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Figure 1: Semantic hearing applications. a) Users wearing binaural headsets can attend to speech while blocking out only the
vacuum cleaner noise, b) block out street chatter and focus on the sounds of birds chirping, c) block out construction noise yet
hear car honks, and d) a meditating user could use headsets to block out traffic noise outside yet hear alarm clock sounds.

ABSTRACT
Imagine being able to listen to the birds chirping in a park without
hearing the chatter from other hikers, or being able to block out
traffic noise on a busy street while still being able to hear emer-
gency sirens and car honks. We introduce semantic hearing, a novel
capability for hearable devices that enables them to, in real-time,
focus on, or ignore, specific sounds from real-world environments,
while also preserving the spatial cues. To achieve this, we make two
technical contributions: 1) we present the first neural network that
can achieve binaural target sound extraction in the presence of in-
terfering sounds and background noise, and 2) we design a training
methodology that allows our system to generalize to real-world use.
Results show that our system can operate with 20 sound classes
and that our transformer-based network has a runtime of 6.56 ms
on a connected smartphone. In-the-wild evaluation with partici-
pants in previously unseen indoor and outdoor scenarios shows
that our proof-of-concept system can extract the target sounds and
generalize to preserve the spatial cues in its binaural output.
Project page with code: https://semantichearing.cs.washington.edu
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1 INTRODUCTION
Over the past decade, we have witnessed an increase in the num-
ber of hearable devices like headsets, and earbuds, with millions
of people using them worldwide [50]. Here, we introduce a new
capability for hearable devices, which we call “semantic hearing".

Consider a scenario where a user is wearing ear-worn devices
on a beach and desires to listen to the calming sounds of the ocean
while blocking out any human speech nearby. Similarly, while walk-
ing on a busy street, the user may wish to reduce all sounds except
for emergency sirens; or while sleeping, they may want to listen to
the alarm clock or baby sounds but not the noise from the street. In
another scenario, the user may be on a plane and desire to hear hu-
man speech and announcements but not the sound of a crying baby.
Or while hiking, the user may want to listen to the birds chirping
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Figure 2: Semantic hearing architecture. The binaural input
sounds are captured at a wired noise-canceling headset and
sent to a phone, where we run on our sound extraction net-
work. This extracts the binaural output that captures the
target sounds (e.g., sirens and cat sounds) and suppresses
noise and interfering sounds (e.g., vacuum and traffic noise).
This binaural output is played back in real-time.

but not the chatter from other hikers (see examples in Fig. 1). These
and other potential use cases require noise-canceling earphones
for canceling all the sounds and then a mechanism for introducing
back the desired sounds into the earphones. The latter, which is the
focus of our work, requires programming the output acoustic scene
in real-time by semantically associating the individual incoming
sounds with user input to determine which sounds to allow in the
hearable device and which sounds to block.

Animals have evolved over millions of years to focus on tar-
get sounds and the associated directions [32]. However, achieving
this capability with in-ear devices like earphones and headsets is
challenging for three key reasons.
• Real-time requirements. The sounds output by our design should
be synced with the user’s visual senses. This requires real-time
processing that satisfies stringent latency requirements. Research
on medical hearing aids and augmented audio shows that we need
a latency of less than 20-50 ms [24, 59]. This requires identifying
the target sounds using 10 ms or less of audio blocks, separating
them from interfering sounds, and then playing them back, all on a
computationally-constrained device like a smartphone.
• Binaural processing. Sounds arrive at the two ears with different
delays and attenuations [64]. The physical separation between the
two ears and the reflections/diffraction from the wearer’s head,
i.e., the head-related transfer function, provide cues for spatial
perception. To preserve these cues, we need a binaural output to
preserve or recover this spatial information for the target sounds
across the two ears.
• Real-world generalization. While training and testing a neural
network on synthetic data is common in audio machine learning
research, designing a binaural target sound extraction network
that generalizes to real-world hearable applications is challenging.
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(a) Binaural input of emergency siren, chatter, and traffic noise.
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(b) Binaural output with siren extracted.
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(c) Binaural input of birds chirping, chatter, and street noise.
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(d) Binaural output with birds chirping extracted.

Figure 3: Real-world binaural input and output recordings
obtained with our semantic hearing system.

This is because it is difficult to fully capture the complexity of real-
world reverberations and head-related transfer functions (HRTFs)
in simulations. We however require generalization to in-the-wild
use in unseen acoustic environments across different users.

In this paper, we address the above challenges and demonstrate
semantic hearing1 with hearable devices. To achieve our goal, we
make two key technical contributions. We design the first neural
network capable of achieving binaural target sound extraction.
Our network takes the two audio signals from the microphones
at the two ears as binaural input and outputs two audio signals as
binaural output, while preserving the directionality of the target
sounds in the acoustic scene. To do this, we start with our recent
single-channel (not binaural) transformer model for target sound
extraction [66], which had neither real-world evaluation nor real-
time smartphone operation. First, we optimize the network for real-
time operations on smartphones. Then, we design a network that
jointly processes the binaural input signals, allowing it to preserve
the spatial information about the target sounds and output binaural
audio (see §3.2). This joint processing is more effective at binaural
target sound extraction and has half the computational cost of
processing the binaural input signals separately.

We also design a training methodology that ensures our binaural
network can generalize to real-world situations, such as reverbera-
tions, multipath, andHRTFs. Obtaining training data in fully natural
environments can be difficult because we may capture mixtures but

1Our inspiration for the name ‘semantic hearing’ is directional hearing which is the
ability to hear sounds from a specific direction [10, 16, 67]. Similarly, semantic hearing
is the ability to hear the sounds that are specified by some semantic descriptions, such
as sound classes.
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lack access to the ground truth sounds needed for supervised learn-
ing. Moreover, training a network that can generalize to in-the-wild
use with hearables requires that the training data capture reverber-
ations, multipath, and head-related transfer functions across a large
number of users. To achieve this, we synthesize our training data us-
ing multiple datasets. First, we use an HRTF dataset, which includes
measurements from 41 users in non-reverberant environments. We
convolve the room impulse responses with thousands of examples
from 20 different audio classes to generate both our mixtures and
the ground truth binaural audio. However, this does not capture
the reverb and multipath in realistic environments. Therefore, we
augment these synthesized mixtures with training data synthesized
from three different datasets that provide binaural room impulse
responses captured in real rooms. This facilitates our network to
generalize to users and real-world environments that are not in the
training dataset.

To demonstrate proof-of-concept, we augmented an off-the-shelf
noise-canceling headset with commercial wired binaural earphones
that provide access to data from both microphones. We implement
our neural network on a connected smartphone and train it with 20
different sound classes, including sirens, baby cries, speech, vacuum
cleaners, alarm clocks, and bird chirps. Our results are as follows.
• We achieve an average signal improvement of 7.17 dB across the
20 target sounds, in the presence of interfering sounds and urban
background noise. Our real-time network has a 6.56 ms runtime on
iPhone 11 for processing a 10 ms chunk of binaural audio.
• In-the-wild evaluation with participants in various indoor and
outdoor scenarios with our hardware shows that our system can
extract the target sounds (Fig. 3) and generalize to previously unseen
participants, and environments, without requiring any training data
collection with our hearable hardware.
• In a spatial hearing study where we played sounds from different
directions in five previously unseen rooms, participants were able
to predict the direction of the target sounds output by our system
with 50th and 90th percentile errors of 22.5◦ and 45◦ respectively.
These errors were similar for noise-free clean sounds.
• In a user study with 22 participants who spent over 330 min-
utes rating binaural data from real-world indoor and outdoor envi-
ronments, our system achieved a higher mean opinion score and
interference removal for the target sounds than the binaural input.

Contributions. We introduce the concept of semantic hearing,
where we can program the binaural acoustic scene based on seman-
tic sound descriptions. Our work makes five key contributions. 1)
we present the first neural network to achieve binaural target sound
separation and demonstrate that our network can run in real-time
on smartphones, 2) we design a training methodology to gener-
alize our system to unseen real-world environments, and users,
3) we implement a proof-of-concept with off-the-shelf hardware
and show that our system achieves the above goals in real-world
environments, 4) we highlight where our current system fails and
opportunities for future research, and 5) by making our binaural
models and datasets public, we hope to kickstart future research in
the community towards further developing the concept of semantic
hearing in practical hearable applications.

Figure 4: Noise reduction achieved with Sony WH-1000XM4
headphones – with and without active noise cancellation
turned on – measured using an in-ear microphone inside
the headphone cup. The reduction is measured relative to a
microphone recording outside the ear cup. The spuriously
large values at low frequencies (< 100Hz) are due to the in-ear
microphones picking up the wearer’s blood pulse.

2 BACKGROUND AND RELATEDWORK
Over the last decade, noise-canceling headsets and earbuds have
undergone significant improvements, which now allow for more
effective attenuation of all sounds in the environment. In fact, our
experiments, where we play white noise to a human subject wear-
ing a pair of Sony WH-1000XM4 headphones, show the impressive
attenuation capabilities of these modern systems (Fig. 4). We iden-
tify this as an opportunity that provides us with an acoustic clean
slate to introduce back target binaural sounds of interest from the
environment. To the best of our knowledge, none of the prior work
has explored semantic hearing capabilities for hearables. In the rest
of this section, we describe related work in hearable systems, signal
processing and machine learning for audio, and interaction tools.

Active noise cancellation and acoustic transparency. Active
noise cancellation is a well-studied problem where outward-facing
microphones are used to capture sounds [58]. An anti-noise signal
is then transmitted to cancel all the external sounds and noise,
which hasmore stringent delay requirements than semantic hearing.
Traditional noise cancellation systems required bulky headsets.
However in recent years lightweight in-ear earbud systems like
the AirPods Pro can achieve reasonable noise-cancellation in many
practical scenarios [1]. Semantic hearing leverages noise-cancelling
earphones to cancel all sounds and then uses the mechanisms in
this paper to program acoustic scenes in real-time.

The acoustic transparency mode for in-ear devices tries to imi-
tate the sound response of an open-ear system by transmitting the
appropriate signals into the ear canal [31]. Like active noise cancel-
lation, this is agnostic to the sound classes. Adaptive transparency
on Apple airpods is designed to automatically reduce the amplitude
of loud sounds [3]. While related, this does not allow the user to
pick and choose which sound classes to hear.

Speech systems. Prior systems have predominantly focused
on improving the performance of speech-related tasks for in-ear
devices (e.g., Airpods), telephony (e.g., Microsoft Teams), and voice
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Figure 5: System requirements. Different components that
contribute to latency in binaural target sound extraction.

assistants (e.g., Google Home). This includes speech enhance-
ment [14, 41], target speech extraction [17, 22], and speech sepa-
ration [37, 60]. Oftentimes, these systems collectively regard all
non-speech sounds just as noise. In contrast, semantic hearing re-
quires understanding the semantics of various natural and artificial
sounds in real-time, in the presence of interfering sounds, and de-
termining which sounds to allow and which to block, based on
user input. Speech is one amongst many other sound classes in our
system.

Neural networks for target sound extraction. Target sound
extraction is the task of separating one or a limited number of target
sounds from a mixture of sounds. Compared with speech systems,
this is an underexplored problem in the audio machine learning
community. However recent works have proposed neural networks
that can achieve target sound extraction where clues about the
target sound are provided either via audio [15, 21], images [19, 69],
text [33, 35], onomatopoeic words [46], or a one-hot vectors [45].
All these models are designed for offline processing of audio clips,
where the neural network has access to the entire audio file (≥ 1 s)
and hence cannot support our real-time hearable use-case.

The closest related work is our recent research on Waveformer
[66], which introduces a neural network architecture for target
sound extraction. Waveformer was shown to run in real-time on a
desktop computer. Our work differs from [66] in two important di-
mensions. First,Waveformer is a single-channel model that operates
on a single microphone. In contrast, our target use-case requires
binaural processing across the two ears. As we show in §4.4, run-
ning the prior model independently on the two microphones is
computationally expensive, failing to meet the real-time require-
ments on a smartphone. Second, all prior work in this domain was
evaluated on synthetic datasets and has not been demonstrated on
hardware in real-world scenarios. In contrast, we present the first
binaural target sound extraction system that can run in real-time
on smartphones. We designed a training methodology that allows
our system to generalize to unseen indoor and outdoor real-world
environments.

Hearable applications. Recent work has used in-ear sensors
for health applications [11–13] and activity tracking [39, 52]. Prior
work has also explored various interaction modalities like ultra-
sound sensing [68] and on-face interaction [70] for in-ear devices.
The closest to our work is Clearbuds [14], which focuses on the task
of enhancing the speech of the wearer using synchronized audio

signals from two wireless earbuds. This prior work is focused on
speech enhancement and is complementary to our system. Further,
since the target application for [14] is telephony, it uses a 44.8 ms
lookahead and has a latency of 109 ms.

Audio-based tools. Prior work has explored the use of sounds
to perform activity recognition for wearables and smart home appli-
cations [28, 29, 34, 36, 43, 63, 71]. These systems operate on around
1s audio chunks as the target use cases do not have the O(10 ms)
latency requirements of in-ear audio applications. Prior work has
also designed interaction tools for audio editing [49, 55]. Our work
is complementary in that it is focused on in-ear audio applications
and semantic hearing that has more stringent latency requirements.

3 SEMANTIC HEARING
We first describe our system requirements and then present the
network architecture we use for real-time binaural target sound
extraction on smartphones. Next, we present our training method-
ology that generalizes our design to real-world use.

3.1 System Requirements
The goal of our design is to program the acoustic environment
with imperceptible latency such that the target sound of interest
is present but all other interfering sounds are suppressed. Given
the stringent latency constraints, we cannot perform the necessary
computation in the cloud but have to operate in real-time using
computationally constrained devices like smartphones. Further,
the target sounds generated by the model must originate from the
same spatial directions as the real-world target sounds. Thus, our
design must meet two key requirements: 1) real-time low-latency
operation, and 2) binaural real-world generalization.
Real-time low-latency operation. Fig. 5 shows the different compo-
nents that contribute to end-to-end latency in binaural acoustic
processing systems. The first step is to feed the sound signals into
two memory buffers of the binaural microphones. The acoustic
data from the two microphones in each block is then fed into our
neural network that outputs a block-length worth of binaural target
sound data. This binaural output is then played back through the
two speakers on the headset.

To ensure that the audio played through the headset is synced
with the user’s visual senses, we need this end-to-end latency to be
less than 20-50ms [24, 59, 67]. To achieve this, we need to reduce the
buffer duration, the look-ahead duration and the processing time.
This is challenging for multiple reasons. 1) A small buffer duration
of say 10 ms means that the algorithm has only an 10 ms block of
current data to not only understand the semantics of the acoustic
scene but also separate the target sound from other interfering
sounds. While we can use the acoustic signals that arrived prior to
the current block, many of our target sounds (e.g., door knocks) are
not continuous. Reducing the buffer size even further to say 2 ms
can be challenging from an operating system perspective since it
can increase the number of system calls. 2) While a large looka-
head can provide more context for the neural network to extract
the target sounds, meeting our end-to-end latency requirement
reduces the leeway we have in terms of the available lookahead to
a few milliseconds. 3) Real-time operation requires processing each
acoustic block within the duration of the block itself. This means
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that it should take less than 10 ms to process a 10 ms buffer [67].
This can be challenging since neural networks are not known for
their lightweight computation. Further, since we cannot send the
data to the cloud, the processing must be performed on-device on
computationally-constrained devices like smartphones. In addition
to all the above constraints, the operating systems also has I/O
delays which for audio on iOS is on the order of 4 ms, depending
on the buffer size [2].
Binaural real-world generalization. In real life, the target sounds
experience reverberations and multipath propagation due to reflec-
tions from walls and other objects in the environment. Further, the
human head and torso reflect and obstruct sounds. As a result the
target sound arrives with different amplitudes and delays at the
two ears. The differences in the received sounds across the two
ears provide spatial awareness to humans. Thus, it is critical in our
design to preserve these differences and play the target sounds with
different amplitudes and delays through the two speakers of the
headset. This is challenging since the target and interfering sounds
can be at different positions and experience different reverberations
and reflections from the head-related transfer function. Further, the
multipath effects and reverberations are difficult to predict in real-
world environments, let alone the fact that the head-related transfer
functions can change across wearers.

3.2 Binaural target sound extraction network
We first explain the high-level framework for our binaural target
sound extraction neural network. Then we explain the causal and
streaming adaptation of this network. Finally, we provide a detailed
description of the network architecture.

3.2.1 High-level framework. Consider 𝑠 ∈ 𝑅2×𝑇 to be the input
binaural signal provided to the target sound extraction network.
Since time-domain models also have been shown to be able to
learn representations analogous to STFT features [38], our network
operates on time-domain binaural signals. As shown in Fig. 6a,
the signal is first mapped to a representation in a latent space,
𝑥 ∈ 𝑅𝐷×(𝑇 /𝐿) , by using a 1D convolution layer with a kernel size ≥
𝐿 and a stride equal to 𝐿. 𝐷 and 𝐿 are tuneable hyperparameters of
the model.𝐷 is the dimensionality of the model, having a significant
effect on the parameter count, and consequently the computational
and memory complexities. 𝐿 determines the duration of the smallest
audio chunk that can be processed with the model. The latent space
representation 𝑥 , is then passed to a mask generator, M, which
estimates an element-wise mask𝑚 as:

𝑚 = M(𝑥, 𝑞) |𝑚 ∈ 𝑅𝐷×(𝑇 /𝐿) ; 𝑞 ∈ {0, 1}𝑁𝑐 , (1)

where 𝑁𝑐 is the total number of sound classes the model is trained
for. The representation corresponding to the target sound is ob-
tained by element-wise multiplication of the input representation,
𝑥 , and the mask,𝑚, as follows:

𝑦 = 𝑥 ⊙𝑚 | 𝑦 ∈ 𝑅𝐷×(𝑇 /𝐿) . (2)

The output audio signal 𝑠 ∈ 𝑅2×𝑇 is then obtained by applying a
1D transposed convolution on 𝑦, with a stride of 𝐿.

In contrast to more complex binaural extraction frameworks
proposed specifically for speech, where each channel is separately
and parallely processed [23, 25], our design jointly processes the

two channels for computational efficiency. In our experiments, we
show that our simpler framework performs competitively with
the prior parallel processing frameworks in terms of target sound
extraction accuracy, even with a 50% lower runtime cost.

3.2.2 Streaming inference and causality. For real-time on-device
operation, the model must output the audio corresponding to the
target sound as soon as the input audio is received, i.e., within
the latency requirements detailed in §3.1. Since the audio is fed
to the model from the device buffers, the buffer size determines
the duration of the audio chunk the model receives at each time
step. Assuming the buffer size to be divisible by the stride size 𝐿,
the audio chunk size can be represented as the number of strides,
𝐾 . That is, the buffer size of an audio chunk of size 𝐾 is equal to
𝐾𝐿 samples. Such a real-time setup means that the model only has
access to the current and previous chunks, but not future chunks.
This requires the model to be causal with the time resolution of the
buffer size, i.e.,𝐾𝐿 audio samples. As a result, in the high-level frame-
work described above, the input convolution, the mask estimation
block, the element-wise multiplication, and the output transposed
convolution must operate on one audio chunk at each time step.

The binaural target sound extraction framework described in
§3.2.1 can be adapted to chunk-wise streaming inference as follows.
Consider the input audio signal corresponding to the 𝑘th chunk to
be 𝑠𝑘 ∈ 𝑅2×𝐾𝐿 . The input 1D convolution maps this audio chunk
to its latent space representation, 𝑥𝑘 ∈ 𝑅𝐷×𝐾 . The mask estimation
block is then used to estimate the mask corresponding to the target
sound, based on the current chunk, as well as a finite number of
the previous chunks:

𝑚𝑘 = M(𝑥𝑘 , 𝑞, 𝑥𝑘−1, 𝑥𝑘−2, ...) |𝑚𝑘 ∈ 𝑅𝐷×𝐾 . (3)

The previous chunks act as the audio context for the neural network,
referred to as the receptive field of the model. A receptive field of
1-1.5s is shown to result in good performance [38]. The output
representation of the current chunk corresponding to the target
sound, 𝑦𝑘 ∈ 𝑅𝐷×𝐾 can then be obtained as:

𝑦𝑘 = 𝑥𝑘 ⊙𝑚𝑘 . (4)

The resulting output representation is then converted to the output
signal 𝑠𝑘 ∈ 𝑅2𝑥𝐾𝐿 by applying the 1D transposed convolution.

3.2.3 Mask estimation network. Several architectures have been
proposed in the literature for mask estimation such as Conv-TasNet
[38], U-Net [30], SepFormer [60], ReSepFormer [61], and Wave-
former [66].Waveformer is an recently proposed efficient streaming
architecture implementing chunk-based processing, which makes it
suitable for our task. In this work, we propose a modified version of
Waveformer to further increase efficiencywithout any loss in perfor-
mance. The mask estimation network is an encoder-decoder neural
network architecture, where the encoder is purely convolution-
based and the decoder is a transformer decoder.

Different fromWaveformer, in this work, we use the same dimen-
sionality for both the encoder and decoder. This allowed us to use
the standard transformer decoder [65], instead of a modified one
used in the Waveformer. Waveformer proposes a smaller dimen-
sionality for the decoder block, compared to the rest of the model.
The transition between different dimensionality is achieved using
projection layers (1D convolution layers with kernel size equal to 1).
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Figure 6: Binaural target sound extraction network architecture. a) Our high-level binaural extraction framework. Mask
estimation network is an encoder-decoder architecture operating on latent space representation of binaural signals to extract
mask for target sound based on the query vector 𝑞. b) and c) show the encoder and decoder architectures used in the mask
estimation network. The encoder processes the previous input context and does not consider the label embedding. Decoder
first conditions the encoded representation with the label embedding, 𝑙 , and then generates the mask corresponding to the
target sound using the conditioned representation.

This however breaks the residual paths and the result might affect
the gradient flowing back, which is mitigated in the Waveformer
using a long residual connection bypassing the decoder. For our
binaural application, however, we found that different dimension-
ality is not necessarily providing gains warranting the complexity
of the projection layers and the long residual connection.
Encoder. Mask estimation in Eq. 3, involves processing many pre-
vious chunks in addition to the current chunk to obtain the mask
corresponding to the current chunk. Repeated processing of the
entire receptive field for each iteration could become intractable
for a real-time on-device application. To mitigate this inefficiency,
while achieving a large receptive field, our mask estimation network
implements a Wavenet [47] style dilated causal convolutions for
processing the input and previous chunks. In this work, for efficient
on-device inference, we implemented the dynamic programming al-
gorithm proposed in Fast Wavenet [48]. As shown in Fig. 6b, higher
efficiency is achieved by reusing the intermediate results computed
in the previous iterations. The encoder function E processes the
input chunk 𝑥𝑘 and an encoder context 𝜉𝑘 to generate the encoded
representation of the input chunk:

𝑒𝑘 , 𝜉𝑘+1 = E(𝑥𝑘 , 𝜉𝑘 ) | 𝑒𝑘 ∈ 𝑅𝐷×𝐾 (5)

The size of the context 𝜉𝑘 depends on the hyperparameters of the
encoder. In our implementation, the encoder is comprised of a stack
of 10 dilated causal convolution layers. The kernel size of all layers
is equal to 3, and the dilation factor is progressively doubled after
each layer starting with 1, resulting in dilation factors {20, 21, ..., 29}.
Since the kernel size is equal to 3, the context needed for each dilated

convolution layer is twice the layer’s dilation factor. As long as this
context is saved after each iteration, and padded with the input
chunk in the next iteration, the intermediate results corresponding
to the previous chunks do not have to be recomputed. Thus the size
of the context 𝜉𝑘 is equal to 2 ×∑9

𝑖=0 2
𝑖 = 2046.

Decoder. The query vector 𝑞 is first embedded into the embedding
space using a linear layer to generate a label embedding 𝑙 ∈ 𝑅𝐷 . The
mask corresponding to the target sound𝑚𝑘 is estimated using a
transformer decoder layer [65], represented here asD. The encoded
representation is first conditioned with the label embedding 𝑙 by
an element-wise multiplication. The encoded representation and
the conditioned encoded representation are first concatenated in
the time dimension, with those from the previous time step, before
processing with the transformer decoder layer D. The encoded
representation from the previous time step, 𝑒𝑘−1, acts as the decoder
context. The mask estimation can be written as:

𝑚𝑘 = D({𝑙 · 𝑒𝑘−1, 𝑙 · 𝑒𝑘 }, {𝑒𝑘−1, 𝑒𝑘 }, ) (6)

where {} represents concatenation in the time dimension. As
shown in Fig. 6c, the transformer decoder D first computes the
self-attention result of the conditioned encoded representation
{𝑙 · 𝑒𝑘−1, 𝑙 · 𝑒𝑘 } using the first multi-head attention block, followed
by cross-attention between the self-attention result and the un-
conditioned encoded representation {𝑒𝑘−1, 𝑒𝑘 } using the second
multi-head attention block. A feed-forward block along with resid-
ual connection generates the final mask corresponding to the target
sound.
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Table 1: Number of raw audio files collected for training/testing/validation from each dataset for our potential target classes.
The total number of mixtures we generate using these for training, testing and validation are 100k, 10k, and 1k, respectively.

Dataset Alarm clock Baby cry Birds chirping Car horn Cat Rooster crow Typing Cricket Dog Door knock

FSD50K 34/4/4 30/8/4 65/52/8 36/21/4 73/39/9 23/9/3 78/68/9 61/14/7 109/33/13 65/33/8
ESC-50 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8 24/8/8
MUSDB18 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
DISCO 0/0/0 95/53/11 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Total 58/12/12 149/69/23 89/60/16 60/29/12 97/47/17 47/17/11 102/76/17 85/22/15 133/41/21 89/41/16

Dataset Glass breaking Gunshot Hammer Music Ocean Singing Siren Speech Thunderstorm Toilet flush

FSD50k 212/31/24 169/67/20 88/39/10 0/0/0 86/19/10 134/76/19 16/5/3 494/109/56 122/9/14 112/21/13
ESC-50 24/8/8 0/0/0 0/0/0 0/0/0 24/8/8 0/0/0 24/8/8 0/0/0 24/8/8 24/8/8
MUSDB18 0/0/0 0/0/0 0/0/0 581/358/62 0/0/0 480/291/54 0/0/0 0/0/0 0/0/0 0/0/0
DISCO 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0
Total 236/39/32 169/67/20 88/39/10 581/358/62 110/27/18 614/367/73 40/13/11 494/109/56 146/17/22 136/29/21

3.3 Training for real-world generalization
We first describe our audio class dataset curation and then present
our training methodology to generalize to real-world scenarios.

3.3.1 Picking audio classes. Our main goal is to create a system
that efficiently handles target sounds encountered in real-world
situations. By focusing on practical applications, we identify a
manageable set of target sound classes to extract. However, in
reality, we come across a wide range of background sounds, many
of which are not part of our target sound classes. To curate our
dataset of sound classes, we follow the AudioSet ontology [20],
which provides a comprehensive and structured representation
of the relationships between various sound classes. The ontology
arranges the sound classes as nodes in a graph and groups them into
seven main sound categories. Each sound class node has a unique
AudioSet ID andmay contain one ormore child nodes that represent
more specific sound classes. For example, the “Hands” sound class
has two children, namely “Finger Snapping” and “Clapping.” In
the rest of this section, we describe how we pick our target sound
classes as well as the interfering classes.
• Target sound classes. We first consider various indoor and
outdoor scenarios where the system is likely to operate, such as
beaches, parks, streets, living rooms, offices, and cafes. Based on
these scenarios, we identify potential sound sources that are preva-
lent in such locations, such as human speech, dogs, cats, birds, sea
waves, and music. We then compile a list of sound classes asso-
ciated with these selected target sounds and map each of these
classes to a label in the AudioSet ontology. We eventually selected
20 sound classes that we felt human listeners could distinguish with
reasonably high accuracy.
• Other sound classes. In the real world, the interfering sounds
and noise often do not belong to our 20 target sound classes. To
create a neural network that can generalize to interference from
these sounds, we need a diverse set of interfering sound classes in
our dataset.2 However, this poses several challenges. Firstly, these
sounds can come from a very large variety of sources, making it
infeasible to exhaustively enumerate all of them. Secondly, since
we want to use them as interfering signals, we must ensure that
these sound classes do not overlap with our set of target classes.
To overcome these constraints, we use the AudioSet hierarchical

2Note that the target sound classes can also be interfering with each other.

structure and our set of 20 target classes to generate a large set of
141 other sound classes. Specifically, we can define this set as the
nodes that are neither a more specific nor a more general instance
of any target (or known) class, according to the AudioSet hierarchy.
In other words, by considering the AudioSet ontology as a directed
acyclic graph with edges from each sound class node towards its
child nodes, we define unknown sound classes as the set of AudioSet
nodes that are disconnected from all target sound class nodes.

3.3.2 Audio dataset curation. Given the sets of the target and other
sound classes, we next obtain labeled audio recordings for each
of the sound classes. The challenge is that, we cannot rely on
only a single general-purpose audio-tagging datasets as was done
in prior single-channel work [66], This is because such datasets
do not contain audio samples of all 20 target sound classes, and
may contain a limited number of audio samples from the other
sound classes. So, we combined audio samples from four different
datasets: FSD50K [18] (general-purpose), ESC-50 [51] (environmen-
tal sounds), MUSDB18 [53] (music and vocals) and noise files for
the DISCO [44] dataset (noise sounds). Since each dataset uses
different class names, we standardized the class labels into the Au-
dioSet labels by mapping every class in each dataset to the semanti-
cally closest label in the AudioSet ontology, if any. For FSD50K and
MUSDB18, we performed additional dataset-specific pre-processing
procedures. Specifically, since our goal is to create binaural mix-
tures of individual sources from multiple directions, we excluded
audio samples from FSD50K that were already mixtures of multiple
distinct sound sources. For MUSDB18, we extract and split audio
into vocal and instrumental streams and assign them the AudioSet
labels “Singing” and “Melody,” respectively.

We divide the resulting audio samples into 15 second segments
and discard all silent ones. We split each dataset into mutually
exclusive training, testing, and validation sets and then combined
them into our final dataset. For both the FSD50K and MUSDB18, we
sample the training and validation audio files from the development
split (90-10 split), and the testing samples from the evaluation split.
For the ESC-50 dataset, we use the first three folds for training, the
fourth fold for validation and the fifth for testing. For the DISCO
noise dataset, the audio samples for each sound class is split into
train, test and validation sets (60-33-7) before combining with the
rest of the datasets. The final combined dataset consists of 20 target
classes, distributed as shown in Table 1 and 141 other sound classes.
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3.3.3 Binaural data synthesis. The procedure above describes how
we sample single channel sound classes from various audio datasets.
However, our goal is to create binaural mixtures that (1) are repre-
sentative of spatial sounds perceived by a diverse set of listeners,
and (2) capture the idiosyncrasies of real world reverberant environ-
ments. For this purpose, we use a pre-existing dataset of 43 human
head-related transfer function (HRTF) measurements (CIPIC [8]) to
address the first challenge. We also augment this with three datasets
of measured (SBSBRIR [57], RRBRIR [26]) and simulated (CATT
RIR [27]) reverberant binaural room impulse responses (BRIRs) to
address the second requirement. We split each dataset across rooms
and listeners into train, test and validation (70-20-10) sets. We en-
sure that no BRIR subjects or rooms are sampled across different
sets. For each sample during training, we randomly choose one
of the datasets and sample a single room and participant from its
training set. Then, to create a binaural mixture with 𝐾 sources, we
independently pick a source direction for each of the 𝐾 sources,
out of all source directions available for this room and this partici-
pant subject in the dataset. Note that since the source directions
are independently picked, two different sound sources might end
up being at the same direction from the wearer. We then obtain
a set of 2𝐾 room impulse responses ℎ1,𝐿, ℎ1,𝑅, ℎ2,𝐿, . . . , ℎ𝐾,𝑅 ∈ R𝑁 ,
where 𝑁 is the length of the room impulse response. Hence, for a
training sample with input audio signals of length 𝑇 samples long,
denoted by 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ R𝑇 , we can compute the sound received
at the left and right ears, 𝑠𝐿 and 𝑠𝑅 as, 𝑠𝐿 =

∑𝐾
𝑘=1 𝑥𝑘 ∗ ℎ𝑘,𝐿 and

𝑠𝑅 =
∑𝐾
𝑘=1 𝑥𝑘 ∗ ℎ𝑘,𝑅 . Here ‘∗’ represents the convolution operation.

The synthesized binaural audio mixtures are sampled at 44.1 kHz. If
room impulse response in our HRTF dataset has a different sampling
rate, we resample the signal before and after convolving.

3.3.4 Training procedure. We used the Scaper toolkit [56] to syn-
thesize binaural mixtures dynamically on the fly during training.
For training and validation, our binaural mixtures consist of two
randomly picked target classes, each with an 5-15 dB SNR relative
to the background sounds, and 1-2 other classes that each have a
0-5 dB SNR relative to the background sounds. We also use back-
ground sounds sourced from the TAU Urban Acoustic Scenes 2019
dataset [42] in our mixtures. Each mixture is 6 seconds long. Sounds
from the target and other background classes are between 3 to 5
seconds long, while background urban sounds persist for the entire
duration of the mixture. In addition to the mixture, we also synthe-
size ground truth signals𝑦𝐿 and𝑦𝑅 , respectively at the left and right
channels, for each chosen target sound source 𝑡 as, 𝑦𝐿 = 𝑥𝑡 ∗ ℎ𝑡,𝐿
and 𝑦𝑅 = 𝑥𝑡 ∗ ℎ𝑡,𝑅 .

The network is then trained to produce a pair of left and right
channel target sound estimates 𝑦𝐿 and 𝑦𝑅 . To preserve the spatial
cues, such as interaural time differences (ITD) and interaural level
differences (ILD), we use the sample-sensitive and scale-sensitive
signal-to-noise ratio (SNR) loss function, applied independently
and then average the left and right SNRs to obtain the loss function:

𝑆𝑁𝑅(𝑥, 𝑥) = 10 log
(

| |𝑥 | |2
| |𝑥 − 𝑥 | |2

)
𝐿 = −

(
1
2
𝑆𝑁𝑅(𝑦𝐿, 𝑦𝐿) +

1
2
𝑆𝑁𝑅(𝑦𝑅, 𝑦𝑅)

)
.

Figure 7: A participant in our in-the-wild evaluation where
the target sound was birds chirping in the presence of urban
environment noises. The participants could move their head
freely and the target sound source could also be mobile.

Finally, we train our transformer model for 80 epochs, with an
initial learning rate of 5e-4. After completing 40 epochs, we halve
the learning rate if there is no improvement in the validation SNR
for more than five epochs. We emphasize here that the training
data do not include any measurements with our binaural hardware
and the results we report in this paper evaluate generalization to
our hardware, unseen users and environments.

4 RESULTS
We first describe our setup for real-world evaluations and then
present our binaural network benchmarks.
Hardware prototype. Our hardware setup includes a pair of
SonicPresence SP15C binaural microphones that are wired to cap-
ture high-quality recordings. We use an iPhone 12 to process the
recorded data and output the audio through noise-canceling head-
phones like JBL Live 650BTNC and the NUBWO gaming headsets.
We use a lightning-to-aux adapter to connect the headphones to
the iPhone over a wire. We also use a USB hub to connect both the
microphones and the headphones to the smartphone.
Participants. We recruiting 9 individuals (3 female, 6 male) across
our in-the-wild and spatial cues evaluations. We also invited 22
participants (6 female, 16 male) for our online hearing study.

4.1 In-the-wild evaluation
To evaluate the proposed system in real-life scenarios, we conduct
in-the-wild experiments to assess the effectiveness of our system.

In-the-wild scenarios. 5 individuals (3 female and 2 male) wore
our hardware and collect sounds in the real world. These experi-
ments were conducted in typical application settings: offices, living
rooms, streets, rooftops, parks, and restrooms. Since some of the
sound classes were relatively less common, our in-the-wild experi-
ments had a subset of classes which most commonly appeared in
our recordings: alarm clock, car horn, door knock, speech, com-
puter typing, hammer, birds chirping, and music. The position and
movement of the sound sources were uncontrolled and reflective
of real-world scenarios, where the sound sources could be mobile.
Furthermore, in all experiments, participants had complete freedom
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Figure 8: In-the-wild evaluation results for (a) mean opinion
score (MOS) and (b) noise suppression across various classes
that occurred in real-world data collection.

to move their heads, causing the sound source positions relative to
the microphones to vary over time (Fig. 7). Thus, our in-the-wild
evaluation captured both mobile wearers as well as mobile sound
sources that naturally occured in real-world scenarios (e.g., cars
moving or birds that fly).

Evaluation procedure. Unlike with our simulated training data,
we do not have clean, sample-aligned ground truth signals to objec-
tively compare the binaural outputs of our system with. Hence, we
conduct a listening study to compute a mean opinion score (MOS)
regarding the sound extraction accuracy. This metric is crucial
to evaluate the perceptual quality of our algorithm for end-users,
although it has often been omitted in prior non-speech sound ex-
traction research. We invited 22 participants (6 female, 16 male,
mean age 34.6) to the online listening study. The study consists of
16 sections. In each section, the participants evaluated the quality
of 3 or 4 5.0-8.5 second audio samples. The audio samples played at
each section were in-the-wild recordings processed in the following
three ways for the same target label: (1) the original recording, (2)
the output of our 128-dimensional binaural network, (3) the output
of our 256-dimensional binaural network. For the subset of the eval-
uations that involved speech as the target sound, we also included
an additional fourth audio sample that was obtained by extracting
of the interfering class (e.g., door knocks) and then subtracting it
from the input recording to estimate the target speech.

We conducted a pre-screening process to ensure that the par-
ticipants used suitable binaural headsets. This involved playing
two white noise samples, one exclusively from the left channel
and one exclusively from the right channel. The participants were
instructed to confirm that they heard the sounds only from the
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(a) Binaural input of door knock in the presence of toilet flush.
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(b) Binaural output with door knock extracted.

Figure 9: Qualitative result with a real-world recording.

correct channels. 11 of our participants used headphones, and 11
used earbuds during our online user study.

We measured the sound extraction quality based on both inter-
ference suppression and overall mean opinion score (MOS), as they
are often included in speech enhancement quality assessment:

(1) Noise suppression: How INTRUSIVE/NOTICEABLE were the
BACKGROUND sounds? 1 - Very intrusive, 2 - Somewhat in-
trusive, 3 - Noticeable, but not intrusive, 4 - Slightly noticeable,
5 - Not noticeable

(2) Overall MOS: If the goal is to focus on the <TARGET> sounds,
how was your OVERALL experience? 1 - Bad, 2 - Poor, 3 - Fair,
4 - Good, 5 - Excellent

Results. In Fig. 8, we present the results of the user evalua-
tions for the interference sound suppression and overall quality
improvement of our system for different target sound labels. The
results demonstrate the system’s capability to significantly reduce
unwanted background sounds, as indicated by an increase in the
overall noise suppression score from 2.01 (corresponding to 2 -
Somewhat intrusive) to 3.61 (between 3 - Noticeable, but not intru-
sive and 4 - Slightly noticeable) with the 128-dimensional model,
and to 3.84 (slightly worse than 4 - Slightly noticeable) with the 256-
dimensional model. We also observed a similar trend in the overall
MOS improvement, with an improvement from 2.63 for the input
signal to 3.54 and 3.80 after processing with the 128-dimensional
and 256-dimensional models, respectively. Figs. 3d and 9 also show
that our network preserves the timing of the target sounds and can
silence out noise outside the target sound duration.

The results also offer interesting insights at a per-class level.
In general, the 128-channel model performs only slightly worse
than the 256-channel model for almost all classes, except for the
“Computer typing” class, where the gap in the overall MOS between
the two models is almost 0.84 MOS points. This is likely due to a
particularly noisy recording taken near a running generator, where
the 128-channel model created faint, unpleasant artifacts that were
not observed with the 256-channel model. However, both models
performed poorly in the “Hammer” class, where the target hammer
sound was recorded in the presence of interfering music. Although
the network correctly silenced the time segments that did not con-
tain the hammer sounds, there was a noticeable residue from the
music when there was a hammer sound, which the listeners found
intrusive. Another important finding from the study is the signifi-
cant improvement obtained by removing interfering signals from
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(a) Binaural input of speech recorded with door knock

(b) Binaural output with speech extracted
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(c) Binaural output with door knock removed

Figure 10: Extracting speech as a target here causes momen-
tary periods of excessive signal attenuation (highlighted in b)
as the network tries to remove door knocks and background
sounds. However, if we extract and then subtract door knock
sounds, the background noise is still faintly present, and the
resulting signal sounds less harsh.

the input recording when the target is speech. By removing short-
length sounds such as door knocks from the recorded signal instead
of extracting the speech directly (see Fig. 10), we were able to in-
crease the overall MOS by 0.91 points. Finally, it’s worth noting that
these in-the-wild results were obtained from the models trained
solely on synthesized data, without any training on data collected
from our hardware or for the participants.

4.2 Evaluating user-perceived spatial cues
We present experiments conducted in five ordinary, reverberant
rooms to evaluate the ability of our design to preserve or recover
user-perceived spatial cues. As with the in-the-wild evaluation, our
training data had no samples either from our hardware or the tested
real-world environments.

Data collection. We collected real-world audio recordings of
our target sounds from known directions. To achieve this, five par-
ticipants (3 male, 2 female) were fitted with binaural microphones
and seated on a rotating chair positioned at the center of a large,
printed semicircular protractor measuring 70× 36 inches, as shown
in Fig. 11. The protractor was lined at regular 22.5◦ intervals (nine
lines total) for precise rotational measurement. A Sony SRS-XB10
loudspeaker was placed on a fixed tripod at the 90◦ line of the
protractor to emit different sound signals. To control the angle-of-
arrival of the sound signal relative to the listener, the participants
were asked to rotate the chair and align themselves with one of the
protractor’s lines.

The data was collected in 9 stages. In each stage, the user is
rotated towards a different angle. The first stage starts with the
participant facing the 180◦ line. After completion of each stage, the
participant rotates 22.5◦ clockwise to the next marked angle. At

Figure 11: Spatial cue evaluation. (left) the evaluation setup,
and (right) the CDF of the error between the ground truth
source direction and the user-perceived source direction af-
ter listening to the isolated clean target sounds as well as
network output binaural target sounds. The dashed lines are
interpolated CDFs used to compute the interpolated median
and 90th percentile error.

each stage, the loudspeaker plays four 5-second audio samples: (1)
white noise, (2-3) two test samples belonging to the target sound
classes, and (4) a test sample belonging to the interfering other
sound classes. Across all stages of data collection, the chosen audio
samples comprise exactly 9 test samples from 9 distinct interfering
other sound classes and 6 test samples from 6 distinct target sound
classes. Notably, each test sample from the target classes is recorded
for 3 different relative angles.

Evaluation procedure. Since our goal is to develop a system
that accurately preserves the spatial cues perceived by human lis-
teners, we design a user study to compute the perceived angle-of-
arrival for the target binaural sounds output by our system. To
this end, based on the collected audio recordings, we first create
sound mixtures by sampling two audio clips from the target classes,
and 1-2 clips from the interfering other classes. The mixtures are
generated using Scaper. We choose the reference loudness of the
background to be -50 LUFS, and we set the SNR of the target class
sounds to 15-25 dB and that of the interfering other class sounds to
0-10 dB. We process each mixture by choosing a target class and
running the mixture through our network.

We play the recordings of the individual clean target sounds with
no interference, as well as the network output samples estimating
these target sounds from the created mixtures, to the same set of
participants via a pair of binaural earphones. Since the perceived
spatial cues rely heavily on anthropometric features, all the sound
signals played to a given participant originated from the binaural
data obtained from that same participant in the data collection step.
Prior to listening to each sample, participants are informed of the
target class they should be localizing. After listening, they are asked
to predict the direction of the sound source. To prevent the partici-
pants from associating each output sample with its corresponding
individually-recorded target sound, the samples are played in a
random order. To help the participants establish an orientation ref-
erence, we play back the white noise samples for each angle in the
increasing order at the start of the evaluation. Additionally, in cases
of uncertainty between two specific source angles, the participants
are allowed to re-listen to the white noise samples recorded for
these angles. The study lasted around 20 minutes per user.
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(c) Sound recorded inside the headphone cups.

Figure 12: Spectrograms of binaural recordings showing re-
sults from our end-to-end experiment with a wearable head-
set. Here, we extract door knock sounds in an environment
with a nearby active vacuum cleaner.

Results.We compare the errors between the ground truth source
directions and the users’ perceived arrival directions obtained for
both the clean interference-free target sound recordings as well as
the binaural target sound signals generated by our system for the
mixture signal input. Our findings, as illustrated in Fig. 11, show
that the mean angle error slightly increases from 18◦ to 23.25◦. Ad-
ditionally, we observe that the interpolated 50th and 90th percentile
errors also increase marginally from 5◦ to 9◦ and from 38◦ to 42◦,
respectively. This demonstrates that our model preserves the spatial
cues of the target sounds in its output and has a negligible impact
on how users perceive the source directions.

4.3 Integration with noise canceling headsets
So far, we have treated semantic hearing and active noise can-
cellation as two separate systems that function independently. In
practice, however, the end-to-end system requires a few additional
considerations. Firstly, many active noise cancellation systems rely

on a recorded signal inside the ear cup to adaptively silence the
noise signals and achieve adaptive noise cancelation. Hence, the
audio we play back to perform semantic hearing may influence
the noise cancellation algorithm. Secondly, active noise cancella-
tion systems are not perfect, and they may still let some sounds
through. To address these concerns, we record data while a user
is utilizing our end-to-end system in real time. The user wears a
pair of Sony WH-1000XM4 headphones with active noise cancella-
tion enabled. In addition to the outer microphones used to capture
external sounds to process, they also wear binaural microphones
inside the earcups to record the sound produced by the active noise
cancellation and semantic hearing systems together, i.e. as heard
by the user. The user chooses to listen to the sound of door knocks
as a vacuum cleaner is turned on nearby. For this experiment alone,
we run our semantic hearing algorithm on the audio recorded from
the outer microphones on a laptop with an Intel Core i5 CPU. The
processed audio is played back through the headphones.

Fig. 12(a)-(c) shows the spectrograms for three binaural signals:
the signal recorded at the outer microphone, the signal played
through the headphones, and the signal recorded inside the earcups.
We demonstrate that while the recordings from the inside earcups
are slightly noisier, we clearly see that the system can suppress the
unwanted sounds (vacuum cleaner), while preserving the target
sounds (door knocks). This demonstrates the feasibility that such a
system can coexist with active noise cancellation systems. We note
that to mitigate residual noises, the semantic hearing subsystem
may have to integrate the residual audio from noise cancelling
headphones to adapt the playback signal to the residual noise as
well. However, this comes with stricter latency requirements and
thus we leave it for future work.

4.4 Benchmarking the neural network
In-the-wild evaluation with human evaluators is closest to real-
world use. It is however hard to objectively compare different mod-
els due to the lack of ground-truth signals, as well as due to the
challenges in obtaining a large amount of test data necessary for
the statistical significance of smaller performance gaps. To address
these practical limitations, we also evaluate our model on an ex-
tensive reverberant binaural testset comprising 10000 mixture and
ground-truth pairs. We synthesized the benchmarking dataset to
mimic real-world situations following the approach in §3.3.

To evaluate the performance of our binaural extraction model, as
shown in Table 2, we compare the following three binaural target
sound extraction frameworks.
• Dual-ch. This is the dual-channel architecture we proposed in
§3.2.1 for efficient binaural target sound extraction. In this frame-
work, the binaural signal is converted into a combined latent space
representation before the mask estimation. Since both left and right
channels are combined into a common representation, a single in-
stance of the mask estimation network is used for estimating the
mask corresponding to the target sound. We consider our mask
estimation architecture with both 𝐷 = 128 and 𝐷 = 256.
• Parallel. This is the binaural framework proposed in [25] that
implements parallel processing of the left and right channels, along
with some cross-communication between channels. The binaural
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Table 2: Performance and efficiency comparison of different binaural target sound extraction frameworks and mask estimation
architectures on a large test dataset across 20 target classes generated using the approach described in §3.3.

Binaural framework Mask estimator Params (M) SI-SNRi (dB) ΔITD (𝜇𝑠) ΔILD (dB) Runtime (ms)

Dual-ch Ours (𝐷 = 128) 0.52 7.17 87.77 0.88 6.56
Ours (𝐷 = 256) 1.74 7.41 85.16 0.87 12.54

Parallel Ours (𝐷 = 128) 0.86 7.24 81.72 1.08 13.35
Conv-TasNet 2.33 4.43 670.05 - 15.58

Single-ch Ours (𝐷 = 256) 1.68 7.43 79.70 1.32 22.19
Vanilla Waveformer (𝐷 = 256) [66] 1.69 7.37 85.33 1.27 25.85

framework in [25] is originally proposed for binaural speech separa-
tion. We implemented this framework for both our mask estimation
network with 𝐷 = 128 and Conv-TasNet [38]. We include Conv-
TasNet as it is one of the most widely used signal enhancement
model architectures. We choose a configuration of Conv-TasNet
that resulted in similar runtime to that of our model and trained
both models with our training dataset.
• Single-ch. In addition to the above two binaural extraction
frameworks, we also evaluate and compare the performance with a
single-channel extraction baseline. Since the target sound extrac-
tion models we consider are sample-aligned, models trained with
monaural inputs and outputs can be independently applied to the
left and right channels. Similar to the Parallel case, this also in-
volves two instances of the mask estimation network. However, by
contrast, the model parameters applied to the left and right chan-
nels are the same and there is no cross-communication between
the channels. We implement the best configuration of our model
(𝐷 = 256) so that this serves as a strong baseline.

For each model, we compare the performance in terms of the
signal quality, the accuracy in spatial cues, and the on-device run-
time requirement. We measure the signal quality using the scale-
invariant signal-to-noise-ratio [54] improvement (SI-SNRi) of the
output compared to that of the mixture, computed with respect
to the ground-truth. The SI-SNRi results are averaged over the
entire testset, across the left and right channels. Following [25],
the spatial cue accuracy is measured using the difference in the
interaural time differences (ITDs) and interaural level differences
(ILDs) between the output binaural signal and the ground-truth
binaural signal, denoted as ΔITD and ΔILD. We compute ITD using
cross-correlation, limiting them to ±1 ms, as was done in [40]. The
model runtimes are measured on iPhone 11, by converting them to
ONNX format [9] and then executing them using ONNX Runtime
for iOS. The runtimes are measured for computing a 10 ms output
chunk averaged over 100 runs. Therefore, the runtime must be less
than 10 ms for deployment, which our dual-channel model with
𝐷 = 128 meets.

In our experiments, we observed that the causal Conv-TasNet
converges to the local minima of generating a constant zero signal
when trained only with the SNR loss. This phenomenon is also
observed in [66], which suggested training Conv-TasNet with 90%
SNR + 10% SI-SNR loss. The likely cause for this is, unlike the speech
datasets that Conv-TasNet is originally designed for, sound datasets
have a significant amount of silence, causing the Conv-TasNet

optimization process to converge to generating a zero signal. On
the other hand, using a loss of 90% SNR + 10% SI-SNR in the binaural
case, caused one of the channels to output a very low-amplitude
signal relative to the other channel as SI-SNR is insensitive to the
signal gains. We confirmed that the signal is spectrally meaningful
even though the magnitude is wrong. As a result, only SI-SNRi
and ΔITD results are meaningful for the Conv-TasNet model. ΔILD
computation resulted in infinity, so we omit it in our table.

In Table. 2, we observe that the dual-channel framework is com-
petitive with the parallel and single-channel frameworks in terms
of SI-SNRi, while outperforming in ΔILD. With regard to ΔITD,
it resulted in a very marginal increase. These results intuitively
make sense because the dual-channel framework has a sample-
aligned common representation for both left and right channels.
As a result, it can maintain the relative amplitudes of the left and
right channels. On the other hand, the parallel and single-channel
frameworks have separate branches that independently process
different channels, facilitating maintaining the sample alignment
with the respective channels. This phenomenon is more notable for
the single-channel framework, where the SI-SNRi and ΔITD are
promising but the ΔILD is poor, as there is no cross-communication
between the left and right channel processings. Finally, we note
that our dual-channel framework requires only a little more than
50% of the runtime required by their parallel or single-channel
counterparts, making it a good practical choice for our semantic
hearing system. Finally, we note that our dual-channel framework
uses 240 MFLOPS, while vanilla Waveformer uses 357 MFLOPS
across the two microphones.

For our causal model, the receptive field is exclusively the past
audio. Hence, it has no effect on the algorithmic latency. The al-
gorithmic latency of our model is the sum of chunk size, 𝐾𝐿, and
the lookahead of the input convolution, 𝐿, where 𝐿 is the stride of
the input convolution (§3.2.2). Table 2 uses stride 𝐿 = 32 samples
and 𝐾 = 13, resulting in a chunk size of 𝐾𝐿 = 416 samples and
lookahead 𝐿 = 32 samples. This is equivalent to 9.4 ms and 0.7 ms,
respectively. Table 3 shows the performance of our binaural model
with various chunk sizes to understand the effect of algorithmic
latency on performance. The results show that our model achieves
reasonable performance with an algorithmic latency as low as 1.4
ms. Thus with ASIC implementations, such as those in hearing aids,
we could envision ultra-low-latency semantic hearing systems.

During our in-the-wild evaluations, users freely moved their
heads and encountered mobile sources (eg. sirens). The model also
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Table 3: Effect of algorithmic latency on the performance.
*Proposed system with end-to-end latency ∼20 ms.

Chunk size (samples) Algorithmic latency (ms) SI-SNRi (dB)

32 1.4 6.59
128 3.6 6.83
256 6.5 7.18
416* 10.1 7.42

Table 4: Comparison of performance in the presence of rel-
ative angular motion between listener and sound sources.
Dual-ch model with 𝐷 = 256 is used for this evaluation.

Angular Reverb. SI-SNRi (dB) ΔITD (𝜇s) ΔILD (dB)
velocity (◦/s)

30 No 7.95 34.26 0.58
Yes 7.88 103.45 0.43

60 No 7.91 49.49 0.57
Yes 7.98 98.23 0.49

90 No 7.87 58.67 0.54
Yes 8.00 99.83 0.43

performed robustly without glitches during evaluations by human
testers. The model adapted quickly to relative motion because it
outputs small chunks (<10ms) while updating its internal state. The
model can also utilize spatial positions in the trajectory that have
better level differences between L and R channels. In addition to that
qualitative evaluation, Table 4 provides a quantitative comparison
of the performance for different amounts of relative angular motion
between the listener and sound sources. For this comparison, we use
the dual-ch model with 𝐷 = 256 dimensions. We simulate motion
using Steam Audio SDK [7], which simulates binaural motion given
an HRTF file in the SimpleFreeFieldHRIR format [6]. We performed
controlled experiments with different angular velocities in both ane-
choic and reverberant environments, with sources moving from a
random position on an arc with the given angular velocity. We used
the CIPIC [8] HRTF dataset for anechoic simulations and RRBRIR
[26] BRIR dataset for reverberant simulations as they provide im-
pulse responses in the SimpleFreeFieldHRIR format. We synthesize
the binaural audio in frames of 1024 samples by convolving with an
interpolated impulse response using bilinear interpolation at every
frame. Since the ILD and ITD are now time-varying, we compute
the ΔILD and ΔITD in chunks of 250 ms, discarding any chunks
where the clean signal is silent on both channels, and take the mean
across the remaining chunks. We observed that in the presence of
motion, SI-SNRi and ΔILD are marginally better as the model is
able to better leverage the level differences between L and R at dif-
ferent relative angular positions while achieving lower ΔITD in the
anechoic case and slightly higher ΔITD in reverberant scenarios.

4.5 Proof-of-concept user interface
Finally, a natural question is: how does the user pick between
classes? To answer this question, we prototyped an iOS app with
three different user interfaces for sound selection: Speech, Text and
Toggle switch grid of sounds (Fig. 13), and evaluated their accuracy,
speed, and ease of use.

Figure 13: User interface designs for target sound selection
on a smartphone. Each design uses a different input method
to capture the user’s intent: (left to right) speech, text and
toggle switches. The first two interfaces use ChatGPT API to
convert natural language to class inputs for our system.

For the speech and text interfaces, our goal was to investigate if
the ChatGPT API for phones [4] could be used to convert natural
language (I want to listen to ambulance sounds) into known sound
class inputs to our system (siren+). To do this, we initialized Chat-
GPT using the prompt: Here is a list of sound classes: [‘alarm_clock’,
‘baby_cry’, [...] I will provide you a sentence that involves keeping or
removing one of these sound classes. I want you to output the sound
class from the list that most closely matches (semantically) the sounds
in the sentence. If there are no classes that are sufficiently close, output
‘na’. Please do not output any other characters. If you find a close class
and if the sentence involves keeping sound from this label, append a
‘+’ to your output, otherwise, append ‘-’. For example, if I say ‘mute
cat’ you should say ‘cat-’. If I say ‘mute cow’ you should say ‘na’.

Ten participants were presented each of them with ten scenes
of the following form: Your infant’s cries break the silence. Your
phone plays a melody. The rustle of the wind is audible. We asked
participants to select a single sound event to add or remove, and
convey their intent to the app with the three user interfaces (UIs).
To evaluate the accuracy of each interface, we compared the sound
event selected through each UI with our best interpretation of what
the user said. Agreement rates were 92% for Speech and Text, and
93% for Toggle switch. For Speech and Text, disagreement was
due to confusion by ChatGPT (e.g. The toilet is too loud mapped to
toilet_flush+), or when ChatGPT would map selected sounds not in
the dataset to a similar sound in the dataset (e.g. wind and fountain
sounds were mapped to ocean). For the Toggle switch, disagreement
occurred when the intended sound class could not be found.

The mean time taken to convey intent was shortest for Speech
(5.5± 1.0s), then Toggle (6.3± 3.3s) and longest for Text (8.3± 3.7s).
Preference ratings (1=very unlikely, 5=very likely) were highest
for Speech (4.0 ± 1.1), then Text (2.9 ± 1.2), and lowest for Toggle
(2.7 ± 1.4). These findings suggest that from an user interface per-
spective, Speech would be a practical interface choice and would
scale better than the Toggle interface as the number of supported
classes increases. One participant noted that they would prefer the
Text interface when using the system in a public setting even if it
took a longer time to input their intent.
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5 LIMITATIONS AND DISCUSSION
As shown in Table. 1, we have an imbalance in the number of exam-
ples across classes. For instance, the “speech” class has 494 training
examples, while “car horn” has only 60 training examples. Collect-
ing more examples across all classes can potentially improve the
performance. Finally, some classes may be inherently harder to
separate. For example, music and human speech share many char-
acteristics, including vocal sounds and harmonicity. Thus, despite
having a larger number of training examples, it is difficult for our
model to perform tasks such as separating the speech of the person
around the wearer in the presence of background music that also
has vocals. Similarly, it can be challenging to separate music from
other classes like alarm clock sounds or bird chirping. Additionally,
our training methodology does not utilize any real-world data with
our hardware. Nevertheless, our real-world testing results demon-
strate the generalization capabilities to our hearable hardware as
well as unseen real-world environments. However, it is still possible
that collecting training data in the real-world scenarios as well as
with actual hardware can help improve the system performance.

Another limitation is the form factor of the hearable hardware
we used in our evaluations where we used binaural earphones in
addition to a noise canceling headset. The form factor could be
simplified if we used a single device for recording and playback.
Currently, there are commercial noise cancelling headsets that
provide user access to the microphone data, such as the Sennheiser
AMBEO Smart Headset, which we found after our evaluations. Our
system implemented on such a device would have fewer wires and
would directly connect to the smartphone at a single point, without
the need for an additional pair of binaural earphones.

Binaural target sound extraction can also be used to subtract
the target sounds and play the residual sounds into the ear. Fig. 10
shows the results for subtracting a target sound (e.g., computer
typing or hammer) to focus on the human speech. This can be
beneficial when the user knows the specific type of environmental
noise that they feel annoying (e.g., computer typing in an office
room) as this approach would remove only the specified noise and
thus allow the user to focus on the speech and the other sounds in
the environment.

For proof-of-concept demonstration, we have implemented our
neural network on a connected smartphone. While wired head-
sets connected to the smartphones are an important use case for
practical applications and can benefit from our implementation,
extending our system to wireless headsets requires integrating com-
putation with the headset hardware itself. This is likely feasible
given the ultra-low power multicore embedded GPUs that are being
designed for wearable devices [5]. Further, with recent develop-
ments in custom silicon for on-chip deep learning for speech and
natural language processing [62], it is likely that commercial hear-
able devices for semantic hearing would use such custom silicon
to reduce both the power consumption of the wearable device and
the end-to-end latency.

6 CONCLUSION
This paper takes an important first step towards realizing real-time
programming of acoustic scenes on binaural hearable devices using
the semantic description of sounds. At its core are two key technical

contributions: 1) the first binaural target sound extraction neural
network. Our network can run in real-time, using 10 ms or less
of audio blocks, while preserving the spatial information, and 2)
a training methodology that allows our system to generalize to
unseen real-world environments. In-the-wild experiments with
participants show that our proof-of-concept hardware-software
system can preserve the directions of the target sounds and separate
these sounds in real-time from both the background noise and other
sounds in the environment.
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