud UART interface for low-speed, spontaneous commu-
nication, and 2) an I2S interface for high-speed, continuous
communication. The BLE SoC enables wireless connectivity
with external devices. After waking up the Al chip, it trans-
mits advertising packets and accepts connections, allowing
remote control and data exchange for audio streaming or
playback. The BLE SoC is dual-core; we run time-critical
BLE-related tasks on one core, while tasks like interfacing
or GPIO control run on another core.

o Audio subsystem: This manages audio from microphone
capture to playback through the RIC. Although audio in-
terfaces directly with GAP9, all its Serial Audio Interfaces
(SAIs) derive their clocks from the BLE chip. GAP9 manages
three SAIs for different purposes: 1) reading audio from mi-
crophones, 2) writing audio to speakers, and 3) exchanging
audio with the BLE SoC (e.g., for streaming). The BLE SoC
provides a 3.072 MHz audio clock, enabling high-quality mi-
crophone capture. GAP9’s Smart Filter Unit (SFU) converts
incoming PDM samples to PCM using an 8th-order cascaded
integrator-comb filter with a 64x decimation ratio and 2 sam-
ples per stage. The output is shifted by 24 bits to generate
32-bit PCM samples at 48 kHz, which are then downsampled
to 16 kHz via the SFU’s resampler block for processing. For
playback, the speaker SAI interface transmits 32-bit PCM
samples at 48 kHz via I2S to the DAC. Since internal process-
ing occurs at 16 kHz, the SFU’s resampler upsamples audio
back to 48 kHz. The BLE 12S interface relays recorded audio
and external playback between the BLE and Al chips.

o Alsubsystem: The Al accelerator processes incoming audio
in real-time using a neural network. Every 96 audio samples
(6 ms at 16 kHz), it performs speech enhancement. First, the
system converts 32-bit PCM audio to 16-bit float using a
dedicated fixed-to-floating point converter. A pre-emphasis

866

Table 1: Power consumption of various NeuralAid com-
ponents. Speaker amplification was calibrated by placing a
NeuralAid in a silicone ear model and measuring the sound
level 8 mm from the RIC tip. The amplification was adjusted
to increase the sound level by 20 dB. The ambient noise level
was 33 dBA in both the calibration and testing environments.

Component Power (mW)
BLE chip 6.75
Microphone array 2.02
Speaker 1.49

filter with a coefficient of 0.97 removes DC components. The
audio is then placed in a ring buffer and an FFT converts it
into the frequency domain. The neural network processes
the frequency-domain audio, after which an inverse FFT and
overlap-add reconstruct the time-domain signal. The output
is converted back to 32-bit integers for playback through
the RIC. Although the microphone array has three micro-
phones, only one is used in this paper. For efficiency, FFT
and inverse FFT run on GAP9’s compute cluster, while other
operations execute on the fabric controller. All GAP9 compo-
nents, including the fabric controller, compute cluster, and
peripherals, are clocked at at 370 MHz. The AI chip also
communicates with onboard RAM via an Octal SPI interface.

2.1.3 Component power consumption. Table 1 presents the
power consumption of the BLE SoC, microphone array, and
speaker while running real-time Al speech enhancement.
The combined power consumption of these components is
10.26 mW. The power consumption of the Al accelerator,
which varies based on the complexity of the neural network,
is analyzed in detail in the following sections.

2.2 Efficient Streaming Neural Network

We have three key requirements for achieving a streaming
speech enhancement network: (1) achieving a low end-to-
end latency of less than 20 ms between the audio and visual
scenes, with an algorithmic latency of 10 ms or less, (2) com-
pleting the processing of the current chunk before the next
chunk arrives, and (3) generalizing effectively to unseen re-
verberant and noisy environments, as well as diverse wearers,
without requiring training data collected from hardware.

As shown in Fig. 3A, end-to-end latency is defined as the
time for a single audio sample to travel from the microphone
input buffer, through the speech enhancement network, and
into the speaker output buffer. This latency consists of two
components: algorithmic latency, introduced by factors such
as chunk size, lookahead, and overlap-add; and hardware
latency, which accounts for the computation and I/O time
required to process each chunk [60].

A- LR LF ELF Cl Dl
[e T A (-DLe iLe (+DLe
' Hardware ‘ I ‘ | ‘
I Latency | : H H H
ey [S | N Y] ——
‘ Model % ?
End-to-End Latency ;; ;
) 4 <F : ; :
o [[t —] | z :
(o)
B. | . . i el i
(-Dle ile G+l ; ;
= 1 : :
E H Dual-path Module H H H
H xi“‘ Caching Spectral stage : * 7
N[Lg] Le Ly State I, : H I E—
Xioi It : P ; L [L]
(T Analysis Window & DFT___) l:l:l:l * :
c — = §
((inverse DFT & is Window) H * T H
. ‘é é E .
: = —— g v
i i R s i N I :
; : lAddi : § § lAd"i :
[[i [] | | Yi [|

Figure 3: Efficient streaming neural network. (A) Decomposition of the end-to-end latency in streaming speech enhance-
ment. (B) The normal overlap-add operation introduces additional algorithmic latency with lookback padding. (C) The overall
architecture of our streaming speech enhancement network with history caching states for computing reuse. (D) Dual-window
approach during overlap-add can reduce the additional algorithmic latency introduced by the lookback padding.

2.2.1 Problem Formulation. Given an acoustic environment,
let s(t) represent the clean target speech received at the
microphone, and let n(t) denote all background noise. The
mixture audio, x(t), can be expressed as:

x(t) = s(t) +n(t)

1)

Since our enhancement network N processes audio chunks
in a streaming manner, we divide the continuous waveform
into smaller audio chunks: x(t) = [x,x1,...,xn], s(t) =
[s0,51,---ssN], and n(t) = [ng,ny,...,nN]. The process of
streaming speech enhancement can be formulated as,

$i, hi = N (xi, hizq) (2)

Here, $; represents an estimation of the clean speech s;,
while h;_; denotes the cache or memory state from previous
chunks, which can be reused as the previous intermediate
output, and h; represents the current cache or memory state.

2.2.2 Neural Network Architecture. Existing low-power, on-
device speech enhancement networks, like TinyLSTM [19]
and its successor TinyDenoiser [45], have two drawbacks: (1)
their simple architecture significantly limits enhancement
performance, and (2) they exhibit high algorithmic latency
of around 25 ms, restricting real-time applications. While
several advanced speech enhancement models have been
proposed in recent years [8, 47, 59], they fail to meet our
real-time, on-device, and low-power constraints. Our goal is

867

to significantly improve speech enhancement performance
while maintaining low-latency and real-time constraints.

The overall architecture of our network is shown in Fig.3C.
It is a dual-path Time-Frequency (TF) domain model based
on TF-GridNet[59], which achieves superior performance for
speech enhancement tasks. First, the small audio chunk x; is
transformed into its time-frequency representation X; using
a Short-Time Fourier Transform (STFT) followed by a causal
2D convolutional layer. The transformed representation X;
is then processed by multiple dual-path modules—the most
computationally intensive components of the network. Each
dual-path module has two stages: a spectral stage that pro-
cesses frequency information and a temporal stage that han-
dles time dependencies. Finally, the enhanced time-frequency
representation Y; is passed through a 2D causal deconvolu-
tion layer and reconstructed back into a time-domain signal
y; using the inverse STFT and overlap-add operations.

To enable real-time operation on low-power devices while
maintaining low latency, we highlight three modifications.

Low-complexity dual-path architecture. In the original
TF-GridNet, the spectral stage consists of a bi-directional
LSTM that processes the frequency domain of Xj, while the
temporal stage consists of a causal uni-directional LSTM that
processes the time domain of X;. We observed that the pri-
mary contributor to inference time is the bi-directional LSTM
in the spectral stage, as it must process the long sequence of

frequency bins sequentially. Using recurrent models to pro-
cess frequency sequences sequentially slows computation.
To reduce its complexity, we first apply a strided convolu-
tion layer to compress the frequency dimension before us-
ing the frequency-domain LSTM. This reduces the sequence
length processed by the LSTM, thereby decreasing its exe-
cution time. Additionally, compared to LSTMs, GRUs offer
lower computational cost while maintaining similar perfor-
mance [14]. To further optimize the runtime of the spectral
module, we replace the LSTM module with a GRU module.

Dual-window approach for low-algorithmic latency.
As shown in Fig. 3A, to achieve low algorithmic latency, we
process the input audio x; in small chunks of size L¢ (ms),
with an additional lookahead of Lr (ms) and a lookback of
Lg (ms); we set Lc = 6ms, Lg = 6ms and Lr = 4ms. Looka-
head and lookback padding improve frequency resolution,
which is important for enhancement performance [60]. How-
ever, increasing the lookahead and lookback padding also
introduce higher algorithmic latency.

With lookahead padding Lr, the network must wait for
an additional Lr ms of audio samples before applying the
STFT. While lookback padding does not introduce additional
waiting time at input, it causes algorithmic latency during the
iSTFT process. Specifically, the overlap-add processing step
of the current chunk y; requires the lookback padding from
the next chunk y;1, as shown in Fig. 3B. Thus, the overlap-
add process must wait for the next chunk (an additional
Lp + Lc ms) to reconstruct the current output chunk.

To eliminate the algorithmic latency introduced by look-
back padding, we adopt a dual-window-size approach [32,
60], where the synthesis window is shorter than the analysis
window, as shown in Fig. 3D. By discarding the lookback
samples after the inverse DFT and before applying the syn-
thesis window, the overlap-add process for the current chunk
no longer depends on the next chunk’s output. We use a rect-
angular window for analysis and use a specific function for
the synthesis window s, described below, valid for Lc > Lp,
to achieve perfect signal reconstruction [21]:

1 ifi € [Lp, Lc]
=) —
L7522 41

s[i]

otherwise

With this approach, our lookback padding can increase fre-
quency resolution without introducing additional algorith-
mic latency. As a result, we achieve a low algorithmic latency
of L, + Lr = 10 ms.

Cache state management. When processing a stream of
continuous chunks, many values can be reused to avoid re-
dundant computations. To achieve this, we maintain and
update a cache state h; at every inference step. As shown
in Fig. 3C, our cache state h; consists of four components:

868

1) Since the kernel of the first 2D causal convolution layer
requires prior chunks, we can avoid recomputing the STFT
frames of these prior chunks by caching and reusing them,
as illustrated in the figure. 2) We store the output of the se-
quence of dual-path modules from previous chunks, allowing
us to compute the causal 2D deconvolution more efficiently.
3) Since computing the ISTFT for the current chunk depends
on previous chunks, we maintain a buffer for the intermedi-
ate outputs of the 2D deconvolution layer. 4) We store the
hidden and cell states of the temporal unidirectional LSTM
for each dual-path module. This allows us to fully leverage
the long-term receptive field of the recurrent network.

2.2.3 Training for Real-world Generalization. Our speech
enhancement system must generalize to complex real-world
acoustics, where variations arise from multipath propaga-
tion, head-related transfer functions (HRTFs), diverse noise
profiles, and motion. To ensure real-world generalization,
we adopt a two-step training strategy.
Training. In the first stage, we train our model on the Lib-
riSpeech [35] dataset (360 hours of clean speech). To en-
hance generalization across reverberation and human wear-
ers, we convolve each speech sample and background noise
with a binaural room-impulse-response (BRIR) that captures
the acoustic transformations caused by a room and the hu-
man head. We use four real-world BRIR datasets—CIPIC[5],
RRBRIR [22], ASH-Listening-Set [52], and CATTRIR [23]—
and split them into training, validation, and test sets with-
out overlap. We also use WHAM! (58.03 hours of diverse
background noise) [62]. For each training sample, we ran-
domly select a 5-second clean speech clip a(t) from Lib-
riSpeech, a BRIR hy 4(t) from BRIR datasets recorded at
azimuthal angle 6 and polar angle ¢, and a 5-second back-
ground noise clip n(t) from WHAM. Then we mix them as,
x(t) = hg,y(t) * a(t) + n(t). We do not convolute n(t) with
ho.4(t), as WHAM! noise is recorded in a binaural format.
During training, our target is s(t) = hg,4(t) * a(t) to pre-
serve the binaural characteristic of clean speech. We optimize

the model using the SNR loss: Lsnr (§, s) = sl

= lIs=slE
runs for 200 epochs, each with 20k samples, using AdamW
with gradient clipping (0.1). The learning rate follows three
sequential schedulers: 1) linearly increases from 1e-4 to le-
3 over 10 epochs, 2) maintains le-3 for 140 epochs, and 3)
halves every 15 epochs for the final 50 epochs.

In practice, each device runs its own network, processing

Training

audio independently. Thus, we train two separate networks
— one for the left channel and one for the right.
Fine-tuning with motion and data augmentation. In
the previous stage, the sound source and wearer’s head were
assumed to be static. However, real-world scenarios involve
motion. To address this, we fine-tune the model with time-
varying 0 and ¢, following motion simulation from [58].

Specifically, the source’s position updates every 25 ms,
with a 2.5% probability of triggering a random motion event.
When triggered, the angular velocity in the azimuthal and
polar directions is sampled from [7/6, /2] rad/s, and the
source moves at this velocity for a random duration between
0.1 and 1 s, during which no other motion event is trig-
gered. The Steam Audio SDK [50] is used for motion trajec-
tory simulation, creating a mix of stationary and moving
segments within the same audio clip. Since BRIR datasets
contain recordings at discrete positions, we approximate in-
termediate positions using nearest-neighbor BRIR selection
based on the current [6(t), ¢(2)].

We also augment, with a 30 % probability, the mixture sig-
nal with white, pink, and brown noise, mimicking real-world
noise sources like microphone thermal noise and HVAC sys-
tems. White noise is generated with a standard deviation
sampled from [0,0.002), while pink and brown noise are cre-
ated using the Python colorednoise library and scaled by
a random factor from [0,0.05]. Additionally, also with a 30 %
probability, we randomly augment the speed of the target
speech to 80-120 % of its original value. We fine-tune the
model for 100 additional epochs, incorporating motion sim-
ulation and noise augmentation. Instead of SNR loss, we
use a multi-resolution spectrogram loss [53, 64]. Optimiza-
tion uses AdamW with a gradient clipping of 0.1, and a
ReducelLROnPlateau scheduler (patience = 5, factor = 0.5)
starting at 1e-3 learning rate.

2.3 Hardware-Software Co-Design

2.3.1 Hardware Constraints. GAP9’s limited memory and
compute resources impose strict constraints on neural net-
works that it can run efficiently. It has only 1.5 MB of L2 mem-
ory and 128 KB of L1 memory. Models exceeding this require
external L3 memory, which is slow and power-intensive.

Efficient DSP and neural network inference rely on GAP9’s
compute cluster — 9 RISC-V cores and the NE16 accelerator.
The NE16 is optimized for streamed multiply-accumulate op-
erations but only supports up to 8-bit quantized weights and
8-/16-bit activations. The RISC-V cores handle both integer
and floating-point operations but are less efficient for neural
networks. Thus, the network must be carefully designed by
identifying the parts of the network that can be efficiently
run on the NE16 with quantization without degrading the
output speech quality.

2.3.2 Quantizing Neural Networks. Quantization is the pro-
cess of converting tensors in the computational graph from a
full-precision representation (e.g., FP32) to a lower-precision
fixed-point representation (e.g., INT8). This helps reduce
memory usage, runtime and power consumption.

869

We denote the parameters of the network N (-) as 6, which
are originally stored in floating-point precision. Quantization
can be classified into two types:

o Weight quantization: Applied to network parameters 6.

o Activation quantization: Applied to intermediate activation
maps generated during inference.

We use uniform INT8 quantization, with asymmetric thresh
olds for activations and symmetric thresholds for weights.

A uniform quantizer is defined as follows: let r € R" be
a vector to be quantized, S € R* be the quantizer scaling
factor, Z € R be the zero-point and let b be the bit width.
The quantization process can be formulated as:

Q(r)=1r/S1+Z ®)

where Q(r) is the fixed point representation of r in quanti-
zation space. |-| denotes the rounding of the input to the
nearest integer value.

Dequantization maps Q(r) back to r, and is given by:

F=5(Q(r) - 2) 4)
Since the recovered values 7 may not exactly match r due to
rounding, a quantization error is introduced.

A key aspect of uniform quantization is choosing the scal-
ing factor S. It defines how a given range [«, f] of real values
r is divided into discrete partitions [20]: S = fb_—_oi In our im-
plementation, we use a Min-Max Moving Average Observer
to determine [a, f].

In asymmetric quantization, the range [«, f] is not neces-
sarily symmetric with respect to the origin, i.e., —a # f.In
symmetric quantization, in contrast, a symmetric clipping
range (—a = f) is used and its scaling factor S is computed
as, S = w [20], with the zero-point set to Z = 0.

Furthermore, in neural networks, quantization is usually
applied to a high-dimension tensor (dimension > 2). There
are two methods for quantizing higher dimension tensors:

o Per-tensor quantization: The entire tensor is quantized
using the same S and Z.

o Per-channel quantization: Each channel is quantized inde-
pendently with different S and Z.

Given the constraints of the GAP9 hardware, we deploy
per-tensor asymmetric quantization for activations and per-
channel symmetric quantization for weights.

2.3.3 Mixed-Precision Configuration. One method for quan-
tizing a trained floating-point neural network is Post-Training
Quantization (PTQ). This involves: 1) calibrating the quanti-
zation range using a representative dataset, and 2) quantizing
all tensors in the network to a lower-precision format.

We start PTQ by applying full INT8 quantization, but as
shown in Table 3, this results in severe performance degra-
dation due to quantization errors. Instead, inspired by [46],

we adopt mixed-precision quantization to mitigate perfor-
mance loss. The key idea is that different network submod-
ules have varying sensitivity to quantization errors. By se-
lectively quantizing certain modules to BFLOAT16 instead
of INT8, we can preserve critical information and recover
performance from quantization errors. According to [16, 46],
input and output quantization is sensitive to the quantization
error and leads to performance degradation. The rationale
is that the first convolution layer processes raw input data,
so maintaining high precision helps retain essential features.
The last deconvolution layer reconstructs the final output,
where high precision is crucial for generating high-quality
audio. Hence, we quantized first input convolution and last
deconvolution layers to BFLOAT16 instead of INTS.

2.3.4 Quantization-Aware Training for Better Performance.
While mixed-precision PTQ helps mitigate some performance
loss, there remains a significant performance drop compared
to the floating-point network. This degradation is even more
pronounced (Table. 3) in model architectures with a large
number of sub-components like ours, which restricts the
deployment of advanced models on our accelerator.

To further reduce quantization errors, we apply Quanti-
zation Aware Training (QAT). The key idea behind QAT is
to simulate quantization errors during training, allowing
the model to adjust and converge to a more optimal solution
under quantization constraints.

During QAT, floating-point weights and activations are
rounded to their quantized equivalents. Since quantization is
a non-differentiable operation, we use the Straight-Through
Estimator to approximate gradients, where: 9| x]/x = 1.

QAT implementation. We describe the details below.

Initialization: We begin with a pretrained floating-point
model with parameters 6 and apply the mixed-precision
quantization described in §2.3.3.

Learned Step-Size Quantization (LSQ): We enhance vanilla
QAT with LSQ [17], which allows the network to learn the
quantizer scale factor S using gradients of the task loss. This
helps reduce activation quantization errors.

Fine-tuning: The mixed-precision model is fine-tuned for
30 epochs using the FQSE framework [15].

Training Setup: Each epoch processes only 4,000 mixtures
due to QAT’s high computational cost. We use an initial
learning rate of le-3, with a ReduceLROnPlateau scheduler.

3 Experiments and Results
3.1 Benchmark results

3.1.1 Evaluation Metrics. Our evaluation consists of two
main components: speech enhancement evaluation and sys-
tem evaluation. The former assesses the network’s noise sup-
pression capability and the quality of the enhanced speech.

870

® SISDRi: Scale-Invariant Signal-to-Distortion Ratio (SISDR)
is a commonly used metric in speech enhancement tasks to
assess the quality of enhanced speech relative to the refer-
ence clean speech [26]. SISDR Improvement (SISDRi) can be
computed between the input and output speech to assess
how much the network improves the quality of the speech
compared to the clean reference speech.

e PESQ: Perceptual Evaluation of Speech Quality (PESQ) is
an objective metric that assesses how closely an enhanced
signal matches a reference clean speech signal [42], mimick-
ing human perception.

o DNSMOS: Deep Noise Suppression MOS (DNSMOS) is a
neural network based objective metric designed to predict
Mean Opinion Score (MOS) for speech quality in speech
enhancement. We use the ITU P.835 personalized DNSMOS
OVRL implementation as our score [41].

For system evaluation, we measure memory consumption,
runtime, and power consumption on the Al accelarator.

e Memory: GreenWaves’ conversion process reports where
neural network parameters are stored. We sum L1 and L2
memory usage to determine total memory consumption.

o Runtime: Models run on GAP9 by sending tasks to its
compute cluster. Runtime is measured by sending a model
execution task, counting elapsed clock cycles until the task
completes, and dividing the elapsed cycles by clock frequency.
The reported runtime is averaged over 100 iterations.

o Power: To measure GAP9’s power consumption during
continuous speech enhancement, we power it with a 1.8V
source, run inference on each incoming audio chunk every
6 ms, and measure the current over several minutes. Power
is calculated as the product of current and voltage.

3.1.2 Model comparison. We compare multiple FP32 models
that when fully quantized meet our real-time requirements:

o TinyDenoiser: Prior state-of-the-art TinyDenoiser model
[46] performs on-device speech denoising. For fair compar-
ison, we modify its algorithmic latency to 10ms with the
same chunk size and padding as our model.

e TFGridNet-6F: We use the causal implementation from [58]
without self-attention and LayerNormalization modules. Its
hyperparameters are Lg = 6ms, Lc = 6ms, Lp = 4ms, B = 6,
D =32 and H = 32. Since TF-GridNet is not real-time even
at 4x compression, we apply 6x frequency compression to
the spectral module to meet real-time requirements.

o Our Model: We set model hyperparameters to Lg = 6ms,
Lc = 6ms, Lp = 4ms, B=6,D =32 and H = 32. We apply 4x
frequency compression on the spectral module.

As shown in Table. 2, our FP32 model achieves the best SIS-
DRi, PESQ and DNSMOS scores at floating model resolution.

Table 2: Floating-point (FP32) network results.

Model SISDRi (dB) PESQ DNSMOS

TinyDenoiser 6.24 +£3.43 1.37 £0.27 2.06 + 0.64
TFGridNet-6F 8.43 +3.46 1.74 +0.49 2.48 + 0.68
Our model 8.65 £ 3.41 1.76 £ 0.49 2.50 £ 0.66

3.1.3 Quantization evaluation. Next, we evaluate how differ-
ent quantization configurations affect performance, runtime,
power, and memory consumption. We compare our model
with TinyDenoiser [46] under three configurations:

e BFLOAT16: We quantize both TinyDenoiser and our model
into BFLOAT16 resolution.

e INT8 PTQ: We quantize both TinyDenoiser and our model
into INT8 resolution, using Post Training Quantization.

e Mix PTQ: For TinyDenoiser, we follow the mix-precision
configuration as the original paper [46], where we quantize
the linear layers into BFLOAT16 and quantize the LSTM layers
into INT8. For our model, we quantize the input 2D Conv
and output 2D DeConv into BFLOAT16 and quantize other
parts into INT8. Then we apply Post Training Quantization
on these mixed precision models.

e Mix QAT: We follow the same mixed precision quantiza-
tion configuration for TinyDenoiser and our model, then we
apply Quantization-Aware Training.

The results of different quantization configurations are
shown in Table 3. While full INT8 quantization achieves
the lowest runtime, memory usage, and power consump-
tion for both TinyDenoiser and our model, it significantly
degrades speech enhancement performance. TinyDenoiser
experiences a 2.76 dB drop, while our model suffers a 10.46 dB
decline. The larger performance drop in our model is due to
more severe quantization noise accumulation in its deeper
and more complex architecture.

Applying mixed-precision quantization helps recover 0.36 dB
of SISDRI for TinyDenoiser and 2.6 dB for our model. How-
ever, the performance loss compared to the floating-point
model remains non-negligible. After QAT, TinyDenoiser
achieves an SISDRi of 5.97 dB, while our model reaches
8.19 dB, demonstrating the effectiveness of QAT, especially
for deeper and more complex networks. Our mixed-precision
model with QAT achieves the best performance within hard-
ware constraints. Considering runtime, memory, and power
consumption, our model balances performance and memory
efficiency while maintaining real-time requirements (< 6 ms)
and power constraints (71.6 mW), trading some runtime and
power efficiency for improved speech enhancement.

In Fig. 4, we plot the output SISDR as a function of in-
put SISDR for both the floating-point model and the mixed-
precision QAT model. The results show that QAT reduces the
performance gap between our floating-point and quantized

871

175 FP16

Mix Precision QAT
15.0

125

Output SISDR
=

w ~ o

o U o

et
)

o
o

-10 -5 0 5 10
Input SISDR

Figure 4: QAT reduces the gap between our floating-
point and quantized models across input noise levels.

models across all input noise levels. An interesting observa-
tion is that the performance gap increases with higher input
SISDR. As input SISDR increases, the output speech quality
becomes clearer, making quantization noise more dominant
and its effects more pronounced compared to scenarios with
lower input SISDR [15].

3.1.4 End-to-end hardware runtime evaluation. Fig. 5 shows
CDF plots of the hardware runtime for key subcomponents
of our audio processing pipeline. In addition to Al inference
with our speech enhancement model, the pipeline performs
FFT and inverse FFT for time-frequency conversion. Runtime
is measured by recording clock cycles before and after the
execution of each component and dividing the difference
by the clock frequency. The plots are generated by consoli-
dating runtime measurements over 100 iterations. Since we
use rectangular synthesis windows (i.e., containing all ones),
there is no need to apply a window before the FFT. However,
for the inverse FFT, we apply an analysis window (not nec-
essarily all ones) and so include the overlap-add operation
in the runtime measurements. Figs. 5a-5¢ show consistent
runtimes, with Al inference being the most time-consuming
step. Fig. 5d shows that the full pipeline, including additional
tasks such as data copying and type conversion, executes in
under 6 ms, ensuring real-time performance.

3.1.5 Wireless throughput. Fig. 6 plots the wireless through-
put of our NeuralAid device at different distances from the
receiver. To measure throughput, we stream 10,000 packets,
each 196 bytes in size, over BLE from the hearing aid to a
laptop in a large conference room. The total transmission
time is recorded and used to compute the throughput. As
expected, throughput decreases as the distance increases
due to higher packet loss and retransmissions. Beyond 3 me-
ters, throughput drops below 200 kbps, primarily due to the
limited range of the device’s low-profile integrated antenna.

3.2 In-the-Wild Evaluation

We evaluated our system in previously unseen indoor and
outdoor environments, using participants who were not in-
cluded in the training data. It is important to emphasize

Table 3: Power consumption and quantization results. We measure the SISDRi, model size, runtime and power consumption
for different Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) strategies and different models. The
BFLOAT16 network configurations cannot run in real-time on the target Al accelerator.

Model Quantization config SISDRi(dB) Memory (kB) Runtime (ms) Power (mW)
TinyDenoiser BFLOAT16 6.30 + 3.52 - - -
TinyDenoiser INT8 PTQ 3.54 +3.34 1135.2 0.53 23.08
TinyDenoiser Mix PTQ 3.90 +3.33 1195.9 0.58 24.12
TinyDenoiser Mix QAT 5.97 £3.35 1195.9 0.58 24.12
Our model BFLOAT16 8.76 + 3.41 - - -

Our model INT8 PTQ -1.70£ 7.5 280.4 5.19 58.57
Our model Mix PTQ 0.90 +5.40 298.8 5.54 71.64
Our model Mix QAT 8.19 + 3.38 298.8 5.54 71.64

1.0 FFT 1.0 /nverse FFT + Overlap-Add the system performance. Instead, we use subjective metrics
_08 _08 to allow human participants to rate the audio quality.

o6 £o6 For this user study, we recruited 28 participants (19 male
204 204 and 9 female) ranging in age from 18 to over 70 years, with
=0 =05 an average age of 43. The only inclusion criteria was that the

00 0.0 participants were adults and could follow English instruc-

0 10 20 30 40 50 o 10 20 30 40 50 : . .
Time (us) Time (us) tions. Each participant evaluated the system in three modes,
(a) (b) selected in a random order, across 15 scenarios.

1.0 Al Inference 10 End-to-end (1) No Al In this mode, there is no noise suppression and
_08 L 08 thus the participants hear the unfiltered mixture of the
06 £06 speech signal and background noise.
§0,4 §0,4 (2) TinyDenoiser: Prior state-of-the-art TinyDenoiser
L =0, model.

09 0gt (3) Our method: In this mode, we use our NeuralAid

50 5.54 558 562 566 5.70)50 554 558 562 566 570

Time (ms) Time (ms)
() (d)

Figure 5: End-to-end hardware run-time evaluation.

that our training data consists solely of publicly available
datasets, as detailed in §2.2.3, and does not include any data
collected with our own hardware. The various acoustic envi-
ronments evaluated are shown in Fig. 7, covering indoor set-
tings such as noisy office spaces, as well as outdoor locations
like busy streets with traffic noise and natural environments
like parks with multiple noise sources. In indoor spaces, the
noise sources included chatter from a nearby event with
many people, as well as sounds of coughing, table knocking,
and other typical office noises. In outdoor settings, in addi-
tion to traffic noise, we also encountered airplane sounds. In
all these settings, we had a speaker read a different text in the
presence of uncontrolled environmental sounds. The wearer
and the speaker were free to move and/or rotate their head
and adopted different postures like sitting and standing.
Evaluation procedure. Since the speaker is speaking
in the presence of unknown noise, it is difficult to obtain
the ground truth audio signal for our speakers in the real
world. So, we cannot rely on objective metrics to evaluate

872

model fine-tuned with motion and colored noise as
described in §2.2.3.

For each of these modes, we ask the participants to rate the
speech quality by asking them the following questions [58]:

(1) Noise suppression: How INTRUSIVE/NOTICEABLE
were the INTERFERING SPEAKERS and BACKGROUND
NOISES? 1 - Very intrusive, 2 - Somewhat intrusive, 3 -
Noticeable, but not intrusive, 4 - Slightly noticeable, 5 -
Not noticeable

(2) Overall MOS: If the goal is to focus on this target
speaker, how was your OVERALL experience? 1 - Bad, 2
- Poor, 3 - Fair, 4 - Good, 5 - Excellent

Results. As shown in Fig. 8, our system significantly re-
duces background noise, as demonstrated by the increase
in the mean opinion score for the noise suppression task
from 2.15 in the “no AI” setting to 3.57. Additionally, our
NeuralAids framework improved the overall mean opinion
score (MOS) from 2.96 to 3.38.

Notably, while TinyDenoiser improves the average noise
suppression score from 2.15 in the "no AI" setting to 2.38,
it reduces the overall mean opinion score (MOS) from 2.96
to 1.96. This is because, although TinyDenoiser effectively

N
o
o

bps)
N
3

220

N
o
o

Throughput (ki
"
o]
o

-
o
=]

1 2 3 4 5 6 7
Distance (m)

Figure 6: Wireless throughput from the NeuralAid de-
vice to a nearby receiver as a function of distance.

reduces noise, it also significantly degrades speech quality by
introducing distortions and choppiness. As a result, under-
standing the extracted speech becomes more difficult. This
outcome aligns with our quantitative benchmarking results
from §3.1. The likely reason is that TinyDenoiser, designed
to minimize computational complexity, incorporates only a
minimal number of components, making it challenging to
both suppress noise and preserve speech quality effectively.

An important observation was that the system effectively
adapts to sudden and rapid changes in the speaker’s position
caused by the wearer rotating their head. Many participants
in the study frequently turned their heads to look at dif-
ferent sound sources and objects in their surroundings. To
assess this quantitatively, we evaluated the performance of a
fine-tuned model across angular velocities ranging from 10
deg/s to 90 deg/s using our synthetic test set. As shown in
Table. 4, the fine-tuned system demonstrates slightly better
performance than the non-fine-tuned version and exhibits ro-
bustness to angular velocities of up to 90 deg/s. Notably, the
non-fine-tuned version still performs well on samples with
moving speakers despite not being trained on them. This
could be due to the fact that this network operates on left
and right audio channels independently and it does not use
time-difference features which vary drastically with motion.

4 Related Work

Al-based enhanced hearing systems. Recent systems,
such as Clearbuds [7], enhance speech of the user wear-
ing the earbuds. However, the processing is not on-device
but instead occurs on a smartphone. Further, the target ap-
plication is telephony, with delay constraints of 100-200 ms,
which is an order of magnitude higher than our system.
Enhanced hearing systems like Semantic Hearing [57] al-
low users to pick and choose which classes of sounds they
want to hear (e.g., car honks). This relies on a wired head-
set, with processing performed on an attached smartphone
that has significantly higher processing capabilities. Simi-
larly, prior work on target speech hearing [58] and sound
bubbles [10] enable users to hear target speakers based on

873

Table 4: Motion results. Enhancement quality (SISDRi)
with and without motion fine-tuning (FT). Results are shown
for different ranges of angular speeds (deg/s).

Speed (-90,-60) (-60,-30) (-30,0) (0,30) (30,60) (60,90)
FT 1071 10.28 10.46 10.44 1024 10.49
W/oFT 1042 995 10.19 10.18 9.99 10.20

user-selected characteristics or distance. These require mul-
tiple microphones distributed across a wired over-the-head
headset, with processing performed on an external platform
like an Orange Pi or a Raspberry Pi.

Unlike all these prior works, our system operates on fully
wireless hearables and addresses the fundamental question of
whether one can design wireless hearables with programmable
low-power Al accelerators and if deep learning models for
speech processing can be designed to run on these wireless
hearables in real time while meeting the size, power, and
compute constraints of these wireless hearable platforms.

Commercial hearables. Conventional hearables use statis-
tical signal processing for speech enhancement. However,
deep neural networks have been demonstrated to achieve su-
perior source separation, outperforming traditional methods
by up to 9 dB [7, 29]. Companies like Google [36] have begun
integrating Al accelerators, such as the Tensor A1l chip in
Pixel earbuds, though specific technical details of applica-
tions remain undisclosed. Similarly, in late 2024, Phonak [2]
introduced Al-powered hearing aids. These commercial so-
lutions remain proprietary, often provide limited technical
detail, making fair and in-depth comparisons challenging.
This highlights the need for academic exploration into the
design space of programmable, low-power speech Al for
hearables and a better understanding of the challenges of
running streaming deep learning models on hearables—a
gap our work addresses.

Hearable platforms. Existing platforms have been designed
to enable earable research [9, 11, 18, 40], but none support
on-device speech Al acceleration. The Nokia Lab eSense plat-
form [25] introduced sensor-integrated earbuds, enabling
data collection and application development for physiolog-
ical sensing and tracking. OpenEarable [43], OpenEarable
2.0 [44], and ClearBuds [7] further advanced open-source
earable platforms. However, the OpenEarable series lacks
Al acceleration, relies on a DSP chip and focuses on physio-
logical sensing [31]. ClearBuds, meanwhile, uses a compute-
limited microcontroller, making real-time on-device deep
learning challenging. Similarly, the OpenMHA platform [38]
lacks a hearable or hearing aid form factor and does not
include any Al accelerator.

OmniBuds [33] expanded eSense’s bio-sensing capabilities
and introduced on-board machine learning for physiolog-
ical signal processing and classification tasks. However, it

Figure 7: Different outdoor and indoor in-the-wild scenarios. Indoor pictures taken without humans just for this figure.

A

5.4

B Overall MOS

Noise suppression 5.0

b
in
»
n

»
o
»
o

[
w

po

Opinion Score
oW ow
n o

Opinion Score
oW oW

>

~
o
~
o

"
o
o

1.

No Al TinyDenoiser Our method No Al TinyDenoiser Our method

Figure 8: Subjective in-the-wild evaluations. (a) Mean
opinion score for the noise suppression quality reported for
the three modes of operation, and (b) overall reported mean
opinion score on the speech quality.

has not demonstrated speech Al, which is computationally
more demanding. Additionally, it remains closed-source, and
even the specific chip used for on-device ML has not been
disclosed - the authors contacted the OmniBuds team, who
could not provide this information. Speech Al requires signif-
icantly more computational power than classification tasks
due to its high sampling rate, extensive I/O requirements,
real-time constraints, and the need for causal processing
within sub-10 ms latency. Prior to our work, achieving this
on low-power hearables was considered challenging.

Low-latency speech processing. Applications have differ-
ent latency constraints in that they either can wait to process
an entire audio file or require much quicker responses. In
augmented hearing, minimizing latency between input and
processed output is crucial. However, this can degrade per-
formance due to less available information for predicting
the output [60]. Prior work has proposed architectures for
low-latency speech tasks [48, 49, 55, 56, 58], and some speech
challenges focus on these low-latency models [4]. But, these
are designed for devices with significantly higher clock fre-
quencies, power budgets, and memory footprints than our
target hardware and none of these neural networks meet the
computational constraints of wireless hearables.

Deep learning with computational contraints. Common
methods include quantization [39], pruning, and knowledge
distillation [34]. In the audio domain, these techniques have
been applied to tasks such as keyword spotting [66], speaker
verification [37], and sound event detection [63]. Prior work
has also explored these techniques for speech enhancement
and denoising [12, 13, 15, 34, 61]. However, these models

874

are not designed to operate in real-time on hearable hard-
ware. Moreover, they do not process time and frequency
components as individual sequences—an essential feature of
state-of-the-art enhancement models. [16] proposes a quan-
tized network, but it is neither causal nor real-time.

The closest works to ours are TinyLSTM [19] and TinyDe-
noiser [45], recurrent neural network (RNN)-based methods
for speech enhancement. TinyDenoiser has been shown to
run in real-time on GAP9. However, both models have an al-
gorithmic latency of 25 ms. Furthermore, as shown in §3.1.3,
when modified for lower latency, performance degrades sig-
nificantly. In contrast, we present the first dual-path speech
enhancement network capable of real-time operation on
low-power Al accelerators. We also explore mixed-precision
quantization and quantization-aware training, evaluating
various trade-offs concerning run-time performance on the
target accelerator platform.

5 Limitations and Discussion

The power consumption figures reported in this paper as-
sume that the Al accelerator is continuously active, process-
ing audio at all times. However, in real-world usage, energy
consumption and battery life depend on how often the Al
accelerator is actually in use. A more efficient design could ac-
tivate the Al accelerator only when significant background
noise is detected, allowing it to operate in a duty-cycled
manner and significantly reducing average energy consump-
tion. The effectiveness of this approach would depend on
how frequently the wearer encounters noisy environments
throughout the day, and the noise threshold, which is user
dependent. Exploring such an adaptive system would be an
interesting direction for future research.

Our goal was to demonstrate that effective speech Al mod-
els can run on low-power wireless hearables. We address
this fundamental challenge using the GAP9 accelerator. How-
ever, other low-power Al accelerators are becoming increas-
ingly available including the Analog Devices MAX78000 and
MAX78002, Arm Ethos U-55 and U-85, and Kendryte K210,
K230, and K510. Investigating their capabilities for running
speech Al models would be important for future research.

Recent research has explored techniques with wired head-
sets like semantic hearing [57], sound bubbles [10], and target

speech hearing [58]. While we do not demonstrate the fea-
sibility of implementing these capabilities on wireless hear-
ables, it is worth noting that some of these systems [10, 58]
rely on the dual-path model architecture that we optimize
in this paper. Further, recent models like TF-MLPNet [24]
achieve promising results for speech separation using tiny
quantized models. This suggests a potential path for expand-
ing to these capabilities in the near future.

Our hardware currently utilizes passive noise cancella-
tion, where the earbuds physically block external sounds.
However, we can enhance isolation by incorporating active
noise cancellation (ANC). This would involve implementing
ANC signal processing algorithms, which must meet strict
delay requirements. The GAP9 hardware supports ANC al-
gorithms, making integration feasible for future iterations.

Future work could also integrate additional sensors, such
as PPG and temperature sensors, to support non-speech
applications like physiological sensing [33]. Although our
hardware has multiple microphones per device, our neural
networks use only one. Exploring multi-microphone process-
ing on a single hearable and across both ears could enhance
performance and warrants further investigation.

Since the inclusion criteria in our user study does not focus
on hearing loss, future research is needed to incorporate
signal-processing-based personalization algorithms tailored
to individuals with hearing loss. This would involve adapting
the system based on medical hearing loss prescriptions and
systematically evaluating its effectiveness across different
levels of hearing impairment.

Our paper focuses on behind-the-ear hearing aid form
factor devices. The next step in this research would be in-
tegrating these speech Al models into earbud-form-factor
devices, which is likely feasible due to the compact size of
the target low-power Al accelerator.

Finally, the presence of a real-time AI accelerator with
sufficient I/O support not only enables enhanced hearing
capabilities but also paves the way for a broad spectrum
of augmented intelligence applications. These may include
situational awareness, personal voice assistants, and cogni-
tive support tools that extend beyond hearing enhancement.
Thus, platforms such as ours that have embedded AI ac-
celerators can enable broader research and development in
edge-Al-powered intelligence augmentation.

6 Conclusion

The emergence of low-power programmable Al accelerators
presents an opportunity to bridge state-of-the-art speech Al
with wireless earbuds and hearing aids. In this paper, we
introduce NeuralAids, a fully on-device speech Al system
for real-time speech enhancement and denoising on wireless

875

hearables. Our real-world evaluations highlight the feasibil-
ity of deploying advanced speech Al models on low-power
wireless hearables, paving the way for next-gen intelligent
audio devices that achieve on-device enhanced hearing.

Acknowledgments

The researchers are partly supported by the Moore Inventor
Fellow award #10617, UW WE-REACH grant, Thomas J. Ca-
ble Endowed Professorship, and a UW CoMotion innovation
gap fund. This work was facilitated through the use of com-
putational, storage, and networking infrastructure provided
by the UW HYAK Consortium.

References

[1] 2023. GAP9 processor | GreenWaves Technologies. https://github.com/
GreenWaves-Technologies/nn_menu_gap9.

[2] 2024. Al noise cancelling hearing aid: Phonak audéo sphereTM infinio,
Phonak. https://www.phonak.com/en-us/hearing-devices/hearing-
aids/audeo-sphere

[3] 2025. NDP120 - Syntiant. https://www.syntiant.com/ndp120.

[4] Michael A. Akeroyd, Will Bailey, Jon Barker, Trevor J. Cox, John F.
Culling, Simone Graetzer, Graham Naylor, Zuzanna Podwinska, and
Zehai Tu. 2023. The 2nd Clarity Enhancement Challenge for Hearing
Aid Speech Intelligibility Enhancement: Overview and Outcomes. In
ICASSP.

[5] V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Avendano. 2001. The
CIPIC HRTF database. 99-102 pages. doi:10.1109/ASPAA.2001.969552

[6] Rong Chao, Wen-Huang Cheng, Moreno La Quatra, Sabato Marco
Siniscalchi, Chao-Han Huck Yang, Szu-Wei Fu, and Yu Tsao. 2024. An
Investigation of Incorporating Mamba for Speech Enhancement. arXiv
(2024).

[7] Ishan Chatterjee, Maruchi Kim, Vivek Jayaram, Shyamnath Gollakota,
Ira Kemelmacher, Shwetak Patel, and Steven M Seitz. 2022. ClearBuds:
wireless binaural earbuds for learning-based speech enhancement. In
MobiSys.

[8] Jingjing Chen, Qirong Mao, and Dong Liu. 2020. Dual-path transformer

network: Direct context-aware modeling for end-to-end monaural

speech separation. arXiv preprint arXiv:2007.13975 (2020).

Tao Chen, Xiaoran Fan, Yongjie Yang, and Longfei Shangguan. 2023.

Towards Remote Auscultation with Commodity Earphones. In Proceed-

ings of the 20th ACM Conference on Embedded Networked Sensor Systems

(Boston, Massachusetts) (SenSys °22). Association for Computing Ma-

chinery, New York, NY, USA, 853-854. doi:10.1145/3560905.3568084

Tuochao Chen, Malek Itani, Sefik Eskimez, Takuya Yoshioka, and

Shyamnath Gollakota. 2024. Hearable devices with sound bubbles.

Nature Electronics (2024).

Tao Chen, Yongjie Yang, Xiaoran Fan, Xiuzhen Guo, Jie Xiong, and

Longfei Shangguan. 2024. Exploring the Feasibility of Remote Car-

diac Auscultation Using Earphones. In Proceedings of the 30th Annual

International Conference on Mobile Computing and Networking (Wash-

ington D.C., DC, USA) (ACM MobiCom ’24). Association for Computing

Machinery, New York, NY, USA, 357-372. doi:10.1145/3636534.3649366

Xiuyi Chen, Guangcan Liu, Jing Shi, Jiaming Xu, and Bo Xu. 2018.

Distilled Binary Neural Network for Monaural Speech Separation. In

IFCNN. doi:10.1109/IJCNN.2018.8489456

[13] Hyeong-Seok Choi, Sungjin Park, Jie Hwan Lee, Hoon Heo, Dongsuk

Jeon, and Kyogu Lee. 2021. Real-Time Denoising and Dereverberation
wtih Tiny Recurrent U-Net. In ICASSP.

[o

—

[10]

[11]

[12]

https://github.com/GreenWaves-Technologies/nn_menu_gap9
https://github.com/GreenWaves-Technologies/nn_menu_gap9
https://www.phonak.com/en-us/hearing-devices/hearing-aids/audeo-sphere
https://www.phonak.com/en-us/hearing-devices/hearing-aids/audeo-sphere
https://www.syntiant.com/ndp120
https://doi.org/10.1109/ASPAA.2001.969552
https://doi.org/10.1145/3560905.3568084
https://doi.org/10.1145/3636534.3649366
https://doi.org/10.1109/IJCNN.2018.8489456

—

=

[

—

—

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua

Bengio. 2014. Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

Elad Cohen, Hai Victor Habi, and Arnon Netzer. [n. d.]. Towards Fully
Quantized Neural Networks For Speech Enhancement. In Interspeech
2023.

Elad Cohen, Hai Victor Habi, Reuven Peretz, and Arnon Netzer. 2024.
Fully Quantized Neural Networks for Audio Source Separation. IEEE
Open Journal of Signal Processing 5 (2024), 926-933. doi:10.1109/OJSP.
2024.3425287

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar
Appuswamy, and Dharmendra S Modha. 2019. Learned step size
quantization. arXiv preprint arXiv:1902.08153 (2019).

Xiaoran Fan, Longfei Shangguan, Siddharth Rupavatharam, Yanyong
Zhang, Jie Xiong, Yunfei Ma, and Richard Howard. 2021. HeadFi:
bringing intelligence to all headphones. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking
(New Orleans, Louisiana) (MobiCom °21). Association for Computing
Machinery, New York, NY, USA, 147-159. doi:10.1145/3447993.3448624
Igor Fedorov, Marko Stamenovic, Carl Jensen, Li-Chia Yang, Ari Man-
dell, Yiming Gan, Matthew Mattina, and Paul N Whatmough. 2020.
TinyLSTMs: Efficient neural speech enhancement for hearing aids.
InterSpeech (2020).

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W
Mahoney, and Kurt Keutzer. 2022. A survey of quantization methods
for efficient neural network inference. In Low-Power Computer Vision.

Daniel Griffin and Jae Lim. 1984. Signal estimation from modified
short-time Fourier transform. IEEE Transactions on acoustics, speech,
and signal processing 32, 2 (1984), 236-243.

IoSR-Surrey. 2016. IoSR-surrey/realroombrirs: Binaural impulse re-
sponses captured in real rooms. https://github.com/IoSR-Surrey/
RealRoomBRIRs.

IoSR-Surrey. 2023. Simulated Room Impulse Responses. https://iosr.
uk/software/index.php.

Malek Itani, Tuochao Chen, and Shyamnath Gollakota. 2025. TF-
MLPNet: Tiny Real-Time Neural Speech Separation. In Clarity Chal-
lenge, InterSpeech.

Fahim Kawsar, Chulhong Min, Akhil Mathur, and Alessandro Monta-
nari. 2018. Earables for Personal-Scale Behavior Analytics. IEEE Perva-
sive Computing 17, 3 (2018), 83-89. doi:10.1109/MPRV.2018.03367740

[26] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R Hershey.

2019. SDR-half-baked or well done?. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 626-630.

Kai Li and Guo Chen. 2024. SPMamba: State-space model is all you
need in speech separation. In arXiv.

Yi Luo, Zhuo Chen, and Takuya Yoshioka. 2020. Dual-Path RNN:
Efficient Long Sequence Modeling for Time-Domain Single-Channel
Speech Separation. In ICASSP.

Yi Luo and Nima Mesgarani. 2019. Conv-tasnet: Surpassing ideal
time-frequency magnitude masking for speech separation. IEEE/ACM
transactions on audio, speech, and language processing 27, 8 (2019).

Yi Luo and Nima Mesgarani. 2019. Conv-TasNet: Surpassing
Ideal Time-Frequency Magnitude Masking for Speech Separation.
IEEE/ACM Trans. Audio, Speech and Lang. Proc. (2019).

Dong Ma, Andrea Ferlini, and Cecilia Mascolo. 2021. OESense: em-
ploying occlusion effect for in-ear human sensing. In Proceedings of
the 19th Annual International Conference on Mobile Systems, Appli-
cations, and Services (Virtual Event, Wisconsin) (MobiSys °21). As-
sociation for Computing Machinery, New York, NY, USA, 175-187.
doi:10.1145/3458864.3467680

Dirk Mauler and Rainer Martin. 2007. A low delay, variable resolution,
perfect reconstruction spectral analysis-synthesis system for speech

enhancement. In 2007 15th European Signal Processing Conference. IEEE,
222-226.

Alessandro Montanari, Ashok Thangarajan, Khaldoon Al-Naimi, An-
drea Ferlini, Yang Liu, Ananta Narayanan Balaji, and Fahim Kawsar.
2024. OmniBuds: A Sensory Earable Platform for Advanced Bio-
Sensing and On-Device Machine Learning. arXiv:2410.04775 [cs.ET]
https://arxiv.org/abs/2410.04775

Rayan Daod Nathoo, Mikolaj Kegler, and Marko Stamenovic. 2024.
Two-Step Knowledge Distillation for Tiny Speech Enhancement. In
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 10141-10145. doi:10.1109/ICASSP48485.
2024.10446796

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
2015. Librispeech: An ASR corpus based on public domain audio books.
In ICASSP.

Bill Park. 2024. Meet Pixel Buds Pro 2, the first buds built for Gemini,
Google. https://blog.google/products/pixel/google-pixel-buds-pro-2/
Massimo Pavan, Gioele Mombelli, Francesco Sinacori, and Manuel
Roveri. 2024. TinySV: Speaker Verification in TinyML with On-device
Learning. (2024).

Chaslav Pavlovic, Volker Hohmann, Hendrik Kayser, Louis Wong,
Tobias Herzke, S. Prakash, zezhang Hou, and Paul Maanen. 2018. Open
portable platform for hearing aid research. The Journal of the Acoustical
Society of America 143 (03 2018), 1738-1738. d0i:10.1121/1.5035670
Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model
compression via distillation and quantization. In ICLR.

[40] Jay Prakash, Zhijian Yang, Yu-Lin Wei, Haitham Hassanieh, and

Romit Roy Choudhury. 2020. EarSense: earphones as a teeth activity
sensor. In Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking (London, United Kingdom) (Mobi-
Com ’20). Association for Computing Machinery, New York, NY, USA,
Article 40, 13 pages. doi:10.1145/3372224.3419197

Chandan K A Reddy, Vishak Gopal, and Ross Cutler. 2022. DNSMOS
P.835: A Non-Intrusive Perceptual Objective Speech Quality Metric
to Evaluate Noise Suppressors. arXiv:2110.01763 [eess.AS] https:
//arxiv.org/abs/2110.01763

Antony W Rix, John G Beerends, Michael P Hollier, and Andries P
Hekstra. 2001. Perceptual evaluation of speech quality (PESQ)-a new
method for speech quality assessment of telephone networks and
codecs. In 2001 IEEE international conference on acoustics, speech, and
signal processing. Proceedings (Cat. No. 01CH37221), Vol. 2. IEEE, 749—
752.

Tobias Roddiger, Tobias King, Dylan Ray Roodt, Christopher Clarke,
and Michael Beigl. 2023. OpenEarable: Open Hardware Earable Sensing
Platform (UbiComp/ISWC 22 Adjunct).

Tobias Roddiger, Michael Kiittner, Philipp Lepold, Tobias King, Dennis
Moschina, Oliver Bagge, Joseph A. Paradiso, Christopher Clarke, and
Michael Beigl. 2025. OpenEarable 2.0: Open-Source Earphone Platform
for Physiological Ear Sensing. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. (2025).

Manuele Rusci, Marco Fariselli, Martin Croome, Francesco Paci, and
Eric Flamand. 2022. Accelerating RNN-based Speech Enhancement on
a Multi-Core MCU with Mixed FP16-INT8 Post-Training Quantization.
In arXiv.

Manuele Rusci, Marco Fariselli, Martin Croome, Francesco Paci, and
Eric Flamand. 2023. Accelerating RNN-Based Speech Enhancement
on a Multi-core MCU with Mixed FP16-INT8 Post-training Quanti-
zation. In Machine Learning and Principles and Practice of Knowledge
Discovery in Databases. Springer Nature Switzerland, Cham, 606-617.

[47] Kohei Saijo, Gordon Wichern, Francois G Germain, Zexu Pan, and

Jonathan Le Roux. 2024. TF-Locoformer: Transformer with local

https://doi.org/10.1109/OJSP.2024.3425287
https://doi.org/10.1109/OJSP.2024.3425287
https://doi.org/10.1145/3447993.3448624
https://github.com/IoSR-Surrey/RealRoomBRIRs
https://github.com/IoSR-Surrey/RealRoomBRIRs
https://iosr.uk/software/index.php
https://iosr.uk/software/index.php
https://doi.org/10.1109/MPRV.2018.03367740
https://doi.org/10.1145/3458864.3467680
https://arxiv.org/abs/2410.04775
https://arxiv.org/abs/2410.04775
https://doi.org/10.1109/ICASSP48485.2024.10446796
https://doi.org/10.1109/ICASSP48485.2024.10446796
https://blog.google/products/pixel/google-pixel-buds-pro-2/
https://doi.org/10.1121/1.5035670
https://doi.org/10.1145/3372224.3419197
https://arxiv.org/abs/2110.01763
https://arxiv.org/abs/2110.01763
https://arxiv.org/abs/2110.01763

—

[

— =

—

-

—

modeling by convolution for speech separation and enhancement.
In IWAENC. IEEE, 205-209.

Hiroshi Sato, Takafumi Moriya, Masato Mimura, Shota Horiguchi,
Tsubasa Ochiai, Takanori Ashihara, Atsushi Ando, Kentaro Shinayama,
and Marc Delcroix. 2024. SpeakerBeam-SS: Real-time Target Speaker
Extraction with Lightweight Conv-TasNet and State Space Modeling.
arXiv:2407.01857 [eess.AS] https://arxiv.org/abs/2407.01857
Hendrik Schréter, Alberto N. Escalante-B., Tobias Rosenkranz,
and Andreas Maier. 2022. DeepFilterNet2: Towards Real-Time
Speech Enhancement on Embedded Devices for Full-Band Audio.
arXiv:2205.05474 [eess.AS] https://arxiv.org/abs/2205.05474

SDK. 2023. Steam Audio. https://valvesoftware.github.io/steam-
audio/.

Irtaza Shahid, Yang Bai, Nakul Garg, and Nirupam Roy. 2022. VoiceFind:
Noise-Resilient Speech Recovery in Commodity Headphones (IASA
22).

ShanonPearce. 2022. Shanonpearce/ash-listening-set: A dataset of
filters for headphone correction and binaural synthesis of spatial au-
dio systems on headphones. https://github.com/ShanonPearce/ASH-
Listening-Set/tree/main

Christian J Steinmetz and Joshua D Reiss. 2020. auraloss: Audio focused
loss functions in PyTorch. In Digital music research network one-day
workshop (DMRN+ 15).

Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and
Jianyuan Zhong. 2021. Attention is All You Need in Speech Separation.
In ICASSP.

[55] Jean-Marc Valin, Umut Isik, Neerad Phansalkar, Ritwik Giri, Karim

Helwani, and Arvindh Krishnaswamy. 2020. A Perceptually-Motivated
Approach for Low-Complexity, Real-Time Enhancement of Fullband
Speech. arXiv:2008.04259 [eess.AS] https://arxiv.org/abs/2008.04259
Bandhav Veluri, Justin Chan, Malek Itani, Tuochao Chen, Takuya
Yoshioka, and Shyamnath Gollakota. 2023. Real-Time Target Sound
Extraction. In ICASSP.

[57] Bandhav Veluri, Malek Itani, Justin Chan, Takuya Yoshioka, and Shyam-
nath Gollakota. 2023. Semantic Hearing: Programming Acoustic Scenes
with Binaural Hearables. In ACM UIST.

[58] Bandhav Veluri, Malek Itani, Tuochao Chen, Takuya Yoshioka, and
Shyamnath Gollakota. 2024. Look Once to Hear: Target Speech Hearing
with Noisy Examples. In ACM CHL

[59] Zhong-Qiu Wang, Samuele Cornell, Shukjae Choi, Younglo Lee,
Byeong-Yeol Kim, and Shinji Watanabe. 2023. TF-GRIDNET: Making
Time-Frequency Domain Models Great Again for Monaural Speaker
Separation. In ICASSP. doi:10.1109/ICASSP49357.2023.10094992

[60] Zhong-Qiu Wang, Gordon Wichern, Shinji Watanabe, and Jonathan
Le Roux. 2022. STFT-domain neural speech enhancement with very
low algorithmic latency. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 31 (2022), 397-410.

[61] Nils L. Westhausen and Bernd T. Meyer. 2023. Low Bit Rate Binaural
Link for Improved Ultra Low-Latency Low-Complexity Multichannel
Speech Enhancement in Hearing Aids. In WASPAA.

[62] Gordon Wichern, Joe Antognini, Michael Flynn, Licheng Richard Zhu,
Emmett McQuinn, Dwight Crow, Ethan Manilow, and Jonathan Le
Roux. 2019. WHAM!: Extending Speech Separation to Noisy Environ-
ments. arXiv:1907.01160 [cs.SD]

[63] Yushu Wu, Xiao Quan, Mohammad Rasool Izadi, and Chuan-Che Jeff
Huang. 2024. “It os Okay to be Uncommon”: Quantizing Sound Event
Detection Networks on Hardware Accelerators with Uncommon Sub-
Byte Support. In ICASSP. 281-285.

[64] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. 2020. Parallel
WaveGAN: A fast waveform generation model based on generative

adversarial networks with multi-resolution spectrogram. In ICASSP.
[65] Lei Yang, Wei Liu, Ruijie Meng, Gunwoo Lee, Soonho Baek, and Han-

Gil Moon. 2024. Fspen: an Ultra-Lightweight Network for Real Time
Speech Enahncment. In ICASSP.

[66] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra.
2018. Hello Edge: Keyword Spotting on Microcontrollers. In arXiv.

https://arxiv.org/abs/2407.01857
https://arxiv.org/abs/2407.01857
https://arxiv.org/abs/2205.05474
https://arxiv.org/abs/2205.05474
https://valvesoftware.github.io/steam-audio/
https://valvesoftware.github.io/steam-audio/
https://github.com/ShanonPearce/ASH-Listening-Set/tree/main
https://github.com/ShanonPearce/ASH-Listening-Set/tree/main
https://arxiv.org/abs/2008.04259
https://arxiv.org/abs/2008.04259
https://doi.org/10.1109/ICASSP49357.2023.10094992
https://arxiv.org/abs/1907.01160

	Abstract
	1 Introduction
	2 System Design
	2.1 NeuralAids Hardware
	2.2 Efficient Streaming Neural Network
	2.3 Hardware-Software Co-Design

	3 Experiments and Results
	3.1 Benchmark results
	3.2 In-the-Wild Evaluation

	4 Related Work
	5 Limitations and Discussion
	6 Conclusion
	Acknowledgments
	References

