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Abstract

Despite broad interest in modeling spoken di-
alogue agents, most approaches are inherently
“half-duplex” – restricted to turn-based interac-
tion with responses requiring explicit prompt-
ing by the user or implicit tracking of inter-
ruption or silence events. Human dialogue, by
contrast, is “full-duplex” allowing for rich syn-
chronicity in the form of quick and dynamic
turn-taking, overlapping speech, and backchan-
neling. Technically, the challenge of achiev-
ing full-duplex dialogue with LLMs lies in
modeling synchrony as pre-trained LLMs do
not have a sense of “time”. To bridge this
gap, we propose Synchronous LLMs for full-
duplex spoken dialogue modeling. We de-
sign a novel mechanism to integrate time in-
formation into Llama3-8b so that they run syn-
chronously with the real-world clock. We also
introduce a training recipe that uses 212k hours
of synthetic spoken dialogue data generated
from text dialogue data to create a model that
generates meaningful and natural spoken di-
alogue, with just 2k hours of real-world spo-
ken dialogue data. Synchronous LLMs outper-
form state-of-the-art in dialogue meaningful-
ness while maintaining naturalness. Finally,
we demonstrate the model’s ability to partici-
pate in full-duplex dialogue by simulating in-
teraction between two agents trained on differ-
ent datasets, while considering Internet-scale
latencies of up to 240ms. Webpage: https:
//syncllm.cs.washington.edu/.

1 Introduction

Existing spoken dialogue models are predomi-
nantly turn-based interfaces that are half-duplex in
nature (Lakhotia et al., 2021; Zhang et al., 2023a;
Hassid et al., 2024; Borsos et al., 2023). To
achieve a change of turn, these systems rely on
either explicit user inputs or pauses at the end of
a user’s utterance (Zhang et al., 2023a). Human
spoken dialogue, by contrast, does not rely on si-
lence as its primary turn-taking cue (Levinson and

Torreira, 2015a; Nguyen et al., 2022). Research
indicates that in human conversations intra-turn
pauses (pauses within a speaker’s turn) are usu-
ally longer than the intervals between turns across
speakers (Heldner and Edlund, 2010; Brady, 1968;
ten Bosch et al., 2005). English speakers often
begin their turns without waiting for pauses, us-
ing grammatical, prosodic, and pragmatic cues to
seamlessly initiate their next turn while minimizing
overlaps and gaps (Stivers et al., 2009).

Human spoken dialogue is inherently full-
duplex, allowing for seamless, bi-directional com-
munication where both parties can simultaneously
speak and listen. This mode of interaction en-
ables immediate feedback, interruptions for clari-
fication, and real-time adjustments in information
flow (Reece et al., 2023; Levinson and Torreira,
2015b). Unlike half-duplex systems that process
text or speech based on full utterances in each
turn, human dialogue frequently contains verbal
backchannels – short, overlapping phrases such
as "yeah" or "uh-huh" – signals from the listener
to the speaker that they understand and that the
speaker may continue. Such synchronous dynam-
ics allow the interaction to flow smoothly and cre-
ate a rhythm absent in written text (Heldner and
Edlund, 2010). While humans learn turn-taking
cues from infancy to minimize speech overlaps and
silence duration (Nguyen et al., 2021), overlapping
speech as well as long silences are common in hu-
man spoken dialogue as they enrich conversations
providing additional pragmatic cues. For example,
overlapping speech and frequent backchanneling
often signifies engaged listening. Similarly the
length of silences can vary across cultures and is
influenced by the promptness of responses (Stivers
et al., 2009; Nguyen et al., 2022). In both cases,
these dynamics make conversation sound more “hu-
man.”

Developing a full-duplex spoken dialog agent
is challenging for four reasons: 1) Understanding
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Figure 1: SyncLLM as a full-duplex dialogue agent. At current time step (chunk N in the figure), SyncLLM’s
context contains interleaved chunks of the LLM’s speech until the current chunk, and the user’s speech corresponding
to all but the current chunk. To be in synchrony with the user, the LLM must generate its next chunk (chunk N+1)
before the end of the current chunk. As a result, SyncLLM first generates an estimated user’s chunk, which is in-turn
appended to the context and used to predict its next chunk.

and generating turn-taking cues in spoken dialogue
requires the model to have a common reference
clock with the real-world. However, current LLMs
do not have such a sense of “time”. 2) Compared
to text-based chat datasets, spoken dialogue data
is limited. A combination of all significant spoken
dialogue datasets (Cieri et al., 2004; Godfrey et al.,
1992; Reece et al., 2023) would still result in only
∼3k hours of spoken dialogue data. 3) Full-duplex
dialogue entails model to be always listening and
should always be ready to speak, because back-
channels or overlaps could occur at arbitrary points
in time. This requires the model to be streaming for
the duration of the dialogue. 4) Since the spoken
dialogue agent might run on cloud infrastructure,
it must address the fundamental latency inherent
in Internet transmissions. Thus, the model may
not have immediate access to the current tokens or
speech generated by the user and must operate with
delayed input (Fig. 1).

In this paper, we make multiple contributions to
develop a full-duplex dialogue agent:

• We introduce Synchronous LLMs, in short Syn-
cLLM, for full-duplex spoken dialogue. SyncLLM
achieves synchrony modeling by integrating time
information into LLMs so that they can run syn-
chronously with the real-world clock. We generate
a periodic synchronization token to provide a com-
mon time frame for both sides of the dialogue. This
however requires us to address duplicate tokens,
caused by silence within and across utterances. Du-
plicate tokens can adversely affect the semantic ca-

pability of spoken dialogue model (Nguyen et al.,
2022). Instead, we train our model to predict dedu-
plicated token sequences, with timing information
maintained by our periodic synchronization tokens.

• Human voice interactions rely on the ability to
model the other person’s response on the short-
term. We can take turns with gaps as small
as 200ms, while language generation latency is
around 600ms (Levinson and Torreira, 2015b).
This implies we anticipate the next few words of
what the other person would say and respond ap-
propriately. We use this insight to predict speech
units for both speakers, into the future, in chunk
sizes of 160-240 ms. This ensures resiliency to
Internet latencies of up to 240 ms.

• We propose a three-stage training recipe that
leverages synthetic spoken dialogue generated from
text dialogue data to mitigate the limited availabil-
ity of real-world spoken dialogue data. Specifically,
we use 212k hours of synthetic spoken dialogue
data and just 2k hours of real-world spoken dia-
logue data to develop a model that generates mean-
ingful spoken dialogue with naturalistic turn-taking,
overlaps, and backchannels.

• With an experimental setup based on Llama3-8b
(at Meta, 2024) and extensive user-study (n=32),
we show that our method achieves +2.2-point Mean
Opinion Score (MOS) improvement in dialogue
content Meaningfulness over state-of-the-art full-
duplex voice model dGSLM (Nguyen et al., 2022),
while maintaining turn-taking Naturalness. Further,
our results show that our model fine-tuned on the
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Fisher training set (Cieri et al., 2004) can general-
ize to the out-of-distribution Candor testset (Reece
et al., 2023), while preserving both dialog content
meaningfulness and naturalness.

• Finally, by simulating full-duplex dialogue be-
tween two finetuned Llama3-8b models, we show
how this approach can enable latency-tolerant and
streaming full-duplex voice interfaces. Further,
SyncLLM can perform a coherent conversation
even when the user’s side of the conversation is gen-
erated by a model trained with a different dataset.

2 Related work

Multimodal language models. The success of
text language models like GPT-4 (OpenAI, 2023),
LLAMA (Touvron et al., 2023), and Mistral (Jiang
et al., 2023) has inspired explorations into mul-
timodal models. Here, we focus our discussion
on speech and text modalities. Initialization from
a pretrained text LLM has been shown to bene-
fit multimodal training (Hassid et al., 2023). Re-
cent works have proposed extending the vocabu-
lary of text LLMs with discrete speech tokens to
enable the model to handle speech inputs and out-
puts (Rubenstein et al., 2023). Models are trained
with cross-modal knowledge from aligned speech-
text data, including tasks like automatic speech
recognition (ASR), text-to-speech synthesis (TTS),
speech-to-text (S2T), and speech-to-speech trans-
lation (S2ST). Multitask learning with these tasks
has been adopted by VioLA (Wang et al., 2023),
AudioPaLM (Rubenstein et al., 2023), VoxtLM
(Maiti et al., 2023), and SUTLM (Chou et al.,
2023). SpiRit-LM (Nguyen et al., 2024) interleaves
speech and text tokens and trains the model with
next token prediction, demonstrating both speech
understanding and generation.
Spoken dialogue models. Prior work on spoken
dialogue research covers various topics such as
dialogue state tracking (Zhang et al., 2023b), turn-
taking prediction (Skantze, 2021; Lin et al., 2022),
and response generation (Zhang et al., 2020). Re-
cent works leverage LLMs in dialogue systems
(Zhao et al., 2020). Initialized from LLAMA,
SpeechGPT (Zhang et al., 2023a) is finetuned se-
quentially on speech-only data and multimodal in-
struction sets to perform spoken question answer-
ing (QA) tasks. USDM (Kim et al., 2024) con-
tinues pretraining Mistral with interleaved speech-
text data to capture multimodal semantics. For
dialogue finetuning, it constructs templates using

both speech and transcripts of user input as instruc-
tion data. Unlike models that use speech tokens,
Spectron (Nachmani et al., 2023) directly manipu-
lates spectrograms for tasks such as spoken QA and
speech continuation. However, these prior works
are limited to the turn-taking setting, where the di-
alogue model is explicitly prompted to speak in its
own turn. Human spoken dialogue is more com-
plex, involving implicit turn-taking cues and over-
lapping speech, such as interruptions and backchan-
neling (Schegloff, 2000).

The closest work to ours is dGSLM (Lakhotia
et al., 2021), which models simultaneous dialogue
using a dual-tower Transformer that attends to two
channels. It demonstrates superior performance
than cascaded architecture which consists of au-
tomatic speech recognition (ASR), text LLM and
text-to-speech (TTS). One weakness of dGSLM
is its reliance on speech-only training, which does
not fully utilize textual knowledge. In contrast, our
work leverages the generative intelligence of lan-
guage models, equipping them with multimodal
and synchronous capabilities. Moreover, in its em-
pirical study, dGSLM does not consider delays
in real-life scenarios and assumes that the hidden
states of one interlocutor are immediately accessi-
ble to the other. In contrast, we explicitly discuss
how our model handles delayed responses in spo-
ken dialogue.

3 SyncLLM

SyncLLM is an auto-regressive transformer de-
coder architecture, that natively models discrete
speech units in a wall-clock synchronous fashion.
SyncLLM is trained to predict interleaving chunks
of speech units corresponding to both sides of the
dialogue as shown in Fig. 1. In each time step,
the model predicts speech units corresponding to a
fixed duration, referred to as the model’s chunk size,
for its side of the dialogue followed by speech units
corresponding to user’s side of the dialogue. With
this approach, the model is capable of generating
two streams of speech synchronized with a real-
world clock. This allows our method to model all
conversational cues such as backchannels, overlaps,
interruptions etc. Furthermore, since we use the
same architecture as existing LLMs, our approach
can leverage large scale pre-training of LLMs.

The model trained to predict interleaved chunks
of token sequences can be used for full-duplex
voice interaction if we could replace one of the
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two token streams, with that corresponding to the
real-world user. In Fig. 1, purple boxes correspond
to token sequences of the LLM’s side of the conver-
sation in each time chunk and the green boxes corre-
spond to the user’s side of the dialogue. We achieve
full-duplex LLM-user voice interaction by discard-
ing the LLM’s predictions of user’s response and
replace it with the user’s speech.

3.1 Latency tolerant interaction
In Fig. 1, consider the Nth time chunk to be current
time step. We could interleave the LLM’s output
speech chunks until the Nth chunk, with the user’s
input chunks corresponding to only N-1 chunks.
The reasoning here is that the user’s input for the
Nth chunk is not available until the end of Nth
time step. To handle this intrinsic latency, similar
to the way humans anticipate the next few words
of what the other person taking part in the dia-
logue would say (Levinson and Torreira, 2015b),
the LLM’s output for the next chunk (N+1) is com-
puted by first estimating the user’s response for the
Nth time chunk (depicted in the figure with green
boxes with dotted border). We then append this
estimated chunk to the LLM’s context to gener-
ate the LLM’s next chunk (N+1). For generating
subsequent chunks (N+2, N+3, ...), we discard the
estimated user’s chunk for Nth time step and re-
place that with the user’s real-world input, thus
grounding the subsequent interaction with actual
input from the user.

3.2 Token sequence format
Following prior works in spoken language model-
ing (Nguyen et al., 2022, 2024), we use HuBERT
(Hsu et al., 2021) to represent speech. We use the
tokenization parameters from (Nguyen et al., 2024),
with a token sampling rate of 25 Hz – resulting in
one token for every 40 ms of audio – and a vo-
cabulary size of 501. To model dialog between
two speakers 0 & 1, we define two special tokens
[S0] and [S1], referred to as speaker tags, spec-
ifying the start of each speaker’s token sequence,
respectively. We represent dialogue as two parallel
speech streams, one for each speaker, interleaved,
as shown in the top row of Fig. 2. For each stream,
we embed a periodic speaker tag, with the time
period equal to chunk size of the model.

Deduplication. The fixed time period of Hu-
BERT tokens is useful for modeling time in the
full-duplex dialogue. However, raw HuBERT
sequences consist of significant repeated tokens,

mainly caused by silence within and across utter-
ances. The number of repetitions of each unique
token denote the duration of the acoustic unit rep-
resented by the token. The semantic content, how-
ever, can be modeled by only considering unique
tokens while deduplicating the token sequence
(Kharitonov et al., 2022; Nguyen et al., 2022). Du-
plicate token sequences can adversely affect the
semantic capability of the final spoken dialogue
model (Nguyen et al., 2022), because as shown in
Fig. 3, they contain ∼ 50% lower semantic content
per token compared to deduplicated sequences.

So, instead, SyncLLM is trained to predict dedu-
plicated HuBERT sequences, with coarse timing
information maintained by periodically interleaved
special tokens, [S0] and [S1], as in the second row
of Fig. 2. In the first chunk of the example in Fig. 2,
the two speaker streams contained 4 repetitions of
[75] and [89], respectively. After deduplication,
the interleaved token sequence corresponding to the
first chunk would be [S0][75][S1][89]. In the
second chunk, speaker 0 has 2 new tokens ([17] &
[338]), but speaker 1 tokens are just a repetition
of the last token in the previous chunk, [89]. So,
the second chunk’s token sequence would just be
[S0][17][338]. Note that when a chunk contains
no novel tokens corresponding to speaker 1, we ex-
clude speaker 1’s special token [S1] as well. How-
ever, this is not the case for speaker 0, as we need
one of the speaker’s special token to be present in
all chunks to unambiguously distinguish chunks.
This is shown in the third chunk of Fig. 2.

Interpolation. While deduplicated token se-
quences are beneficial for auto-regressive model-
ing, to generate token sequences suitable for speech
synthesis, we need periodic HuBERT tokens in the
original format. Since the speaker tag [S0] main-
tains the timing information, we know the number
of tokens removed after deduplication within each
chunk. We use this to interpolate the deduplicated
token to match the expected number of token in
each chunk. For example, in the first chunk of
Fig. 2, speaker 0’s stream only has one token after
deduplication. But since chunk size in that case
is 160ms, each chunk would contain 160/40 = 4
tokens. So as shown in the third row of Fig. 2, we
repeat the deduplicated token thrice to reconstruct
the chunk. If a chunk has multiple deduplicated
tokens, like the second in Fig. 2, we repeat each
token by an equal amount. We note this approach
could result in an error because the original chunk
may not follow this heuristic. We observed that the
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Figure 2: SyncLLM’s token sequence format visualized with a chunk size of 160 ms. (Top row) We represent
spoken dialogue as interleaved chunks of HuBERT tokens, where the chunk size determines the frequency of
the synchronization token [S0]. (Middle row) We train SyncLLM to generate interleaved chunks of deduplicated
HuBERT tokens along with periodic synchronization tokens. (Bottom row) We interpolate deduplicated tokens in
each chunk to obtain spoken dialogue sequence in the original format.
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Figure 3: Tokens required for representing a second
of speech with/without deduplication. Histogram com-
puted over 15 hr of dialog data in the Fisher dataset
(Cieri et al., 2004).
Table 1: Data used for training in different stages. We
convert text based data to speech using TTS.

Stage Source Speech
modality (hrs)

Supervised 1 Text 193k
finetuning (SFT)
Dialogue 2 Text 20k
Spoken dialogue 3 Speech 1927

effect of this is imperceptible even with a chunk
size of 240 ms, likely because the error in the pre-
dicted duration of each token is upper bounded by
the chunk size. Further, in chunks with more novel
tokens, the error would be even smaller.

4 Training

We use Llama3-8b (at Meta, 2024) as our base
model and employ a three stage training procedure
that uses synthetic spoken dialogue data predom-
inantly and relatively small amount of real-world
spoken dialogue data to develop a full-duplex voice
agent.
Stage 1: Turn-based spoken dialogue model
with synthetic speech data. Given the limited spo-
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Figure 4: We sample speech percentages from truncated
normal distribution, so we obtain samples with all possi-
ble combinations of text-speech interleaving throughout
the training process, with a bias for higher speech per-
centages as the training progresses. This resulted in
stable training when starting out with a text-only LLM.

ken dialogue data, we generate synthetic speech
data from large-scale text dialogue datasets. We
use supervised finetuning (SFT) datasets, as our
source text-dialogue datasets. We used Bark TTS
(AI, 2023) model to generate spoken versions of
text-dialogue datasets, with its 10 speaker presets.

Since Llama3-8b is a text-only LLM, in the first
stage, we aim to achieve text-speech alignment in
the context of dialogues. Given a spoken question,
we train the model to generate a spoken response.
We expand the vocabulary of Llama3 to include
501 HuBERT tokens, in addition to the speaker
tags, [S0] and [S1]. A turn-based dialog could be
defined as made of turns, which in turn are made
of sentences. We finetuned Llama3 with dialog
sequences in the following format:

[S1]<sent0>[S0]<sent0><sent1>[S1]..

Each sentence is randomly chosen to either be
text or deduplicated speech token sequences dur-
ing training. For each training sample, we sample
the percentage of speech sentences in the training
sequence from the truncated normal distribution
(Fig. 4). Training only with fully speech sequences
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or step-wise increment of speech percentage re-
sulted in unstable training. Sentence level text-
speech interleaving not only trains the model to
be capable of performing dialog, but also achieves
text/speech alignment in the context of dialog.

Stage 2: Full-duplex dialogue assuming no over-
laps. Turn-based spoken dialogue is special case
of full-duplex dialogue with no overlaps. Based
on this observation, we could treat synthetic spo-
ken dialogue data as full-duplex spoken dialogue
data where during one speaker’s turn, other speaker
is completely silent. In this stage, we create syn-
thetic spoken dialogue data from text-dialogue data
similarly to the previous stage with one main differ-
ence: From each turn in the dialogue, we generate
a speech utterance corresponding to one speaker
and silence of equal duration corresponding to the
other speaker. We then tokenize the parallel speech
dialog data in the format shown in the second row
of Fig. 2. This way, we can further leverage text-
dialogue data for help our model learn the token
sequence format in Fig. 2. This stage of finetuning
models timing within an utterance. The model can-
not learn turn-taking cues such as back-channeling
or overlaps between two speakers yet.

For the the previous stage, most samples in SFT
datasetswould contain one speaker (user of the
LLM) taking a short turn and the other speaker (the
LLM) giving a long response. Spoken dialogues
however contain more frequent turn-taking taking
with short utterances. Therefore for this stage, we
use text-dialogue datasets comprising of shorter
turns, equivalent to around 20k hrs of synthetic
spoken dialogue.

Stage 3: Modeling with real-world spoken dia-
logue data. Finally, we finetune the model to learn
turn-taking cues from real-world spoken dialogue
data. We use the Fisher (Cieri et al., 2004) dataset
with 2000 hours of spoken dialogues, where each
speaker’s speech in a dialogue is separated into
independent audio channels. We split the dataset
into train, val and test split with 98:1:1 ratio, re-
spectively. Each audio channel in the dialogue is
separately tokenized and interleaved in the full-
duplex dialogue format used in the previous stage.
In this stage in addition to learning timing within
utterances, the model learns effective turn-taking,
conversational cues like accurate distribution of
pauses between turn and backchanneling.
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Figure 5: Perplexity of transcriptions of spoken dia-
logues generated by different models. Perplexity is
measured with respect to a text dialogue model’s predic-
tions.

5 Experiments

We evaluate SyncLLM in both continuation and in-
teraction settings. In the continuation setting, given
a spoken dialogue prompt, the model generates
both sides of the dialogue. For interaction setting,
we simulate interaction between two instances of
SyncLLM as described in §3.1. We denote Syn-
cLLM trained on Fisher in continuation setting as
SyncLLM-F and use dGSLM as the continuation
setting baseline. Both dGSLM and SyncLLM-F
use Fisher as the only real-world spoken dialogue
dataset for training. We denote SyncLLM trained
on Fisher interacting with an instance trained on
Fisher as SyncLLM-F-F, and SyncLLM trained
on Fisher interacting with an instance trained on
CANDOR (Reece et al., 2023) as SyncLLM-F-C.

5.1 Semantic evaluation

We evaluate the semantics of SyncLLM in the text
domain by converting spoken generations to text
using ASR. We transcribe the generated spoken di-
alogues into turn-based text dialogues ignoring any
overlapping speech. We then compute perplexity
of transcribed dialogues generated with 10 second
spoken dialogue prompts, with respect a text-only
dialogue model. To account for outliers (samples
with abnormally high perplexities), we consider
median perplexity over the testset.

Fig. 5 compares the semantic quality of spoken
dialogues generated by SyncLLM with different
chunk sizes to the prior state-of-the-art full-duplex
dGSLM model (Nguyen et al., 2022) and ground-
truth continuations. We find that dGSLM has a
perplexity drop of ∼70 relative to the ground-truth,
while SyncLLM only has a drop of ∼15. Fig. 6
also compares median perplexities measured with
prompts sampled from Fisher and Candor test splits
separately, with all models trained only on Fisher
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Table 2: Comparison of Pearson correlation of turn-taking event durations between generations and ground-truth
continuations, given same set of prompts. SyncLLM’s chunk sizes are shown in parenthesis.

Model Fisher (in-distribution) Candor (out-of-distribution)
ipu pause fto Average ipu pause fto Average

dGSLM 0.48 0.41 0.10 0.33 0.30 0.02 0.09 0.14
SyncLLM-F (160 ms) 0.60 0.50 0.20 0.43 0.45 0.09 0.14 0.23
SyncLLM-F (200 ms) 0.60 0.49 0.19 0.43 0.44 0.28 0.14 0.29
SyncLLM-F (240 ms) 0.58 0.40 0.25 0.41 0.45 0.27 0.21 0.31
Prompt 0.72 0.53 0.31 0.52 0.54 0.30 0.12 0.32
Resynth-GT 0.92 0.92 0.53 0.79 0.90 0.86 0.37 0.71
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Figure 6: In-distribution and out-of-distribution testing.

training split. Here, Candor test split is an out-of-
distribution testset.

These evaluations show that our approach of us-
ing the standard auto-regressive architecture, thus
leveraging vast text pre-training, results in much
more semantically coherent spoken dialogue model,
compared to a custom architecture proposed for
speech-only training. Furthermore, our three-stage
training approach leveraging large amount of syn-
thetic spoken dialogue data generated from text
dialogues, allows us to converge much faster on
limited real-world dual-channel spoken dialogue
data. This results in a general model that has supe-
rior out-of-distribution (ood) performance.

5.2 Naturalness evaluation

Appropriate timing of pauses, speaker transitions
and overlaps are integral part of spoken-dialogue
which convey essential information required for
natural spoken conversation. To evaluate these as-
pect of our generated spoken dialogues, we con-
sider the turn-taking events proposed in (Nguyen
et al., 2022) that evaluate overall naturalness of gen-
erated spoken dialogues: inter-pausal units (IPUs),
pauses, and floor-transfer offset (FTO). FTO is the
duration of between turn-transitions, which is a
combination of overlaps and gaps – negative FTOs
represent overlaps and positive FTOs represent
gaps.

Similar to dGSLM’s setup, we use 30s prompts

sampled from the test splits and generate 90s di-
alogues with different model configurations. We
then compute pair-wise correlation of turn-taking
event durations between the dialogue generations
and ground-truth continuations, given the same
prompt. We first compute voice activities of each
side of dialogue (generated in separate audio chan-
nels) using the pyannote.audio library (Bredin
et al., 2020). We then measure the start and end
timestamps for each turn-taking event. We measure
the average duration of the turn-taking events in
generated dialogues and then compute the Pearson
correlation between the average durations observed
in generations of different models and those in the
ground-truth.

Table. 2 compares this correlation with in-
distribution Fisher (Cieri et al., 2004) test-split
and out-of-distribution Candor test-split. We ob-
serve that, generations with our models achieve
better turn-taking event correlation with ground-
truth continuations compared to dGSLM for both
in-distribution and out-of-distribution testsets. In
addition to this, we provide turn-taking event cor-
relation with prompts and re-synthesized ground-
truth continuations (Resynth-GT). Resynth-GT is
obtained by re-synthesizing the tokenized ground-
truth continuation. Resynth-GT does not perfectly
correlate with ground-truth owing to variance in
timing introduced by the tokenization process, and
serves as a topline for our method.

5.3 Human Evaluation

We conduct an evaluation study with 32 annotators
recruited via a third party vendor with the require-
ment that they had native-level English proficiency.

We adapt the Mean Opinion Score (MOS) proto-
col (a 5-pt Likert scale) (ITU-T Recommendation
P.808, 2018) to evaluate Naturalness (N-MOS) of
turn-taking and Meaningfulness (M-MOS) of di-
alogue content. For both N-MOS and M-MOS,
annotators are presented with the prompt- and
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Table 3: Meaningfulness (Meaning.) and Naturalness (Nat.) (scores 1-5) mean estimates and standard errors (in
parentheses), aggregated overall and for Fisher and CANDOR subsets. We use a 160ms chunk size for this study.

Overall Fisher CANDOR

Model Meaning. ↑ Nat. ↑ Meaning. ↑ Nat. ↑ Meaning. ↑ Nat. ↑

dGSLM 1.55 (0.06) 3.95 (0.08) 1.67 (0.09) 4.21 (0.08) 1.43 (0.08) 3.70 (0.12)
SyncLLM-C 3.40 (0.07) 3.96 (0.06) 3.14 (0.10) 3.97 (0.08) 3.66 (0.08) 3.94 (0.08)
SyncLLM-F 3.74 (0.06) 3.90 (0.06) 3.82 (0.08) 3.98 (0.08) 3.67 (0.09) 3.82 (0.10)
Re-synth 3.87 (0.06) 4.03 (0.05) 4.04 (0.08) 4.14 (0.08) 3.69 (0.07) 3.91 (0.06)
GT 4.96 (0.02) 4.96 (0.02) 4.96 (0.03) 4.94 (0.04) 4.97 (0.02) 4.98 (0.02)

continuation-audio. Annotators are instructed to
first read the descriptions of N-MOS and M-MOS,
listen to the prompt audio, then listen to the contin-
uation audio. Finally, they are asked to provide a
rating considering the quality of the continuation
audio relative to the information contained in the
prompt. Each annotator assigned to a given prompt
/ continuation pair provides a rating for both N-
MOS and M-MOS (see §B.1).

In total, nannot = 32 annotators provided ratings
for nitems = 180 items divided evenly between
the CANDOR and Fisher datasets. Each sample
received a rating from 1−Bad, ..., 5−Excellent
by three unique raters. We compute item-level
scores by taking the median score per item. To
compute system-level scores we take the mean of
item scores for a given system. We compute 95%
confidence intervals via bootstrapping, resampling
at the item level for nb = 1000 iterations.

Overall results. The two left-most columns of Ta-
ble. 3 indicate that nearly all models are at parity
in perceived Naturalness (N-MOS) of turn-taking,
while close to re-synthesized ground-truth val-
ues. On the perceived Meaningfulness (M-MOS)
of the dialogue content, SyncLLM-based mod-
els significantly outperform dGSLM, approaching
re-synthesized ground-truth values. Resynth-GT
here accounts for the tokenization process and is
the topline number for the implementation of our
method using the HuBERT tokenizer.

In-distribution and OOD. Table. 3 also highlights
the difference between in-distribution (Fisher) and
OOD (CANDOR) between dGSLM and Fisher-
trained SyncLLM-F. While dGSLM suffers from
significant degradation OOD (dropping -0.24 and
-0.51 in M-MOS and N-MOS ratings), these de-
clines are reduced in SyncLLM-F only dropping
-0.15 and -0.16 moving OOD. SyncLLM trained
on CANDOR dataset (SyncLLM-C) shows a de-
cline OOD on M-MOS (-0.52), but not N-MOS
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Figure 7: Comparison of ASR perplexity between con-
tinuation mode and interaction-mode.

(+0.03). We note that dGSLM (Nguyen et al.,
2022) uses speech representations fine-tuned on
the Fisher dataset, while our method uses general-
purpose speech representations for all domains of
speech. This results in our method outperforming
the baseline on the out-of-distribution Candor test-
set in naturalness, as judged by human evaluators
in Table. 3.

5.4 Full-duplex interaction

We simulate LLM-user interaction using LLM-
LLM interaction with one-chunk latency. We eval-
uate our model trained with different chunk sizes,
thus simulating different latencies. We also train a
version of SyncLLM with Candor training split in
the third training stage, and simulate its interaction
with the original model trained with only Fisher.

In Fig. 7, we compare median perplexities ob-
tained with prompts sampled from Fisher and Can-
dor test splits. We also show the perplexity of
ground-truth and samples generated in the dialog
continuation setting for reference. We find that
SyncLLM in the LLM-LLM interaction setting is
able to closely match the performance of the con-
tinuation setting, and perform significantly better
than dGSLM in continuation setting. Furthermore,
we find that interaction between instances of Syn-
cLLM trained with Fisher and Candor datasets,
respectively is are almost the same signifying that
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SyncLLM can perform a coherent conversation
even when user’s side of the conversation is gener-
ated by a model trained with a different dataset.
Human evaluation. Table. 4 shows ratings for
dGSLM, the Fisher-trained continuation model,
and LLM-LLM interactions. Results corroborate
findings in §5.4 – LLM-LLM interactions outper-
form dGSLM on M-MOS, but are slightly worse
compared to the single model continuation setting.

Table 4: Human evaluation results for Meaningfulness
(Meaning.) and Naturalness (Nat.) mean estimates and
standard errors (in parentheses) across all data.

Model Meaning. ↑ Nat. ↑

dGSLM 1.55 (0.06) 3.95 (0.08)
SyncLLM-F 3.74 (0.06) 3.90 (0.06)
SyncLLM-F-C 3.39 (0.06) 3.78 (0.06)
SyncLLM-F-F 3.47 (0.06) 3.72 (0.06)

6 Conclusion

We present Synchronous LLMs, a novel post-
training framework that converts an auto-regressive
LLM into a full-duplex spoken dialogue agent.
Synchronous LLMs outperform state-of-the-art in
dialogue meaningfulness while maintaining turn-
taking naturalness. Finally, by simulating full-
duplex dialogue between two agents, we show ro-
bustness to delayed input from Internet-scale la-
tencies, where the agents do not have immediate
access to the speech generated by their users.

7 Limitations and Risks

Limitations. The performance of Synchronous
LLMs could be further improved in terms of speech
quality. Currently, we use a simple HiFi-GAN
vocoder for speech synthesis, and higher-quality
speech could be synthesized from semantic units
with a more advanced speech generator. Moreover,
we have not studied expressivity and non-verbal
sounds in dialogue such as laughter, which could
make the spoken dialogue more human-like. An-
other limitation is the context length; synchronous
LLMs are initialized from Llama-3, and therefore
have the same sequence length limit which con-
strained the long-context modeling in dialogue as
well as the use of more expressive multi-codebook
tokenizers like EnCodec (Défossez et al., 2022)
that have higher token rate.
Ethical considerations. The proposed model is
intended for spoken dialogue agents. In case of
failure, the system might generate inappropriate

responses and toxicity mitigation may be needed
for speech outputs. As for unintended use, one
example is that bad actors misuse the model for on-
line scams. Speech watermarking is one potential
approach to counter abuse of the technology.

Acknowledgments

The University of Washington researchers are
partly supported by the Meta AI Mentorship pro-
gram, Moore Inventor Fellow award #10617, UW
CoMotion fund, and the NSF.

References
Suno AI. 2023. Bark tts. https://github.com/

suno-ai/bark.

AT at Meta. 2024. Meta llama 3. https://github.
com/meta-llama/llama3.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eu-
gene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier,
Marco Tagliasacchi, and Neil Zeghidour. 2023. Au-
diolm: a language modeling approach to audio gen-
eration. Preprint, arXiv:2209.03143.

Paul T. Brady. 1968. A statistical analysis of on-off
patterns in 16 conversations. Bell System Technical
Journal, 47:73–91.

Hervé Bredin, Ruiqing Yin, Juan Manuel Coria, Gre-
gory Gelly, Pavel Korshunov, Marvin Lavechin,
Diego Fustes, Hadrien Titeux, Wassim Bouaziz, and
Marie-Philippe Gill. 2020. pyannote.audio: neural
building blocks for speaker diarization. In ICASSP
2020, IEEE International Conference on Acoustics,
Speech, and Signal Processing, Barcelona, Spain.

Ju-Chieh Chou, Chung-Ming Chien, Wei-Ning Hsu,
Karen Livescu, Arun Babu, Alexis Conneau, Alexei
Baevski, and Michael Auli. 2023. Toward joint lan-
guage modeling for speech units and text. Preprint,
arXiv:2310.08715.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: a resource for the next
generations of speech-to-text. In International Con-
ference on Language Resources and Evaluation.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and
Yossi Adi. 2022. High fidelity neural audio compres-
sion. arXiv preprint arXiv:2210.13438.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
Switchboard: telephone speech corpus for research
and development. In [Proceedings] ICASSP-92:
1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages 517–
520 vol.1.

9

https://github.com/suno-ai/bark
https://github.com/suno-ai/bark
https://github.com/meta-llama/llama3
https://github.com/meta-llama/llama3
https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2209.03143
https://api.semanticscholar.org/CorpusID:62739009
https://api.semanticscholar.org/CorpusID:62739009
https://arxiv.org/abs/2310.08715
https://arxiv.org/abs/2310.08715
https://api.semanticscholar.org/CorpusID:8414900
https://api.semanticscholar.org/CorpusID:8414900
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858


Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai Gat,
Alexis Conneau, Felix Kreuk, Jade Copet, Alexan-
dre Défossez, Gabriel Synnaeve, Emmanuel Dupoux,
Roy Schwartz, and Yossi Adi. 2023. Textually pre-
trained speech language models. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai
Gat, Alexis Conneau, Felix Kreuk, Jade Copet,
Alexandre Defossez, Gabriel Synnaeve, Emmanuel
Dupoux, Roy Schwartz, and Yossi Adi. 2024. Tex-
tually pretrained speech language models. Preprint,
arXiv:2305.13009.

Mattias Heldner and Jens Edlund. 2010. Pauses, gaps
and overlaps in conversations. Journal of Phonetics,
38(4):555–568.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. Preprint, arXiv:2106.07447.

ITU-T Recommendation P.808. 2018. Subjective eval-
uation of speech quality with a crowdsourcing ap-
proach.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Eugene Kharitonov, Ann Lee, Adam Polyak, Yossi
Adi, Jade Copet, Kushal Lakhotia, Tu-Anh Nguyen,
Morgane Rivière, Abdelrahman Mohamed, Em-
manuel Dupoux, and Wei-Ning Hsu. 2022. Text-free
prosody-aware generative spoken language modeling.
Preprint, arXiv:2109.03264.

Heeseung Kim, Soonshin Seo, Kyeongseok Jeong,
Ohsung Kwon, Jungwhan Kim, Jaehong Lee, Eu-
nwoo Song, Myungwoo Oh, Sungroh Yoon, and
Kang Min Yoo. 2024. Unified speech-text pretraining
for spoken dialog modeling. CoRR, abs/2402.05706.

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Adelrahman
Mohamed, and Emmanuel Dupoux. 2021. Gener-
ative spoken language modeling from raw audio.
Preprint, arXiv:2102.01192.

Stephen C. Levinson and Francisco Torreira. 2015a.
Timing in turn-taking and its implications for pro-
cessing models of language. Frontiers in Psychology,
6.

Stephen C Levinson and Francisco Torreira. 2015b.
Timing in turn-taking and its implications for pro-
cessing models of language. Frontiers in psychology,
6:731.

Ting-En Lin, Yuchuan Wu, Fei Huang, Luo Si, Jian
Sun, and Yongbin Li. 2022. Duplex conversation:
Towards human-like interaction in spoken dialogue
systems. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, KDD ’22. ACM.

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-weon Jung,
Xuankai Chang, and Shinji Watanabe. 2023. Voxtlm:
unified decoder-only models for consolidating speech
recognition/synthesis and speech/text continuation
tasks. CoRR, abs/2309.07937.

Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Ju-
lian Salazar, Chulayuth Asawaroengchai, Soroosh
Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and
Michelle Tadmor Ramanovich. 2023. Spoken
question answering and speech continuation using
spectrogram-powered llm. In The Twelfth Interna-
tional Conference on Learning Representations.

Tu Anh Nguyen, Maureen de Seyssel, Patricia
Rozé, Morgane Rivière, Evgeny Kharitonov, Alexei
Baevski, Ewan Dunbar, and Emmanuel Dupoux.
2020. The zero resource speech benchmark 2021:
Metrics and baselines for unsupervised spoken lan-
guage modeling. Preprint, arXiv:2011.11588.

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi
Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello,
Robin Algayres, Benoit Sagot, Abdelrahman Mo-
hamed, and Emmanuel Dupoux. 2022. Genera-
tive spoken dialogue language modeling. Preprint,
arXiv:2203.16502.

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R.
Costa-jussa, Maha Elbayad, Sravya Popuri, Paul-
Ambroise Duquenne, Robin Algayres, Ruslan Mav-
lyutov, Itai Gat, Gabriel Synnaeve, Juan Pino, Benoit
Sagot, and Emmanuel Dupoux. 2024. Spirit-lm:
Interleaved spoken and written language model.
Preprint, arXiv:2402.05755.

Vivian T Nguyen, Otto Versyp, Christopher Cox, and
Riccardo Fusaroli. 2021. A systematic review and
bayesian meta-analysis of the development of turn
taking in adult-child vocal interactions. Child devel-
opment.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Andrew Reece, Gus Cooney, Peter Bull, Christine
Chung, Bryn Dawson, Casey Fitzpatrick, Tamara
Glazer, Dean Knox, Alex Liebscher, and Sebastian
Marin. 2023. The candor corpus: Insights from a
large multimodal dataset of naturalistic conversation.
Science Advances, 9(13):eadf3197.

Paul K. Rubenstein, Chulayuth Asawaroengchai,
Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,

10

http://papers.nips.cc/paper_files/paper/2023/hash/c859b99b5d717c9035e79d43dfd69435-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c859b99b5d717c9035e79d43dfd69435-Abstract-Conference.html
https://arxiv.org/abs/2305.13009
https://arxiv.org/abs/2305.13009
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2109.03264
https://arxiv.org/abs/2109.03264
https://arxiv.org/abs/2102.01192
https://arxiv.org/abs/2102.01192
https://doi.org/10.3389/fpsyg.2015.00731
https://doi.org/10.3389/fpsyg.2015.00731
https://doi.org/10.1145/3534678.3539209
https://doi.org/10.1145/3534678.3539209
https://doi.org/10.1145/3534678.3539209
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2203.16502
https://arxiv.org/abs/2203.16502
https://arxiv.org/abs/2402.05755
https://arxiv.org/abs/2402.05755
https://api.semanticscholar.org/CorpusID:247547959
https://api.semanticscholar.org/CorpusID:247547959
https://api.semanticscholar.org/CorpusID:247547959
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.1126/sciadv.adf3197
https://doi.org/10.1126/sciadv.adf3197


Félix de Chaumont Quitry, Peter Chen, Dalia El
Badawy, Wei Han, Eugene Kharitonov, Hannah
Muckenhirn, Dirk Padfield, James Qin, Danny Rozen-
berg, Tara Sainath, Johan Schalkwyk, Matt Sharifi,
Michelle Tadmor Ramanovich, Marco Tagliasacchi,
Alexandru Tudor, Mihajlo Velimirović, Damien Vin-
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A Additional training details

A.1 Hyperparameters
We trained SyncLLM with the Llama3-8b’s orig-
inal sequence length 8192. In the first stage, we
train with a per-gpu batch size of 1 on 128 A100
GPUs, equivalent to a total batch of 8192 x 128 =
1M tokens. We use a learning rate of 3×10−5, with
500 step warmup and train for 40k iterations. In
the second stage, we reduce the batch size to 512k
tokens, learning rate to 2.2 × 10−5 and warmup
steps to 200, and train for 6000 iterations. In the
last stage, we train with a batch size of 256k tokens,
with a learning rate of 1.5× 10−5 and 100 warmup
steps, for 2000 iterations.

A.2 Benchmarking interleaving strategies
We explore two text-speech interleaving strategies
in stage 1 of our training: i) Sentence-level inter-
leaving: each sentence is chosen randomly to be
either text modality or speech modality. ii) Turn-
level interleaving: each turn is chosen randomly
to be either text modality or speech modality, re-
sulting in consistent modality for all the sentences
within the turn. We compare them by evaluating
on a set of spoken language understanding bench-
marks proposed in (Nguyen et al., 2020). We report
these results in Table 5. On these tasks, we observe
that sentence-level interleaving outperforms turn-
level interleaving across all benchmarks.
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Table 5: Ablation evaluations over interleaving level. WUGGY, BLIMP, Topic-StoryCloze, and StoryCloze assess
the knowledge and capacity of the model in lexical, syntactical, and semantic levels respectively. We report the
accuracy based on negative-log-likelihood – normalized by the number of tokens – minimization prediction. The
tasks are evaluated in the zero-shot setting.

Interleaving WUGGY↑ BLIMP↑ Topic-StoryCloze↑ StoryCloze↑

Turn-level 63.0 56.0 76.5 55.1
Sentence-level 70.3 56.3 83.0 61.8

Table 6: Comparison of average Pearson correlation
of turn-taking event durations between generation and
ground-truth continuation with SyncLLM in the two-
model interaction setting. Measured on testsets compris-
ing both Fisher and Candor testsets.

Latency SyncLLM-F-F SyncLLM-F-C
160 ms 0.32 0.36
200 ms 0.31 0.35
240 ms 0.28 0.32

B Naturalness-MOS Instructions

Naturalistic turn-taking between two people is char-
acterized by smooth transitions where each partic-
ipant listens to the other, responds appropriately,
and allows for pauses or silences, creating a bal-
anced and dynamic interaction. Typically, the par-
ticipants try to avoid overlapping speech, although
this may occur especially when one participant pro-
vides information that they understood the other by
using words like “yeah” or “uh-huh.” Hesitations,
pausing, silence, and repairs are also natural events
that occur in a conversation between two people.

Here, you will listen to a dialogue between two
people and provide a rating for how natural the turn-
taking sounds regardless of its content (the meaning
of the words used) and the clarity of voices.

Some of the samples are generated by an AI
model, some are actual recordings of humans in
conversation, and some are actual recordings of
people, but with AI generated voices overlayed.
Please try to assess the naturalness of the turn-
taking without taking into consideration the sound
of the voices.

To begin, first listen to the “prompt” audio in its
entirety. This is the first part of the conversation.
Then listen to the “continuation” audio in its en-
tirety. This is the second part of the conversation.
Note that in many cases the voices in the prompt
may differ from the voices in the continuation (in-
cluding the perceived gender of the speakers). Your
rating should reflect how natural the “continuation”
audio sounds given the turn-taking characteristics
you observe in the “prompt.”

B.1 N-MOS & M-MOS

We provide the complete protocol used for human
evaluation of turn-taking Naturalness and dialogue
content Meaningfulness.

Audios presented
Please base your rating on the impression you

have that two people are talking and listening natu-
rally with one-another in the “continuation” audio.

5. Excellent - basically indistinguishable from
human-like turn-taking

4. Good - minor differences from human-like
turn-taking

3. Fair - substantial differences from human-like
turn-taking

2. Poor - very little in common with human-like
turn-taking

1. Bad - essentially nothing in common with
human-like turn-taking

B.1.1 Meaningfulness-MOS
In this task you will listen to a dialogue between
two people and provide a rating for how meaning-
ful their conversation is. By meaningful we mean
the degree to which the content of the conversa-
tion is coherent and plausible (can you understand
the intent of the speakers and does it sound like
something people would reasonably talk about).
Just as in everyday conversations, the content may
or may not be perfectly grammatical, but must be
understandable in the context of the conversation.

To begin, first listen to the “prompt” audio in its
entirety. This is the first part of the conversation.
Then listen to the “continuation” audio in its en-
tirety. This is the second part of the conversation.
Note that in many cases the voices in the prompt
may differ from the voices in the continuation (in-
cluding the perceived gender of the speakers). Your
rating should reflect how meaningful the “continu-
ation” audio is, given the “prompt.”

Audios presented
Please base your rating on the impression you

have that the continuation is a meaningful “contin-
uation” of the prompt audio - that it represents a
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Table 7: Comparison of Pearson correlation of turn-taking event durations between prompt and generation.

Model Fisher (in-distribution) Candor (out-of-distribution)
ipu pause fto Average ipu pause fto Average

dGSLM 0.60 0.34 0.23 0.39 0.43 0.20 0.09 0.24
SyncLLM-F (160 ms) 0.69 0.34 0.35 0.46 0.64 0.12 0.24 0.33
SyncLLM-F (200 ms) 0.57 0.49 0.29 0.45 0.61 0.34 0.13 0.36
SyncLLM-F (240 ms) 0.63 0.49 0.33 0.48 0.59 0.23 0.19 0.34
GT 0.72 0.53 0.31 0.52 0.54 0.30 0.12 0.32
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Figure 8: Effect of latency on two-model interaction.

plausible direction the conversation would go and
is coherent.

5. Excellent - all of the conversation content is
plausible and coherent

4. Good - most of the conversation content is
plausible and coherent

3. Fair - some of the conversation content is plau-
sible and coherent

2. Poor - little of the conversation content is plau-
sible and coherent

1. Bad - basically none of the conversation con-
tent is plausible and coherent

C Effect of latency on full-duplex
interaction

In Fig. 8, we compare the performance in the in-
teraction setting with different latencies. We find
that our method is robust to a latency as much as
200 ms, but the performance drops with latency
greater than that. Similar to our naturalness eval-
uation in the continuation setting in §5.2, to eval-
uate turn-taking capability of SyncLLM in inter-
action setting, we compare Pearson correlation of
the duration of turn-taking events in generation and
ground-truth continuations. In Table 6, we observe
that on a combined test set of in-distribution and
out-of-distribution prompts, performance in the in-
teraction setting closely matches with latencies 160
ms and 200 ms, but drops with 240 ms.

D Turn-taking event correlation between
prompt and generation

Similar to the naturalness evaluation in Table 2,
where we consider ground-truth continuation as the
reference for turn-taking event statistics, we could
also consider prompt as the reference. In a way, this
measures style consistency between prompt and the
continuation. In Table 7, we compare turn-taking
event correlation of generations of our method in
continuation setting, with that of dGSLM method.
We observed that our method demonstrates better
turn-taking correlation with the prompts as well.
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