
3D Localization for Sub-Centimeter Sized Devices
Rajalakshmi Nandakumar, Vikram Iyer and Shyamnath Gollakota

University of Washington

(rajaln,vsiyer,gshyam)@uw.edu

ABSTRACT
The vision of tracking small IoT devices runs into the reality of

localization technologies — today it is difficult to continuously

track objects through walls in homes and warehouses on a coin

cell battery. While Wi-Fi and ultra-wideband radios can provide

tracking through walls, they do not last more than a month on small

coin and button cell batteries since they consume tens of milliwatts

of power. We present the first localization system that consumes

microwatts of power at a mobile device and can be localized across

multiple rooms in settings like homes and hospitals. To this end, we

introduce a multi-band backscatter prototype that operates across

900 MHz, 2.4 and 5 GHz and can extract the backscatter phase

information from signals that are below the noise floor. We build

sub-centimeter sized prototypes which consume 93 µW and could

last five to ten years on button cell batteries. We achieved ranges of

up to 60 m away from the AP and accuracies of 2, 12, 50 and 145 cm

at 1, 5, 30 and 60 m respectively. To demonstrate the potential of

our design, we deploy it in two real-world scenarios: five homes in

a metropolitan area and the surgery wing of a hospital in patient

pre-op and post-op rooms as well as storage facilities.
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1 INTRODUCTION
Recent years have seen significant advances in wireless localiza-

tion [37, 40]. However existing solutions do not meet the require-

ments for size-constrained IoT applications. Fig. 1 shows battery

life of common radio technologies like BLE, LoRa, ultra-wideband

(UWB) and Wi-Fi, each running at a 1% duty cycle with small coin

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SenSys ’18, November 4–7, 2018, Shenzhen, China
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5952-8/18/11. . . $15.00

https://doi.org/10.1145/3274783.3274851

 0

 1

 2

 3

 4

 5

 6

BLE (CC2640) LoRa (SX1276) UWB (DW1000) Wi-Fi (CC3100)

B
a

tt
e

ry
 L

if
e

 (
M

o
n

th
s
)

Coin Cell (CR2032) Button Cells (2x LR64)

Figure 1: Radio localization battery life. Battery life estimates

for different technologies operating at 3 V from coin and button cell

batteries running at 1% duty cycle. §5 provides a comprehensive

power consumption comparison.

and button cell batteries for equal comparison. The shorter bat-

tery life limits the adoption of tracking solutions based on these

radio technologies by making them inconvenient for consumer

applications and infeasible for large scale commercial deployments.

Requiring large batteries on the other hand prevents scaling down

the size of IoT devices. While RFID tags are attractive from a power

and size perspective, they have a limited range and do not work

consistently through walls and other barriers. Consumers often de-

ploy devices in rooms throughout homes, and similarly commercial

deployments in settings like hospitals require covering multiple

patient rooms with a variety of obstructions and walls. Achieving

localization in these scenarios would therefore require readers in

every room which significantly increases deployment cost.

This paper presents µLocate, the first wireless localization system
that consumes microwatts of power at the mobile IoT devices and

can be localized through walls in settings like homes and hospitals.

Our design can achieve 3D localization capabilities while supporting

IoT devices that can be scaled to sub-centimeter form factor. To

achieve this, we design a backscatter based solution that satisfies

all of the above requirements. Specifically, we make the following

hardware and systems contributions:

• We design and build a sub-centimeter sized IoT platform that sup-
ports low-power localization capabilities. Our platform integrates a

low-power microcontroller and RF switch for backscatter rather

than an active radio, as well as all required off chip passive com-

ponents and antennas. We custom fabricate flexible circuits using

laser micro-machining techniques and use an off the shelf micro-

controller available in an ultra-miniature 2 mm × 1.5 mm package

to achieve the small form factor. By utilizing highly integrated com-

mercially available microcontrollers we minimize the size of the

assembly.

• We achieve low-power long-range backscatter through walls by

building on recent work on LoRa Backscatter [35]; however, this

prior work requires implementing complex computation to perform

chirp spread spectrum (CSS) coding on an FPGA platform, which
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Figure 2: µLocate prototypes. Our miniaturized prototypes re-

quire two button cell batteries (left), which are as small as 5.8 mm

in diameter. Our multi-band prototype based on the KL03 micro-

controller is 11.8 × 7.5 × 2.1 mm and includes chip antennas for

900 MHz, 2.4 GHz, and 5 GHz. Our 5 GHz prototype (right) mea-

suring 7.2 × 5.1 × 0.5 mm, is designed to operate at shorter ranges

and in an even smaller form factor. The prototypes are placed on a

US penny for scale.

consumes around 5–10 mW using off the shelf components. We

present a novel backscatter architecture that enables CSS backscat-
ter using off-the-shelf microcontrollers at significantly lower power.
Specifically, because these microcontrollers lack the capability to

easily implement the complex CSS coding, we instead delegate this

coding to the access point, which transmits the CSS signal. By do-

ing this, our low power microcontroller simply needs to run an

oscillator to frequency shift the CSS signal and encode data using

ON-OFF keying in reflections.

• Since the localization accuracy is directly proportional to the sig-

nal bandwidth, we design and build a novel multi-band backscatter
hardware system that can concurrently operate across the ISM bands
at 900 MHz, 2.4 GHz and 5 GHz. Specifically, the access point (AP)
transmits signals across these frequencies which are backscattered

by our device. We combine the received signals across all of these

frequencies to disambiguate between the multipath reflections and

extract the direct line-of-sight path.

To summarize, our system works as follows: the AP, which is

placed at a known location, transmits a 500 kHz chirp spread spec-

trum signal. The IoT device uses a low-power microcontroller to

shift this signal by 1–2 MHz and backscatter it back to the AP. The

AP then extracts the phase information from the weak backscat-

tered signals that are below the noise floor. It repeats this process

concurrently across the 900 MHz, 2.4 GHz and 5 GHz bands and

combines the phase information to disambiguate the multipath in

the environment.

Implementing this system introduces the following three algo-

rithmic challenges: First, in contrast to direct radio signals that

attenuate as d2, backscatter signals attenuate as d4. As a result,

we need a way to extract the phase from backscattered signals

which are below the noise floor at long distances. Second, our IoT

devices use small, low-power microcontrollers to shift the chirp

spread spectrum signal from the AP. This introduces frequency

and sampling offsets in the weak backscattered signals that have to

be corrected to accurately estimate phase. Third, querying all the

500 kHz bands sequentially across all the ISM bands requires a total

of 572 frequencies which takes more than four seconds, introducing

a significant delay overhead. Concurrently querying all these 572

frequencies requires the AP to proportionally reduce the power at

each of the frequencies to be compliant with FCC regulations; this

in turn would significantly reduce the range of our system.

In the rest of the paper, we address the above challenges and build

multiple prototypes of our design shown in Fig. 2. We build our

prototypes using commercial off-the-shelf components including

switches, microcontrollers and chip antennas. Our first prototype

uses the 2.0 x 1.6 mm Kinetis KL03 microcontroller with a 2.4 GHz

and 900 MHz dual band chip antenna along with a 5 GHz chip

antenna. We miniaturize our second prototype using a laser micro-

machiningmethod that produces flexible circuits.We use the Kinetis

microcontroller with only the 5 GHz chip antenna that limits the

range but enables a further miniaturized device. We also present

an ASIC design for our multi-band backscatter approach to further

reduce size and power.

Our evaluation shows the following:

• Power. Our off-the-shelf hardware and ASIC consume 93 µW
and 5 µW respectively. This translates to an expected operational

lifetime of of 5-10 years of duty cycled operation on small, 5.8 mm

diameter button cell batteries for our off-the-shelf microcontroller

hardware and ASIC prototypes.

• Accuracy.Wedemonstrate 3D localization accuracywhich scales

with the distance. Our system gives localization errors of 2, 12, 50,

and 145 cm at 1, 5, 30 and 60 m respectively between the AP and

our backscatter devices.

• Latency. Finally, across distances up to 60 m from an AP, our

algorithm can compute the location values using between 9–28

frequencies, which translates to a latency of 25–70 ms.

In addition to the above benchmarks which characterize our

system performance, we also deploy the system in the following

two real world scenarios:

• Five homes in a metropolitan area including three single-story

apartments and two multi-story townhouses. We select a variety

of locations and orientations across different rooms, behind closed

doors, in closets, on shelves, and even hidden in couches to deter-

mine whether our system can localize objects across an entire home

to enable item tracking applications.

• Surgery wing of a hospital including patient pre-op and post-op

rooms as well as storage facilities. We run experiments in various

locations for tracking mobile equipment such as on IV poles and

vital signs monitors that travel with patients between different

rooms.

Our key contributions are in the system design and sub-centimeter

sized hardware prototypes we create — which together enable the

first microwatt power localization system formobile devices that op-

erates throughwalls. Finally, we also note that instead of retrofitting

localization into existing Wi-Fi and RFID protocols, we take a clean-

slate approach to the problem of localization that does not require a

radio chipset. We believe that since IoT standards are still in flux, a

clean-slate design that enables localization would make an excellent

candidate for adoption.
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Figure 3: Low-power delegating architecture. The AP trans-

mits a chirp spread spectrum signal with a bandwidth BW to the

IoT device with an oscillator and RF switch. The switch backscatters

the coded signal back to the AP with a frequency shift of ∆f .

2 SYSTEM DESIGN
Our design has three key components: 1) our low-power archi-

tecture which delegates the coding operation to the access point,

allowing us to decode backscatter signals at large distances using

sub-centimeter sized devices, 2) our phase-extraction algorithm

that can extract the phase from signals below the noise floor and 3)

our online search algorithm that dynamically queries a different

set of frequencies given the signal quality to reduce latency. In the

rest of this section, we describe each of these components.

2.1 Low-Power Delegating Architecture
The goal of our architecture is to enable localization at long ranges

with very small, low power backscattering IoT devices. To achieve

this we have to address two competing requirements: 1) since

backscattered signals are orders of magnitude weaker than active

radio transmissions, to achieve long range we need to perform sig-

nificant amounts of coding, and 2) in order to be compatible with

off-the-shelf low-power microcontrollers, the IoT device design

must be limited to simple operations.

To achieve this we delegate the complex coding operations to the

AP. Our design works as shown in Fig. 3. The µLocate AP transmits

a coded narrowband signal while the µLocate IoT device simply

backscatters this signal transmitted by the AP with a frequency

shift of 1–2 MHz. This shifting can be achieved using the built in

oscillators on commercially available microcontrollers (see §3). Our

architecture therefore eliminates the need for an active radio on

the µLocate device.
Shifting the signal on the IoT device has three key advantages:

1) It helps distinguish the backscattered signal from the direct sig-

nal transmitted by the AP in the frequency domain, allowing the

receiver to easily decode it. More importantly, at the shifted fre-

quencies, the receiver effectively receives a coded backscattered

signal that it can use to extract the phase required for localization.

Furthermore, we achieve this without requiring the IoT device to

perform the complex coding operations itself, allowing for centime-

ter scale low-power implementations without a custom ASIC. 2)

by shifting the signal to different frequencies, multiple tags can

Figure 4: Decoding the weak backscatter signal. The receiver corre-
lates the received upchirp with a downchirp. In the absence of CFOs and

timing offsets, taking an FFT of this correlation produces a peak in the first

FFT bin.

co-exist and be localized simultaneously using a single AP, and 3)

by using ON and OFF keying at the backscatter device, one can also

enable data communication in addition to localization.

What kind of coding do we use at the AP? The objective here is

to pick the coding scheme that can be used to decode the phase of

backscatter signals that are far below the noise floor. To this end, we

use chirp spread spectrum as our codingmechanism. In chirp spread

spectrum, we transmit a signal with a linearly changing frequency

over bandwidth (BW) varying between
−BW
2

to
+BW
2

. Chirp signals

have the following advantages that make them the best fit for our

application: First, in comparison to phase, amplitude and discrete

frequency-shift modulation, chirp spread spectrum (CSS) achieves

an efficient trade-off between bandwidth and decoding capability,

when the signal is drowned by noise [3]. Further, it is resilient to

both in-band and out-of-band interference [1], and 2) unlike direct-

sequence spread-spectrum that requires complex synchronization

and has a long acquisition time when the signal is below the noise

floor [5, 28], CSS receivers have comparatively lower-complexity

and significantly shorter acquisition times [1].

Specifically, we choose a narrow BW of 500 kHz where the chirp

duration, T is 7 ms which we find balances accuracy and latency

well. The receiver at the AP samples these signals at 1 MHz. In

the next few sections, we first describe, how to estimate the phase

from CSS signals. We then show how to selectively query across

the 900 MHz, 2.4 GHz and 5 GHz ISM bands to disambiguate the

multipath, estimate the range, and achieve 3D localization. Finally,

we describe how we can achieve real-time tracking.

2.2 Below-Noise Backscatter Phase
Assume that the AP, which is placed at a known location, is sepa-

rated from the IoT device by a distance of d . When the AP transmits

the chirp signal it propagates a total distance of 2d including the

time it takes for the backscattered signal from the IoT device to

arrive back at the AP. The wireless channel of such a signal is,

h = ae−2π f
2d
c (1)

Here a is the attenuation, f is the frequency at which the signal is

being transmitted and c is the speed of RF signals in the medium.

At a high level, if we can extract the phase of the backscattered

signal at a specific frequency, we can estimate the range, d .
Thus, if the AP transmits a tone at a single frequency f , in the

absence of multipath, the phase of the backscatter signal can be

used to estimate the range. However such single tone signals (e.g.,

RFID) have a limited range in the context of backscatter communi-

cation and hence cannot achieve the long ranges that are required

for IoT localization. As described earlier the AP instead transmits a



SenSys ’18, November 4–7, 2018, Shenzhen, China Rajalakshmi Nandakumar, Vikram Iyer and Shyamnath Gollakota

Figure 5: Estimating the CFO and the chirp start. To correct

for the CFO and timing offsets, the AP iterates through different

timing offsets until it can separate it from the CFO.

linear frequency modulated chirp pulse which allows our system

to operate at longer ranges without further amplifying the signal.

As shown in Fig. 3, the tag then shifts this chirp signal by a fre-

quency ∆f , and the shifted signal is received back at the AP. Hence
the receiver receives a chirp signal whose frequency varies from

−BW /2 + ∆f to +BW /2 + ∆f .
We use correlation to decode this signal. Specifically, the receiver

first correlates the received signal with a downchirp, a signal where

the frequencies linearly decrease from +BW /2+∆f to −BW /2+∆f .
This downchirp is synthesized on the receiver. During the multipli-

cation step of the correlation, the linear change in the frequency

between the receiver upchirps and the synthesized downchirps can-

cel each other out. During the addition step of the correlation, we

effectively sum the energy across all the chirp frequencies provid-

ing coding gain and allowing us to decode the backscatter signals

below the noise floor. This decoding process is illustrated in Fig. 4.

Extracting the channel phase information from this signal re-

quires us to address three challenges: 1) Since the chirp signal is

spread across frequencies, we do not get the phase at a single fre-

quency but rather the chirp phase which is a combination of phases

across all the frequencies in the chirp, 2) to decode and estimate the

phase of the signal we need to accurately estimate the beginning of

the backscatter chirp, and 3) our small low-power microcontrollers

which shift the incoming chirp by ∆f introduce an unknown car-

rier frequency offset (CFO) between the AP and the IoT device that

changes the phase of the received signal.

To address the above challenges, we first describe how we jointly

estimate the carrier frequency offset (CFO) and correct for the start

of the backscatter chirp. We then show how to compute the channel

phase information given the phase of the backscattered chirp.

Step 1. Estimating beginning of chirp and CFO. To decode and
estimate the phase of this signal, we first need to estimate the

beginning of the chirp. For this, we leverage a key property of

the chirp signal – a time delay in the chirp signal translates to

frequency shift. Specifically, as shown in Fig. 4, we first multiply

the received signal with a downchirp whose frequency varies from

+BW /2 + ∆f to −BW /2 + ∆f and then take an FFT of this signal.

When we perform an FFT, in the ideal case with no offset from the

beginning of the chirp, our receiver sees a peak in the FFT in the

first bin. However when the receiver has a timing offset, the peak

appears in the shifted bin.

The problem however is that this alone is not sufficient to es-

timate the beginning of the backscatter chirp. Specifically, since

our microcontroller is not synchronized with the AP, it introduces

an additional carrier frequency offset (CFO). This results in the

backscatter device shifting the chirp signal by ∆f +CFO instead

of ∆f which causes an additional frequency shift ofCFO when the

receiver performs the FFT.

Thus, we need to disambiguate between the frequency shift in

the FFT caused due to CFO versus a timing offset in the estimation

of the start of the backscatter chirp. To estimate the beginning of the

chirp signal in the presence of CFO, we first multiply the received

signal with a downchirp and then take an FFT of this signal. Ideally,

if the signal is aligned with its beginning and there is no CFO, the

result of this multiplication will be a constant signal with a peak at

index zero in its FFT. In practice however, the peak will be shifted

to a frequency f0 which is the sum of the frequency offsets, fto
and fCFO , caused by the timing misalignment of the received chirp

and the CFO respectively. Now if we move the beginning of our

chirp one sample closer to its real beginning and repeat the above

operation, there will be a new peak at frequency f1 = f0 − 1. This

change occurs only due to the change in the frequency offset caused

by the timing misalignment of the chirp, since the CFO remains

constant in the above operation.

As we see in Fig. 5, if we iterate over these operations, at some

iteration n, the new peak fn+1 will become greater than fn . This
is because at fn the frequency offset due to misalignment of the

transmission becomes zero and the only residual frequency offset

left is due to the CFO. In the next operation, the signal will again

be misaligned and fn+1 will be greater than fn . At this point, we
stop this operation and the symbol at instant n is the beginning of

the transmission. The residue fn is then the CFO. We then apply

this CFO to the rest of the transmission to estimate the right chirp

phase.

Step 2. Extracting channel phase from the chirp phase.When

theAP correlates the received backscattered upchirpwith a downchirp,

it provides coding gain but also effectively adds the phase across all

the frequencies in the chirp. Thus, the phase of the chirp extracted

after correcting for the timing offset and CFO is the sum of the

phases at each of the frequencies in the chirp,

ϕchirp = ϕ− BW
2
+∆f + ... + ϕ BW

2
+∆f

If we assume that the channel path of the signal remains constant

throughout the duration of the chirp
1
, then the phase of the received

signal varies linearly with respect to frequency. Said differently,

from Eq. 1, we see that the phase of the received signal changes lin-

early with the frequency. Thus, we can rewrite the above equation

as,

ϕchirp = ϕ− BW
2
+∆f + ϕ− BW

2
+∆f

λ− BW
2
+∆f

λ− BW
2
+∆f +1

1
This is a reasonable assumption since a chirp duration is 7 ms.
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Figure 6: Dynamic frequency selection. In the first iteration we

start with the frequencies that are most separated. This translates

to the frequencies at the edges of the three ISM bands.

+.... + ϕ− BW
2
+∆f

λ− BW
2
+∆f

λ BW
2
+∆f

Here λs are the wavelengths corresponding to the different fre-

quencies in the chirp. Solving the above equation we can compute

ϕ− BW
2
+∆f which is the channel phase at the beginning frequency

corresponding to the chirp which we can then use to estimate the

range using Eq. 1.

2.3 Multipath disambiguation
In practice, due to multipath, the obtained phase is actually the

sum of phase of the direct line of sight signal and the phase of the

different multipath reflections. Hence, to accurately localize the IoT

device, we should disambiguate the various multipath reflections

from the direct line of sight signal. To achieve this, we dynamically

send chirps across the ISM bands in 900 MHz, 2.4 GHz and 5 GHz

and estimate the phase of each frequency using the above method.

At a high level, by combining the phase information across all these

frequencies we can simulate an ultra-wide band transmission that

can be used to disambiguate the multipath in the environment.

Since our chirps are 500 kHz wide, we can transmit multiple chirps

in adjacent bands across the three ISM bands. This however would

significantly increase the latency of localization. Specifically, there

are bandwidths of 26 MHz, 80 MHz and 180 MHz in the 900 MHz,

2.4 and 5 GHz ISM bands. Dividing them into 500 kHz intervals

results in 572 chirps across all these bands which translates to

4 seconds using a 7ms chirp.We instead design a dynamic frequency

selection algorithm that significantly reduces the number of queried

frequencies by 10-20x.

Dynamic Frequency selection. Our algorithm is based on three

key principles.

• We determine the ISM bands that can be used depending on the

distance of the IoT device. Specifically, signals at 5 GHz have very

high attenuation and can be decoded using the above method only

if the IoT device is in the same room as the AP. Similarly signals in

the ISM band of 2.4 GHz experience a lower attenuation compared

to 5 GHz but have a higher attenuation than 900 MHz. Thus we

can prune a number of frequencies depending on the attenuation

observed from the IoT device. Specifically, we first send a chirp in

the 2.4 GHz band and determine the SNR of the chirp. If the SNR is

very high, the device is at a short distance from the AP and hence

all three ISM bands can be used. Otherwise, only the 900 MHz band

and 2.4 GHz band can be used to estimate the distance of the IoT

device. When the receiver cannot decode the initial chirp, we use

only the 900 MHz band.

Algorithm 1 Dynamic Frequency Selection

1: min_bands ,max_bands ▷ Min and max of available bands

2: ranдe = 0

3: function Query(min_bands ,max_bands ,ranдe )
4: newrange = Ranдe_est imate (min_bands ∪max_bands )
5: if newranдe − ranдe < threshold then
6: return newrange

7: if newranдe − ranдe > threshold then
8: for i in 1..lenдth(min_bands) do
9: if max_bandsi ≤ min_bandsi then
10: midi = ∅
11: else
12: midi =

min_bandsi+max_bandsi
2

13: if mid = ∅ then ▷ No more frequencies available

14: return newrange

15: min_bands =mid_bands ∪mid
16: max_bands =mid ∪max_bands
17: returnQuery(min_bands ,max_bands ,newrange)

18: function Ranдe_est imate (f r equency1. .n )
19: phase1. .n = EstimatePhase(f r equency1. .n ) ▷ §2.2

20: Channel = DFT(f r equency1. .n ,phase1. .n )
21: peaks = findpeaks(Channel ,prominencethreshold ) return

peaks1

• Each new frequency provides a new linear equation for the mul-

tipath combination at that frequency. However picking two fre-

quencies that are next to each other does not provide independent

equations since the amplitude and phases of different multipaths

are similar for adjacent frequencies. Thus, querying frequencies

that are separated by the highest bandwidth provides more useful

information than querying adjacent frequencies. Thus, we can re-

duce the number of frequencies that are queried by picking them

such that the gap between them is maximized.

• The backscatter device can reflect signals simultaneously across

multiple frequencies. Thus, the AP can concurrently transmit four

coded signals centered at frequencies f1, f2, f3 and f4, and the

backscattered phase can be decoded at all these frequencies. This is

used to parallelize the number of queries. We note however that

requiring the AP to transmit multiple concurrent frequencies in

the ISM band requires us to reduce the power on each of these

frequencies proportionally to comply with FCC regulations. This

would reduce the range of our system. We instead use the following

rule to opportunistically parallelize our transmissions: if the signal

can be decoded at 2.4 GHz then the 900 MHz is much stronger

and hence we can query four frequencies concurrently at 900 MHz.

Similarly if the signal can be decoded at 5 GHz, we can query four

frequencies concurrently at 2.4 GHz. Finally, if the signal strength

is strong at any of these ISM bands, we increase the number of

concurrent frequencies in that ISM band in the next round.

Using the above principles, we can design a binary search algo-

rithm shown in Alg. 1. Specifically, once we identify the ISM bands

that can be used, the AP first sends a chirp at the minimum and

the maximum frequencies of the chosen bands as shown in Fig. 6.

To improve the distance resolution, the next frequency to query

is picked using a recursive binary search function that chooses
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frequencies at the extremes of the spectrum. After each query, the

receiver computes the new distance estimate by using an inverse

FFT on the phases at all the queried frequencies to get the time-

domain multi-path profile. By using a fixed energy threshold over

this profile, we identify the closest (and therefore most direct) path

from the device.

The length of each chirp is 7 ms. Hence the total latency would

linearly increase by 7 ms for every new set of concurrent frequen-

cies queried. This will lead to very high latency of 4 s if all the

frequencies in the three bands are queried sequentially to localize

the IoT device. Further the localization error increases if there is

a change in the environment (like a person walking) during this

period. Our solution is to modify the algorithm to query a new set

of frequencies only when the different between the current location

and the previous location estimates is less than a threshold, ϵ . Said
differently, we can stop querying after the algorithm converges to

a specific 3D location. The challenge is to choose this threshold

after which we end the algorithm. Since the range of our system is

60 m, a lower value for the fixed threshold for ϵ like 1 cm means

that the system will not converge when the device is at a larger

range thereby querying all frequencies. On the other hand, a higher

threshold value for ϵ of say 10 cm will increase the localization

error when the IoT device is at a closer range. To avoid this, we

use a threshold that dynamically varies depending upon the ap-

proximate range of the IoT device. This leverages the intuition that

the localization error increases with the distance between the AP

and IoT device. Thus, we set the threshold to be a function of the

distance, ϵ(d). To this end, we first measure the received power of

the backscattered signal to estimate an approximate distance value.

We then fix a threshold based on this range. We pick the threshold

values empirically as described in §4.1.

Least squares estimation. Finally, to determine the 3D location

of the device, we use three antennas at the AP and measure the

range of the device with respect to each antenna. We note however

that using simple triangulation of all distances is not optimal for 3D

localization. Specifically, because of errors in distance estimation

from each of the antennas, it is likely that the spheres centered at

the three antennas will either not intersect or intersect at multiple

points. To address this, we use a non-linear least squaresmethod [23,

37] that is typically employed to determine the 3D location using

the estimation ranges from the above method.

Specifically, sayA1,A2,A3 are the locations of the antenna andd1,
d2 andd3 are the range estimations obtained from the abovemethod.

Now the 3D location L of the device is obtained by minimizing the

sum of least square distance errors:

min{|A1 − L| − d1; |A2 − L| − d2; |A3 − L| − d3}

These three equations are sufficient to solve for the three co-ordinates.

However, the accuracy of this method increases by increasing the

number of antennas and subsequently the number of range estima-

tions. Additionally, to improve the accuracy of our system, we add

a tight min and max bound for each of the location co-ordinates

of the system. These bounds used correspond to the maximum

dimensions of the experimental space. Because our access point

remain in a fixed location, in realistic deployments we can use the

floorplan of a room to determine these bounds. This helps the least

squares method converge within a few iterations, despite using a

limited number of antennas with small separation.

3 SYSTEM IMPLEMENTATION
3.1 AP Prototype
The AP has both a transmitter and receiver that are co-located, i.e.,

we use a mono-static deployment. The transmitter is implemented

using an N210 USRP with a UBX160 daughterboard. The output of

the USRP is connected to three different power amplifiers, one each

for 900 MHz, 2.4 and 5 GHz using a power divider. We configure the

USRP to transmit at power levels such that each amplifier outputs

30 dBm when transmitting in order to stay within FCC limits. Each

amplifier is then connected to a 3 dBi antenna for 900 MHz and

6 dBi antennas for both 2.4 GHz and 5 GHz. We mount each of the

three antennas to a metal pole separated by an average distance of

30 cm. The antennas are placed in different planes to have resolution

across all the three axes.

The receiver on the AP is implemented using three N210 USRPs

each with a UBX160 daughterboard. The output of each USRP is

connected to a multi-band antenna capable of operation in all three

bands. The transmitter and the receiver USRPs are synchronized

using a common external clock and frequency reference. We note

that the USRPs still have a fixed phase offset despite the common

clock due to differences in cable lengths and sampling; however the

external clock prevents drift over time therefore requiring a one

time calibration to determine the fixed phase offset on start up.

Since the bandwidth of the UBX160 daughterboard is only 160MHz,

we shift the carrier frequency of the USRPs to transmit across the

three ISM bands. We note that the USRP N210 can change its car-

rier frequency without turning off and maintains the same carrier

frequency offset and phase offset throughout themeasurement with-

out additional calibration between frequency shifts. We connect all

three receivers to a single host computer using a Gigabit Ethernet

switch in order to synchronize the changes in carrier frequency. We

use software radios in order to maximize flexibility during testing,

however note that a future implementation could easily improve

on this design. Specifically, all three receivers could use the same

local oscillator (LO) for down conversion thereby guaranteeing

synchronization. Additionally, switching frequencies on an SDR is

limited by the time it takes for the PLL to lock and generate a stable

output at each frequency. By using separate, continuously running

LOs for each frequency the delay can be significantly reduced. We

use the USRP receiver to digitize the raw radio signals and process

these in software using the algorithms described above.

3.2 Device prototypes

Off-the-shelf prototypes. We build three different prototypes.

The first uses the DE0-Nano FPGA development board to control

an RF switch. We use an HMC190BMS8 RF switch for 900 MHz

and 2.4 GHz [8], and a UPG2163T5N switch for 5 GHz [27]. Both

switches are mounted on a 2-layer Rodgers 4350 substrate and

toggle between open and short impedance states. The switches

are connected to the same multiband antenna used at the AP. By
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Component Microcontroller (µW) ASIC Design (µW)

Oscillator 60 3

RF Switch 33 2

Total Power 93 5

Table 1: Power consumption. Breakdown of IoT device average

power consumption by component for both amicrocontroller imple-

mentation operating with a 3 V supply and an ASIC implementation

operating with a 1.2 V supply.

using the onboard 50 MHz oscillator and PLL, we use this setup to

experiment with different offsets prior to settling on 2 MHz.

The second prototype focuses on achieving our desired centime-

ter scale form factor and low power consumption. Specifically, all

our low power IoT device needs is an oscillator and RF switch, as

the coding is offloaded to the transmitter. A potential solution is to

use commercially available ultra-low power MEMS oscillators such

as [33]. The oscillators themselves consume as little as 33 µA for

continuous operation with no load, and while this would achieve a

battery life of over 10 yrs operating on two 1000mAhAAA batteries,

if we constrain ourselves to the form factor of two 5.8 mm diameter

button cell battery each with a 21 mAh capacity its lifetime would

only be a few months as it can only run continuously. In order to

optimize for both size and form factor without custom silicon, we

leverage low power microcontrollers designed for IoT applications.

A microcontroller such as the Kinetis KL03 requires roughly 30 µA
to run its onboard oscillator at 8 MHz, and only 77 nA in its lowest

power sleep mode [29]. Because the platform is programmable, we

can adjust the duty cycle to achieve significantly longer lifetimes

on platforms with tiny batteries.

We fabricate our off-the-shelf prototype on a standard 1-sided

FR4 flex PCB material [9] using the Kinetis KL03 microcontroller

which is available in an 2.0 x 1.6mmWLCSP package, twoUPG2163T

5N RF switches [27], and a 900 MHz and 2.4 GHz dual band chip

antenna as well as a 5 GHz chip antenna. We select these ceramic

chip antennas which are specifically designed for small form factor

applications and specify antenna gains of up to 3 dBi with effi-

ciencies of 60-70% at 900 MHz and 2.4 GHz [2] and up to 79% at

5 GHz [34]. The final assembly is shown in Fig. 2 which consumes

an average of 93 µW.

The final prototype further miniaturizes the device by focusing

on just 5 GHz as shown in Fig. 2. We use a fast-turnaround laser

micro-machining method to produce flexible circuits. We begin

by placing a sheet of copper foil on a low-tack adhesive and cut

the outline of the desired copper traces using a UV DPSS laser

micromachining system. Next we peel the excess copper off of the

adhesive leaving only the desired pattern. We then place a piece of

25 µm thick Kapton tape, which can withstand high temperatures

required for soldering, onto the copper and lift the traces off of the

adhesive. This method could be repeated and stacked to produce a

multi-layer design connected through vias as with a normal PCB.

We use only the 5 GHz antenna in this prototype and hence are

limited to a smaller range.

IC Design. Further miniaturization and power optimization can be

achieved by implementing a custom IC which allows for combin-

ing the RF switch and impedances into a single chip. Further this

significantly decreases the required area to only a fewmm2
. The

full IC design consists of a frequency synthesizer, RF switch and at
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Figure 7: Prototype battery life. Battery life estimates for duty

cycled operation of our prototypes operating at 3 V from a coin or

two button cell batteries. The plot is limited to 10 years, which is

the shelf life of a button cell.

least two impedances states. We design and simulate a complete

solution in a TSMC 65 nm LP process. The frequency synthesizer

consists of a PLL that produces the control signal for the RF switch.

The switch then toggles between different passive elements that

can be implemented on chip. In addition to reducing the oscillator

power consumption, an ASIC design which integrates the RF switch

significantly reduces capacitance compared to off-the shelf designs

which require interconnects between chips. The lower capacitance

therefore reduces the dynamic power consumption of the switch.

Our design also operates at 1.2 V unlike the minimum 1.8 V re-

quired by the microcontroller. This has the added benefit of being

able to use a single 1.5 V button cell battery without the need for a

boost converter which would consume significant area and require

additional power. We note that compared to prior backscatter de-

signs [14, 17] our IC is very simple and only shifts the frequency

of the incoming signal. In total this consumes 5 µW of power. The

additional power savings compared to the microcontroller based

design allow us to run the device at 100% duty cycle while achieving

similar battery life.

Fig. 7 shows the lifetime of both our off-the-shelf and IC designs

with different battery-sizes. We limit the maximum of the plot to

10 years as this is the typical maximum shelf life of button cell

batteries. These battery life values demonstrate that our design is

so low power that the system performance is no longer limited by

the electronics but rather the battery technology. Table 1 includes

a detailed breakdown and demonstrates we can achieve the goal of

low-power IoT localization in a centimeter scale form factor.

4 EVALUATION
We evaluate our system in line-of-sight and through-wall settings.

We then deploy µLocate in five different homes and a hospital to

measure performance in real world environments.

4.1 Benchmarking Accuracy

LOS scenario. We conduct experiments on a 100 by 100 m open

field.We place the AP at one end of the field andmove our FPGA IoT

prototype away from the AP in increments of 10 m along different

angles. Fig. 8 plots the 3D localization error and shows that:

• We have a 60 m range in LOS scenarios at which the worst case

3D accuracy is 1.5 m. Beyond that distance, the received power of

the backscattered signal was too low to decode even with the chirp

spread spectrum coding.
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Figure 8: Long range LOS benchmark. The plot shows the 3D
localization error for our line of sight benchmark. The figure shows

that our operational range is around 60 m.
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Figure 9: Short range LOS benchmark. The plot shows the 3D
localization accuracy for line of sight benchmarks at distances below

5 m. At these distances, our system ends up using all frequencies

across 900 MHz, 2.4 GHz and 5 GHz.
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Figure 10: Number of queried frequencies and its corre-
sponding latency. The plot shows the total number of frequencies

and the latency required for 3D localization across all locations in

Fig. 9 and Fig. 8.

• The accuracy scales with the distance from the IoT prototype.

Specifically, we can achieve a localization error of 15 cm at a distance

of 10 m, which increases to around 25 cm at a distance of 20 m. This

further increases to 78 cm at a distance of 40 m. This change is due

to the fact that above 30 m, the received power at 2.4 GHz is noisy

due to attenuation in comparison to 900 MHz. This introduces error

into the phase measurements reducing the accuracy.

We note that at the above measured distances our algorithm did

not pick any 5 GHz frequencies since the corresponding backscat-

tered signal was very weak at these distances. So we re-run the

experiments in a 5 m room with finer increments of 1 m. Fig. 9

shows the 3D localization accuracy at these distances. The figure

shows that when the IoT prototype is within a meter from the AP,

the worse case localization error was less than two cm. At a distance

of 2 m we could still achieve a 3 cm worse case accuracy. However

Figure 11: Through-walls setup. Floorplan showing the AP and

IoT device in an office environment spanning five rooms. All the

doors were closed during the experiments.

the worst case error was less than 14 cm up to distances of 5 m. The

reason for these low errors was that the algorithm was able to use

frequencies in the 5 GHz range which significantly improve the lo-

cation accuracies. In particular, 5 GHz helps with the accuracies for

two main reasons, 1) higher frequencies translate to smaller wave-

lengths which allows for better resolution and 2) unlike 900 MHz

and 2.4 GHz, each of which have a limited amount of bandwidth,

our algorithm could query frequencies across a 180 MHz band-

width in the 5 GHz range. These results demonstrate that for close

range room scale applications we can leverage extra information

from 5 GHz whereas applications that require longer ranges cannot

leverage these signals.

Finally, Fig. 10 shows the number of frequencies that were queried

by the AP before it converged to the location values for all the dis-

tances in the above two experiments. The plot shows the following.

• At distances less than 5 m the AP had to query less than 20

frequencies. In fact, when the IoT devices was 1–2 m away the

number of queries was even less at 15. This is because at short

distances, the direct path is stronger than the non-line-of-sight

paths for all the three frequency bands and hence the AP converges

on the locations quickly. The latency for these locations is less than

35 ms as multiple frequencies can be queried in parallel.

• Between 10 and 20 m, the AP queries both 2.4 GHz and 900 MHz

to disambiguate the direct path and this increases the number of

frequencies to 25. However the 900 MHz band frequencies can still

be queried simultaneously, leading to a latency of 65 ms.

• An interesting trend happens at longer distances. Here only

900 MHz frequencies are queried. Further, since the accuracies at

these distances are much lower, the threshold values are also lower.

As a result the number of iterations are reduced to eight for 60 m.

However since the SNR is weak, we have to query these frequencies

sequentially. These two factors counteract each other and hence

the latency stays between 55–70 ms.

Through-walls scenario. Next, we conducted experiments in an

office building across multiple office rooms. The offices were sepa-

rated with dry wall, metal studs, and wooden doors and had typical



3D Localization for Sub-Centimeter Sized Devices SenSys ’18, November 4–7, 2018, Shenzhen, China

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1  2  3  4  5  6  7

3
D

 L
o

c
a

liz
a

ti
o

n
 e

rr
o

r 
(c

m
)

Location

Figure 12: Through-walls accuracy. The plot shows the 3D lo-

calization accuracy across the points indicated in Fig 11 rather than

range due to their arbitrary placement.

office furniture including tables, chairs and leather couches. Ad-

ditionally, the tested locations had multiple Wi-Fi access points

and 915 MHz RFID readers representing significant interference

from other devices. Note that our chirp coding is resilient to both

in-band and out-of-band interference [5]. We place the AP in the

first office room as shown in the layout in Fig. 11. We then move

our IoT prototype to different rooms with their doors closed shown

as different points in the layout. For each location, we repeat the

localization experiment multiple times and then compute the 3D

localization errors.

Fig. 12 plots the 3D localization error as a function of different

positions shown in Fig. 11. The figure shows that for the most

part the localization accuracy decreases as the distance and the

number of walls increases. It is however not always the case due to

multipath and fading effects. We note however that the worst case

accuracies at location 6 which has 3 walls separating the AP and

the IoT prototype was still around 33 cm. This is expected because

the 900 MHz and 2.4 GHz backscatter signals were strong enough

to be able to reliably decode the phase information, which allows

us to disambiguate the multipath.

Mobility evaluation with our 5 GHz miniaturized hardware.
Our miniaturized hardware can use both 5 GHz ISM bands. How-

ever, since it operates at higher frequencies its range it limited to a

single room. We evaluate our ability to track mobile devices. A key

challenge with tracking moving objects is that the channel changes

quickly with time; however, our above localization solution that

queries different frequencies sequentially would take hundreds of

milliseconds, during which the channel could change. We instead

query multiple 5 GHz frequencies simultaneously using our 7 ms

chirps and compute the location. We focus on 5 GHz since antenna

sizes at these frequencies can be significantly smaller than 900 MHz

and 2.4 GHz resulting in a sub-centimeter form factor device that

can be tracked in a room.

To evaluate this design, we performed a controlled experiment

by mounting the IoT device on a linear actuator. We use this linear

actuator to move the device over a distance of 30 cmwith a constant

velocity. We then estimate the new location of the IoT device for

every 7 ms and compute the error with respect to the actual location

of the device on the linear actuator. We repeat this experiment by

placing the IoT device setup at increasing distances from the AP

in increments of 1 m. Fig. 13 plots the 3D tracking accuracy when

the IoT device was placed at different distances from the AP. We

see that the tracking error is less than 1 cm when the IoT device is
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Figure 13: Evaluating mobile tracking accuracy.Evaluation of

tracking accuracy using only 5 GHz at short ranges compatible

with our smallest 5 GHz prototype.

placed within a distance of 1 m and remains less than 15 cm when

it is placed at a distance of 5 m.

4.2 Real World Deployments
4.2.1 Home Deployments. We deploy our system in five homes

in a major metropolitan area to understand its performance in real-

istic use cases. We select a variety of homes including three single

story apartments and two multi-story townhouses. The single story

apartments had two to three rooms each, while the multi-story

townhouses had two or more floors with two and three rooms

respectively. In the apartment deployments, we select a central

location for the AP to maximize coverage. For the townhouse de-

ployments we place the AP on the bottom floor for convenience.

In each of the homes, we select a variety of locations including dif-

ferent rooms, behind closed doors, in closets, on shelves and even

hidden in couches to understand if our system can actually localize

objects across a whole home and enable item tracking applications.

Fig. 14 shows CDFs for 3D localization accuracy across each of

the five homes. The figure shows that for the first three homes

the worst-case localization accuracy was less than 30 cm. These

three homes correspond to single story apartments where all the

devices are on the same floor. The worst-case accuracy was around

60 cm and 1.2 m for home 4 and 5 respectively. These two homes

were multi-storied townhouses where the devices were on different

floors. The higher error is due to two main factors. First, it was

difficult to get the baseline distance measurements across floors.

This contributed to errors in estimating the actual location of the IoT

device. Second, in home 5, different floors were connected through a

narrow staircase whereas the direct path was through thick ceilings

that significantly attenuated the signal. This highlights a basic

challenge with localization techniques that require some direct

path to appear at the receiver. Fig. 15 depicts the above results by

classifying them into categories across all the homes. We categorize

the locations as LOS, NLOS on the same floor, hidden within a

couch, in a closed closet and finally on a different floor. For the

reasons described above, the accuracy was lower when the device

was on a different floor. When the IoT device was hidden in a couch

on the same floor, the error was less than 30 cm.

4.2.2 Hospital deployment. In order to evaluate realistic use

cases in healthcare scenarios we deploy our system in a local hos-

pital. Specifically, we perform experiments in the surgery wing of

the hospital and perform localization in patient pre-op and post-op

rooms as well as storage facilities. Fig. 16 shows the floor plan of
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calization errors across different categories such as LOS placement

and locations in closets.

the approximately 5000 f t2 surgery wing. The area includes a wait-
ing room and check-in desk, followed by a hallway with a row of

patient rooms for pre-op and post-op care as well as a storage room.

We perform measurements at locations that represent realistic use

cases as indicated in Fig. 16. We select a location for the AP in the

side hallway in order to minimize disruption to hospital staff. We

select locations in patient rooms and a storage closet as these are

typical scenarios where hospital staff maintain a standard inventory

of items. Additionally, we select other arbitrary locations in the

hallways for tracking mobile equipment such as IV poles and vital

signs monitors that travel with patients to different rooms. The

majority of these locations do not have direct line of sight to the

AP, and include barriers such as curtains, sliding glass doors, and

standard wooden doors.

Fig. 17 shows the tracking accuracy across each of these locations

that are ordered by distance. We note that the duplicated points

represent separate measurements at the same location with barriers

such as curtains or doors open and closed. Our system achieves a

mean accuracy of 35.12 cm across all of the different locations in

this hospital setting. Further, as is expected from our design, the

accuracy scales with the distance to the tag: close by locations can

achieve an error lower than 20 cm while farther locations have

localization error of 70 cm. These errors are small enough that we

can track the equipment in the hospital across different rooms as

well as the closet area. We note that in hospital post-op and pre-op

settings the layout is typically on a single floor. Further the barriers

between the rooms are either curtains or thin doors. Thus, we can

achieve high localization accuracy in this application setting.

5 RELATEDWORK
Wireless localization and tracking. Prior work on ranging with

Bluetooth and ZigBee use signal strength as a proxy for distance [11,

13, 15]. RSSI based solutions however are known to perform poorly

due to multi-path and further cannot achieve 3D localization. More

importantly, radio technologies including Blueooth, ZigBee, SIG-

FOX and LoRa radios consume tens of mW of power and hence

have a limited battery-life for continuous tracking applications.

Another research thread has been focused on RFID localiza-

tion [32]. RFID has a range of a few meters and is used today for

inventory applications. Tagoram [42] leverages the mobility of an

RFID tag to create a virtual antenna array and achieve accurate

RFID tracking. RF-IDraw [39] uses a total of eight antennas to track

an RFID using Angle of Arrival techniques. MobiTagbot [31] de-

termines the precise spatial ordering of closely-spaced RFID tags

using synthetic aperture radar techniques. [23] uses the non-linear

properties of backscatter hardware to achieve centimeter resolution

in LOS scenarios up to a fewmeters. Rsolve [24] shows that existing

RFID tags can backscatter signals over a bandwidth of 220 MHz

centered around 915 MHz. While these systems have significantly

advanced RFID localization, RFID has a limited range of 2-5 m

and does not work through walls. In contrast, we leverage CSS

modulation to achieve significantly longer ranges. Instead of using

standard UHF RFID tags, [7] proposes backscattering wide band

FMCW signal which has hundreds of MHz to GHz of bandwidth for

localization. In contrast the chirps in our system have a bandwidth

of 500 kHz. This narrowband nature enables us to achieve a high

sensitivity and long ranges.

There has also been significant interest in UWB radios which

can provide very high localization accuracies. [10, 26] achieve a

localization accuracy of 4 mm using ultra-wideband radios up to

distances of 3.6 m but consume 195 mW. Polypoint [18] achieves

an accuracy of 1.4 m at a range of 20 m but consumes 150 mW.

Harmonium [19] consumes 75 mW and provides a localization

accuracy of 31 cm at ranges of 2.7 m. RF-Echo [6] consumes 62 mW

but can achieve an accuracy of 26 cm at distances of 90 m. While

these methods achieve good accuracy, they consume more power

than Bluetooth which makes them a poor choice for continuous

tracking applications. The closest related work is Slocalization [25]

(short for slow/static localization) which backscatters UWB signals

to achieve low-power localization. This design however works only

with static scenarios and incurs delays on the order of minutes to

hours to output the location value. This is because FCC regulations

significantly limit the transmitted power of UWB signals compared

to typical transmissions in ISM bands. Further, since the backscatter

system in [25] does not use coding like the CSS modulation used

in our design, it requires integrating the received signal over 10

minutes to more than an hour, depending on the deployment, to

get the location value. In contrast, our approach can provide the

location value within 70 ms while achieving a range of 60 m and

thus can support practical applications.

Finally, significant advances have been made in Wi-Fi based lo-

calization in recent years. PinLoc [30] uses the Wi-Fi channel state

information (CSI) signatures, while Arraytrack [40] and SpotFi [20]

use AoA techniques to achieve sub-meter localization using Wi-Fi
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Figure 16: Hospital deployment. Deployment in a hospital surgery wing. We select nine points shown on the floorplan (Left) including

duplicates to test doors and curtains. We include patient pre/post-op rooms (Center) and storage facilities (Right).
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Figure 17: Hospital accuracy. Localization accuracy results for

each of the points marked in Fig. 16.

devices. ToneTrack [41] shows how to combine the CSI informa-

tion across multiple 2.4 GHz Wi-Fi channels to achieve sub-meter

accuracies with the WARP hardware. Chronos [37] uses the Chi-

nese reminder theorem to demonstrate the above concept on Wi-Fi

hardware. While these Wi-Fi based localization systems make algo-

rithmic contributions we leverage, Wi-Fi is power consuming and

is not used in many IoT applications.

Backscatter communication. There has been recent interest in

backscatter as a low-power communication mechanism. These tech-

niques either backscatter existing TV [22], Wi-Fi [4, 16] and FM

signals [38] or generate Wi-Fi compliant transmissions using tech-

niques like Passive Wi-Fi [14, 17, 43] and FS-backscatter [44]. These

Wi-Fi based approaches have a receiver sensitivity of only -90 dBm

and hence have a limited range and cannot work across rooms

unless the signal source is placed close to the backscatter tag [21].

There has also been recent interest in long range backscatter

solutions [35, 36] of which [35] achieves a longer range and is

compatible with off-the-shelf LoRa radios. However this prior work

does not support localization. Further, existing implementation of

LoRa backscatter requires FPGAs and consumes 5–10 milliwatts of

power. In contrast, we introduce a novel architecture that delegates

the complex CSS coding operations to the AP and introduce a CSS

backscatter design that has orders of magnitude lower power.

6 DISCUSSION AND CONCLUSION
We present the first wireless localization system that consumes

microwatts of power in a sub-centimeter form factor and can be

localized across a whole-home or hospital through walls. In this

section, we outline limitations and avenues for future research.

Supporting multiple devices. In addition to using time-division

multiplexing, we can also set different backscatter devices to shift

the signals by different frequencies to support multiple devices
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Figure 18: Feasibility of multiple devices. Snapshot of the chirp
signal captured on a spectrum analyzer. The plot shows the base-
band spectrum of the original coded transmissions as well as three
backscattered signals at frequency offsets of 2, 2.5, and 3 MHz.

as shown in Fig. 18. Specifically, each backscatter device could

use a different shift and reflect the incoming signal from the AP

at the same time. The receiver can process the received signal

across different shifts to concurrently localize multiple devices.

More specifically, recent work has demonstrated that upto 256

devices can concurrently transmit using chirp spread spectrum [12].

Since our design leverages chirp spread spectrum, one can design

large scale networks where devices can concurrently transmit and

be localized at the same time.

Using multiple APs. In order to achieve high accuracies with a

single AP, our algorithm relies on knowledge of the floor plan of a

room to eliminate infeasible location estimates. We realize however

that some applications may require more generalizable solutions for

example where the localized objects might be moved outside of a

known set of rooms. The key reason for requiring these constraints

however was that we use a single AP for localization. Adding addi-

tional access points, or additional antennas with greater separation

would provide better angular resolution and hence address this

limitation. For example, an AP placed on the orthogonal wall of a

building or on another floor in multi-floor scenarios would help

disambiguate multipath and provide more information to estimate

the location. Future work could build upon the basic techniques we

show here to explore the trade off between the infrastructure over-

head of adding additional APs and antennas versus the robustness

and accuracy improvements they would contribute.

Communication.While our focus is to design low-power hard-

ware that achieves localization, we note that we can use the same

architecture for long range communication. The data is encoded

using ON-OFF keying modulation by turning the oscillator ON and
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OFF. Thus we can enable an IoT device that can both send informa-

tion and be localized. Evaluating the BER of this communication

system is not in the scope of this paper.

LOS path. Existing 3D localization algorithms assume that while

there is multipath, there is at least some energy from the direct

path at the receiver. Our design also makes a similar assumption.

We note however that our design also increases the probability that

the direct path signal has some energy by leveraging frequency

diversity across the three ISM bands. Specifically, while the direct

path signal could be weak at a specific frequency, it is likely to be

noticeable at at least one of the three ISM bands.
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