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ABSTRACT
White noise machines are among the most popular devices

to facilitate infant sleep. We introduce the first contactless

system that uses white noise to achieve motion and respira-

tory monitoring in infants. Our system is designed for smart

speakers that can monitor an infant’s sleep using white noise.

The key enabler underlying our system is a set of novel algo-

rithms that can extract the minute infant breathing motion

as well as position information from white noise which is

random in both the time and frequency domain. We describe

the design and implementation of our system, and present

experiments with a life-like infant simulator as well as a

clinical study at the neonatal intensive care unit with five

new-born infants. Our study demonstrates that the respira-

tory rate computed by our system is highly correlated with

the ground truth with a correlation coefficient of 0.938.
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Figure 1: Infant monitoring at the Neonatal Intensive
Care Unit (NICU) using smart speakers.

1 INTRODUCTION
Sleep plays an integral role in human health and is vitally

important for neurological development in children, particu-

larly infants [23, 34, 51]. Consumer sleep products that mon-

itor the vital signs of infants are increasingly popular with

parents [7, 9]. Infant monitors that track vital signs such

as respiratory rates are frequently being used to monitor

children less than one year of age because of their suscepti-

bility to rare and devastating sleep anomalies [26]. The most

frightening of these anomalies is Sudden Infant Death Syn-

drome (SIDS). SIDS is defined as the sudden death of a child

less than one year of age usually occurring during sleep; it

is the leading cause of death among children between one

month to one year old in developed countries [28] and res-

piratory failure is believed to be a part of the final common

pathway [32, 49].

A key problem with infant vital sign monitors, however, is

their level of invasiveness. Indeed, these devices use specifi-

cally designed sensors and wires that require contact with

the infant [5, 9, 12] or their sleep surface [3, 8]. A critical

drawback of these contact-based systems is that they have

lead to severe complications including rashes, burns and, in

rare cases, death from strangulation [4]. Thus, a contactless

means of monitoring breathing [35, 61] holds appeal as a

safer and less invasive alternative.

In this paper, we ask the following question: can we enable

contactless motion and respiratory monitoring in infants us-

ing white noise? White noise is commonly used for sleeping
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infants in order to increase their stimulus threshold, thus

allowing for more uninterrupted sleep [17]. Prior studies

have shown that moderate amounts of white noise can be

beneficial to sleep [39, 50] and have no long-term ill effects

on health or hearing [53]. As a result, white noise machines

are among the most popular devices to facilitate infant sleep.

A white noise machine that achieves contactless respi-

ratory monitoring could improve sleep quality as well as

potentially identify important anomalies in infant breathing.

In addition to being contactless in nature, a single device

such as a smart speaker (e.g., Amazon Echo) that can inte-

grate both these functions would help reduce the number

of monitoring devices as well as the associated cost, while

improving sleep quality and potentially reducing the risk of

sleep anomalies.

We present BreathJunior, the first contactless system that

uses white noise to achieve motion and respiratory moni-

toring. We design algorithms built for smart speakers (e.g.,

Amazon Echo) that can monitor an infant’s sleep using white

noise. At a high level, the smart speaker emits white noise

which gets reflected off the infant’s body; these reflections

arrive at the microphone array of the device which are then

processed to extract the infant’s body and minute chest mo-

tion. While prior active sonar systems use custom-designed

signals (e.g., 18–20 kHz FMCW [41, 42]) to track breathing

in adults, these frequencies are audible to infants [37, 52],

making them inappropriate for infant sleep monitoring.
1
In

contrast to white noise, long-term exposure to sound at these

high frequencies in infants may also cause headache, nausea

and temporary hearing loss [27, 48]. Thus, using white noise

is an appealing approach for infant monitoring.

Achieving contactless infant monitoring using white noise

is challenging for multiple reasons.

• White noise is by definition random in both the time and

frequency domain. As a result, it is challenging to embed or

extract useful information from random white noise signals.

• The signal strength of the reflections corresponding to

breathing motion is proportional to the surface area of the

chest. Infants not only have a much smaller torso but their

chest displacement due to breathing is also much smaller

compared to adults. Further, infants require a higher sam-

pling rate as they breathe at amuch higher rate (20-60 breaths

per minute) compared to adults (12-20 breaths per minute).

• Finally, the white noise signal intensity should be low to

minimize the risk of exceeding safe noise levels, yet at the

same time the echoes still need to be detected reliably. In

particular, while prior work transmits FMCW signals at 90

dB(A) [42], research has shown noise exposure level exceed-

ing 75 dB(A) can cause sleep disturbance in infants [22, 45].

1
The following link plays this audio for better illustration of the problem:

https://youtu.be/tGHU515dFeE.

BreathJunior addresses the above challenges by making

two key technical contributions. First, we design an acoustic

receive beamforming algorithm that amplifies the minute

reflections from the infant’s chest by computing its direction

with respect to the microphone array at the smart speaker.

Our algorithm efficiently computes the infant’s direction

amongst N different angles using only O(logN ) iterations

(see §2.2.4).

We then localize the infant and track their breathing mo-

tion from the white noise reflections. To do this, we introduce

a novel technique that transforms white noise into multi-

ple FMCW signals at the receiver. Specifically, we prove

that we can transform the received white noise reflections

into N concurrent FMCW chirps, which are orthogonal in

the frequency domain, while preserving the multi-path re-

flection information with negligible SNR loss (see §2.2.2).

We demodulate these orthogonal FMCW chirps and decode

the minute respiration motion and compute their distance

from the smart speaker, by combining the phase information

across the N FMCW chirps. We show that this method of

combining phase across these N orthogonal FMCW chirps

further increases the signal strength of the minute reflections

from the infant.

We prototype our system using an off-the-shelf seven-

microphone array which has an identical microphone layout

and sensitivity to Amazon Echo Dot[2], but can output raw

recorded signals. We first use SimNewB infant simulator [10]

to systematically evaluate BreathJunior in various scenarios.

SimNewB, co-created by the American Academy of Pedi-

atrics, mimics the physiology of newborn infants, retails for

around $25,000 and allows us to set the breathing rate as

well as move various parts of the body. Our results show the

following:

• Using 59 dB(A) white noise, our system estimates the

breathing frequency within 95% and 90% of the baseline

at distances of 0.5 m and 0.7 m respectively from the in-

fant. These accuracies remain unaffected by clothing and for

different orientations of the smart speaker.

• We can detect apnea (cessation of breathing for more than

15 seconds) with high accuracy. We can also detect body

motion including arm or leg movements with a sensitivity

and specificity of 95% and 100%.

Finally, we conduct a clinical study at a Neonatal Intensive

Care Unit (NICU). We choose this environment because the

infants are all connected to wired, hospital-grade respiratory

monitors providing ground truth while they sleep. We re-

cruited five infants, with consent from their parents, over the

course of a month; recruitment is slow and difficult, given

the state of the infants who are admitted to the NICU. We

performed a total of seven sessions over a total duration of

280 minutes. Our study shows the following:
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• The infants have the breathing rate between 35-65 breaths

per minute (BPM) and in some rare instance as high as

70 BPM. The respiratory rate computed by BreathJunior is

highly correlated with the baseline system, with an interclass

correlation (ICC) of 0.938.

• Using the thresholds from the neonatal simulator experi-

ments, we can identify the arm and leg movements as well

as crying accurately with infants in the NICU.

Contributions. To summarize, the goal of our work is to

provide a safe and accessible way to monitor infant respira-

tion at home using commodity smartspeaker hardware. To

this end, this paper makes four key contributions: (1) We

introduce the first contactless system that uses white noise

to achieve motion and respiratory monitoring. Using this we

designed the first active sonar system that can track breath-

ing in infants, (2) we design algorithms to extract the motion

information as well as track the infant distance from random

white noise signals. We also present algorithms that use the

microphone array to beamform in the direction of the infant

to extract the weak breathing signals, that are otherwise

not detectable, (3) we evaluate our design using a hardware

prototype and systematically evaluate it with the SimNewB

infant simulator to understand the various tradeoffs, and (4)

we perform a clinical study at the neonatal intensive care

unit of a large medical center to demonstrate the feasibility

of using our system to accurately track breathing and other

movements using white noise in new-born infants.

2 BREATHJUNIOR
Fig. 2 shows the architecture of our system. The speaker

transmits pseudo-randomly generated Gaussian white noise

that gets reflected off the infant body and received by the

circular microphone array. Our algorithms process the sig-

nals from all the seven microphones to increase the signal

strength of the minute reflections from the infant’s chest

using receive beamforming algorithms. We then transform

the received pseudo-random white noise reflections into five

concurrent FMCW chirps, at the receiver, while preserving

the multi-path reflection information. We then demodulate

these chirps and decode the minute respiration motion by

combining the information across the five chirps. To support

beamforming and respiration detection, our algorithms also

localize the position of the infant. Finally, using the received

signals, our algorithms can also monitor body motion as well

as detect audible baby sounds like crying using interference

cancellation techniques.

In the rest of this section, we first describe white noise gen-

eration at the speaker and then explain different components

in our receiver algorithm.
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Figure 2: Different components in BreathJunior.

2.1 White Noise Generation at Speaker
At the transmitter, we generate deterministic white noise

using pseudo-random sequences with a known seed, such

that it has a flat frequency response. To do this, we encode

an impulse signal by shifting the phases of each of its fre-

quency components by a random real sequence uniformly

distributed in [0, 2π ].
The generated signal follows Gaussian white noise for

two reasons. First, an impulse signal is flat in the frequency

domain, and randomly changing the phase does not affect

this. Second, the pseudo-random phase, denoted by ϕf , is
independent and uniformly distributed in [0, 2π ]. From the

central limit theorem, suppose our sampling rate is r , and

each time-domain sample,
1√
r/2

∑r/2
f =1 exp(−j(2π f t + ϕf )),

follows a normal distribution with a zero mean and constant

variance when r is large enough, making it white noise.

In practice, we generate the signal as a stream of blocks,
each of which has a constant duration. A long duration en-

sures that we can increase the SNR of the received signal

using correlation but would limit the ability to monitor high

breathing rates. We use a duration of T = 0.2s and a sam-

pling rate of 48000Hz; so, our frequency range is 1Hz to

fmax = 24000Hz. We use aMersenne Twister pseudo-random
generator [38] to generate fmaxT different phase offsets for

each block, and perform IDFT to convert it back into the

time-domain, which is then played through the speaker:

S(t) =

fmaxT∑
f =1

e−j(2π f
t
T +ϕf ) (1)

where ϕf is the pseudo-randomly generated phase. We note

that the same phase is added to the i and fmaxT−i frequencies
so the IDFT results in a real signal.
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Figure 3: The similarity of the frequency domain be-
tween white noise and FMCW signals.

2.2 Decoding Breathing at Microphone
Array

2.2.1 Block-level Synchronization. The first step is to esti-

mate the beginning of each transmitted white noise block as

received by the microphone array. To do this, we re-generate

the transmitted block using the same seed, at the receiver

side.We then perform cross-correlation between the received

signal using the center microphone in the array and the re-

generated transmitted block. We then identify the peak in

the cross-correlation result which corresponds to the direct

path from the speaker to the microphone. We use the loca-

tion of this peak as the start of the first block in the received

signal. We need to synchronize once at the beginning as the

speaker and all microphones share the same sampling clock.

Note that, we cannot extract respiration from cross cor-

relation, because the sub-millimeter chest motion is much

smaller than the granularity of a sample. Instead, we trans-

form the pseudo-random white noise into FMCW signals

at the receiver so that we can decode and extract the fine-

grained multipath profile using FFT efficiently.

2.2.2 Transforming White Noise into Multi-FMCW. We

describe how to transform the received white noise signal

into a FMCWchirp.We then explain how to extract breathing

motion from the FMCW chirp. Finally, we explain how to

improve the SNR by transforming white noise into multiple

concurrent FMCW chirps.

Transformingwhite noise to FMCWchirp.Akey step

in our receiver algorithm is that we can remove the random-

ness of the white noise by transforming it into FMCW chirps

that can be efficiently decoded to track tiny motions, with-

out losing information about the reflections. In other words,

although the speaker transmitted white noise and the reflec-

tions from the infant motion correspond to white noise, we

can transform the received signal to look like FMCW chirps

played through the speaker and reflected off the infants body,

rather than white noise.

Our intuition is that in the frequency-domain a FMCW

chirp is approximately flat, as shown in Fig. 3. Further, within

the FMCW frequency range, the transmitted white noise is

also flat. Hence, we can in principle transform white noise

in the desired frequency range into an FMCW chirp by shift-

ing the phase of each frequency component of the received

signal.

Specifically, consider we want to transform the received

white noise block of duration T , within frequencies between

f0 to f0 + F , into an FMCW chirp. We first generate a FMCW

chirp template of that duration, f mcw(t) = exp(−j2π (f0t +
F
2T t

2)). We then perform a DFT on this time window to get,

FMCW (f ) = Cαf e
−jψf

(2)

whereC is a constant and αf ≈ 1. This gives us the phases

ψf of each of its frequency components within [f0T , (f0 +
F )T ]. Since we also know the exact phases ϕf we used in the

transmitted white noise block in Eq. 1, we can correct the

phase of each frequency in the received white noise signal

by ϕf − ψf , within [f0T , (f0 + F )T ] to transform it into an

FMCW chirp.

We mathematically show that this transform preserves

the multi-path reflection information. In particular, in the

presence of multiple paths, the received signal within the

frequency range [f0T , (f0 + F )T ] can be written as, w(t) =∑
p∈paths Ap

∑(f0+F )T
f =f0T

e−j(2π f
t−tp
T +ϕf )

, where Ap and tp are

the attenuation factor and time-of-arrival of path p. Perform-

ing aDFT onw(t) gives us,W (f ) =
∑
p∈paths Ape

−2π
tp
T f +ϕf =

A′
f e

−jΦf
. Our proposed phase transformation changes the

phase of each frequency as follows, Φ̂f = Φf − ϕf +ψf . We

prove that this converts the white noise into a FMCW chirp

without losing multipath information as follows:

ŵ(t) =

(f0+F )T∑
f =f0T

∑
p∈paths

Ape
−j(2π f

t−tp
T +ϕf )e−j(−ϕf +ψf )

=

(f0+F )T∑
f =f0T

∑
p∈paths

Ape
−j(2π f

t−tp
T +ψf )

=
∑

p∈paths

Ap

(f0+F )T∑
f =f0T

e−j(2π f
t−tp
T +ψf )

≈
1

C

∑
p∈paths

Ap f mcw(t − tp )

The final approximation is becauseαf ≈ 1 in Eq. 2. Hence, the

multipath reflections from the environment and the infant

body in the received white noise signal are preserved after

transformed into FMCWchirps. Note that this approximation

introduces an SNR loss of around 0.05dB and a constant phase

bias that does not affect the monitoring result.

Extracting breathing signal from FMCW. After the

signal is transformed to a FMCW chirp, we can perform

traditional FMCW demodulation to extract the breathing

signal. To do this, we first multiply the received FMCW chirp



by a downchirp signal,

e−j2π (−f0t−
F
2T t

2)
∑

p∈paths

e−j2π (f0(t−tp )+
F
2T (t−tp )2)

=
∑

p∈paths

e−j2π (
F
T tp t+f0tp−

F
2T t

2

p )
(3)

Next we perform an FFT on this signal, where each frequency

bin corresponds to reflections at different distances. While

this can be used to separate reflections from other environ-

mental sources from that of the infant, it cannot be used to

extract the minute breathing motion which has a resolution

of a few millimeters (this is because of the resolution we

get from Eq. 3 is limited by the bandwidth). However, the

phase of each frequency component of the demodulated sig-

nal is also a function of distance. Specifically, from Eq. 3, the

phase of the FFT bin corresponding to the time-of-arrival tp
is f0tp −

F
2T t

2

p . In other words, a tiny 1mm displacement will

result in a significant 0.185 radian phase difference when

f0 = 10000Hz. Hence, we can track tiny motion even if it is

much less than the theoretical FMCW resolution limit which

is proportional to
c
2B .

Thus, if we knew the round-trip distance d between the

infant and the microphone array (we will discuss this dis-

tance estimation in §2.2.4), the FFT bin corresponding to this

distance is fr esp =
d∗F
c∗T , where c is the speed of sound. We

extract the breathing signal by tracking the phase φi in this

frequency bin for each ith demodulated chirp. Note that this

phase sequence is confined to [−π ,π ], causing sharp tran-

sitions from π to −π or vice versa. To address this, we can

simply compensate for the 2π phase shift by adding or sub-

tracting a 2π when there is a more than π change between

adjacent phase measurements.

Improving SNR with multi-FMCW chirps. One ap-

proach is to transform white noise into a single large FMCW

chirp that spans the whole frequency range of the white

noise transmission. A large band FMCW chirp has better

spatial resolution because of more fine-grained frequency

bins after demodulation and DFT. However, even when us-

ing the whole 24kHz band, the resolution is limited to 1.4cm,

which is still much larger than the movement of the chest of

an infant. On the other side, each FFT bin has less informa-

tion and thus less SNR, making extracting respiration events

difficult.

Instead of transforming thewhole band into a single FMCW

chirp, we split the band between 6 kHz to 21 kHz into five

sub-bands, which are then transformed into five concurrent

FMCWchirps independently. Chirp i has a starting frequency
f0 = 3000+ 3000i Hz and bandwidth F = 3000 Hz. We get rid

of those below 6kHz because of environmental noise, and

those above 21 kHz because of low sensitivity. The spectro-

gram before and after transformation is shown in Fig. 4.
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Figure 4: Transforming white noise to multi-FMCW
chirps at the receiver.

By doing this, we trade-off resolution for SNR because each

transformed chirp has less bandwidth. However, the same

frequency bin of each of the five demodulated chirps corre-

sponds to a same time-of-arrival (see Equation 3). Hence, we

can fuse the five phases of each FFT bin from each demodu-

lated chirp to improve SNR.

Recall from Eq. 3 that the phase of a FFT bin correspond-

ing to the same time-of-arrival is linear to the beginning

frequency of the FMCW chirp. Hence, we average the φ
across the five FMCW chirps as

φ(avд) =

∑
5

i=1 φ
(i)/(3000 + 3000i)∑

5

i=1 1/(3000 + 3000i)
(4)

where φ(i) is the phase at the frequency bin corresponding to

the respiration signal, fr esp , of the ith demodulated chirp.We

use this phase value to extract the minute breathing motion

with sufficient SNR.

2.2.3 Respiration, Motion and Cry Monitoring. From this

phase data, we can extract minute breathing as well as coarse

infant motion information.

• Respiration rate monitoring.We apply a finite impulse re-

sponse (FIR) filter onto the phase sequence with a pass-band

of [0.4Hz, 1.1Hz]. This corresponds to the normal range of

an infant’s respiration rate. We count the number of zero-

crosses for the filtered signal and divide it by two to compute

breathing rate.

• Apnea detection. To detect apnea which is a prolonged

pause (more than 15 seconds) of the respiration, we first

record the average amplitude A of the filtered phase signal

during the initial one-minute localization duration. When a

duration of 15 seconds has an average amplitude less than

βA where β is a constant, we classify it as an apnea event.

We empirically choose β using the infant simulator.

• Motion detection. The signal change due to movements

of legs and hands is much larger than the movement from

respiration. Fig. 5 shows the phase changes in the presence

of body motion. The plot shows that because reflections

from coarse body motion have more energy, we see a large

variance in the phase information. Thus, if the total variance
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within the last N phases exceeds a threshold, we classify it

as body motion. We empirically choose the threshold using

the simulator. Note that because the positions of legs and

hands are not far from the chest, their movement leads to

interference to the respiration signals. As a result, the system

does not monitor respiration during motion periods.

• Crying and sound detection. Ideally, we would like to detect
crying and other sounds from the infant in the presence of the

white noise. We note that infant crying sounds are typically

loud in comparison to the white noise signal generated by

our smart speaker. We can further improve sound detection

by calculating the difference between two adjacent chirps

across time. Any sound from the infant will superimpose

onto the white noise. The transformation procedure, while

transforming white noise into chirps, will transform crying

and other sounds into noise signals. Hence, two adjacent

chirps will be different, especially at low frequencies. We

calculate the L2 norm of the difference between two adjacent

transformed chirps, p(Si−1, Si ) = | |Si−1 − Si | |
2

2
. If the value

exceeds a threshold, and it occurs frequently within a short

time period, the system would classify it as infant sounds.

Note that most of the sound from other people in the envi-

ronment are reduced in amplitude due to the beamforming

process described next.

2.2.4 Infant Localization and Beamforming. The above

discussion assumes that we know the distance of the infant

relative to the smart speaker and hence know the frequency

bin, fr esp , corresponding to the breathing motion. In this sec-

tion, we first describe how to localize the infants and identify

their distance from the smartspeaker. We then explain how

we perform receive beamforming on the microphone array

to increase the SNR of the breathing reflections.

Initial Distance computation. After computing an FFT

on the FMCW chirps, we find the most likely FFT bin that

corresponds to respiratory motion. To this end, we store the

complex value of each FFT bin, f of the demodulated chirp,

Hi . For each FFT bin f , we perform another FFT over the

complex values across all the chirps within the first minute

of tracking. We then calculate the SNRr esp for each bin f ,
defined as the energy within [0.4Hz, 1Hz] (corresponding
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Figure 6: The FFT of Hf over different FFT bins, f .

to breathing rates of 20-60 breaths/min) divided by the en-

ergy above 1 Hz. This SNR is a good indicator of the quality

of the respiration signal in FFT bin f . We select the lowest

frequency bin (i.e., nearest to the microphone array), that

has a peak SNR comparable with its neighboring frequency

bins. We denote this frequency bin as fr esp . The round-trip
distance between the infant and the smart speaker can then

be estimated as

fr espTc
F from Eq. 3. For example, Fig. 6 shows

the FFT of Hf on different bins, f , in one of our experiments.

We see that FFT bin f = 16Hz has the peak SNR with more

energy within [0.4Hz, 1Hz]. This bin corresponds to the dis-

tance from the infant. Note that at this stage, we could not

yet use the accurate phase-based algorithm from §2.2.3, as it

assumes that the distance to the infant is known. Further, we

have not yet performed beamforming to increase the SNR of

the infant reflections.

Receive Beamforming algorithm. Now that we have

an initial estimate of the distance, we design a receiver-side

beamforming algorithm to suppress other static reflections

and increase the SNR of the weak reflections from the in-

fant. At a high level, the signals captured by the seven micro-

phones on the array are added together using the appropriate

delays. Suppose we know the angle α of the infant relative

to the smart speaker, the delays ∆i could be calculated based

on the angle, α , as, ∆i = | |Pi − P0 | |sin(α), where Pi is the
location of the ith microphone. We can then calculate the

beamforming signal R(t) =
∑

7

i=1 Ri (t − ∆i ), where Ri (t) is
the sample at time t received on microphone i .
So the key question is: how do we find the angle of the

infant with respect to the microphone array? A naïve solu-

tion is to exhaustively search over all the possible angles

to find the best angle that maximizes the signal strength

of the respiratory signal. This however is computationally

expensive. Instead, we utilize the wide-band nature of white

noise, and design a multi-step beamforming method based

on a ternary-search algorithm that progressively reduces

both the search range as well as beam width to compute the

infant’s direction.

We leverage the following property of acoustic beamwidths:

a signal transmitted from a microphone array at a frequency

f has a beam width proportional to sin−1Cf , whereC is a con-

stant [24]. Said differently, at the higher acoustic frequencies,



Figure 7: The progressive ternary search algorithm for
beamforming search. Green area is the search scope.

a narrower beam width is achieved while beamforming. As

a result, we can design a divide and conquer algorithm that

starts at the lower frequencies, eliminates directions for the

infant and use the higher frequencies to increase the beam

resolution and narrow in on the direction of the infant.

Following the above intuitions, we go through the five

multi-FMCW chirps from 6kHz to 21kHz ordered from low

to high frequencies. For each FMCW chirp, we maintain an

angle scope, [γl ,γr ], which we initialize to [−π/2,π/2] for
the first FMCW chirp. For the ith FMCW chirp (i = 1 · · · 5),

we sequentially set the beamforming angle α to two values of

α1 = (2γl +γr )/3 and α2 = (γl + 2γr )/3. At each of these two

beamforming angles, we use the method in §2.2.2 to trans-

form beamformed white noise into the demodulated FMCW

signal. We then estimate the distance of the infant using

the algorithm in §2.2.4 and calculate the SNR of the respira-

tory signal, as defined earlier, for the two angles, SNR(α1)
and SNR(α2). If SNR(α1) < SNR(α2), we narrow down the

search scope to [α1,γr ]; otherwise, we narrow down the

angle search scope to [γl ,α2]. We then move to the higher

frequency FMCW chirp and do the above processing again,

until we reach the highest FMCW chirp, where we finalize

α to be the middle of the search scope. The five steps of

the above algorithm are illustrated in Fig. 7. This adaptive

beamforming method drastically increases the SNR and the

operational range by up to 2x (see §3).

Computational complexity. In comparison to an ex-

haustive search over N angles, the above ternary-search

algorithm reduces the complexity to O(logN ). Further, this

beamforming angle search and distance estimation is only

done once at the beginning of the tracking process to com-

pute the distance and angle of the infant with respect to the

device. We use this distance and angle for the duration of

infant monitoring. If we lose the breathing or motion signal

for more than 30 seconds, we re-initiate the search process

to find the new distance/angle of the infant. If neither the

breathing nor the motion signal is found after the search, we

can raise an alarm to the caregiver.

2.2.5 Addressing Practical Issues. Finally, we describe in
detail the practical issues we addressed in our system.

• Combating inter-block interference. One problemwhen

we generate white noise in blocks is the interference between

adjacent blocks. Specifically, the latter parts of the echoes of

the previous block can be superimposed over the beginning

of the current block. Because each block is encoded using

different random seeds, these inter-block interference sig-

nals are transformed into noise and can reduce sensitivity.

To address this issue, for each block, we introduce a guard
interval at the beginning of each block consisting of a cyclic
prefix. This is similar to the cyclic prefix used in OFDM trans-

missions. Specifically, for each white noise block, we insert

a guard interval at the beginning of each block, consisting

of the last д samples of that block. д is picked to be larger

than the maximum possible propagation duration. In our

test, a duration of 0.1s is found to be sufficient. To maximize

randomness, the duration is also randomly selected between

0.1s and 0.15s, known to both the transmitter and receiver.

• Adaptive sub-bandweighting. Empirically, the frequency

response across a large band can change because of the prop-

agation properties, hardware imperfections and environmen-

tal noise. Specifically, lower frequencies attenuate slower

than higher frequencies [33]. Further, our microphone array

has a 5− 10dB dip around 12kHz. Finally, the environmental

noise is larger at lower frequencies. To account for these

effects, we assign different weights to different frequencies.

Specifically, we use the SNRr esp of each sub-band, described

in §2.2.4, as the weights to each of the five chirps in our

multi-FMCW signal. Now, instead of giving equal weights to

each of the five FMCW chirps, we modify Eq. 4 to compute

a weighted average, φ
(f used )
f =

∑
5

i=1wiφ
(i )
f /(3000+3000i)∑

5

i−1wi /(3000+3000i)
, where

wi is the respiratory signal SNR for the ith FMCW chirp.

• Adaptive speaker volume adjustment.Aproblemwith

existing white noise machines is that the volume of their

speaker cannot be adjusted with different distances to the

infant. A fixed volume is challenging because the sound pres-

sure could be either too high if the infant is close to the

speaker or too low to be effective at larger distances. To ad-

dress this, we adjust the speaker volume to be dependent on

the distance from the smart speaker and the infant. Specif-

ically, we use the distance estimate in §2.2.4 to adjust the

white noise volume. To do this, we empirically found that

the attenuation was 5.5dB when the distance from the infant

doubles. A user can set a preferred at-ear volume (e.g., 56dB).
During monitoring, BreathJunior adaptively re-adjusts the



volume using the estimated distance and the corresponding

attenuation values.

3 EVALUATION
We implement BreathJunior using a smart speaker prototype,

built with a MiniDSP UMA-8-SP USB microphone array [13],

which is equipped with 7 Knowles SPH1668LM4H micro-

phones. They are of identical layout as well as sensitivity

as an Amazon Echo Dot [2]. We connect it to an external

speaker (PUI AS07104PO-R), and 3D-printed a plastic case

that holds the microphone array and speaker together. The

microphone array is connected to a Surface Pro laptop. We

play dynamically generated pseudo-random white noise and

record the 7-channel recordings, using XT-Audio library [14].

We capture the acoustic signals at a sampling rate of 48kHz

and 24 bits per sample.

Next, we evaluate the effectiveness and accuracy of BreathJu-

nior.We first conduct extensive experiments with a tetherless

newborn simulator. The simulator, designed to train physi-

cians on neonatal resuscitation, mimics the physiology of

newborn infants. We systematically evaluate the effect of dif-

ferent parameters, including recording position, orientation

and distances, at-ear sound pressure level, interference from

other people, respiration strength and rate. We then recruit

five infants at a Neonatal Intensive Care Unit (NICU) and

conduct a clinical study to verify the validity of our system

on monitoring respiration, motion and crying.

3.1 Neonatal simulator experiments
Because of the experimental difficulty and potential ethical

problem of placing awired ground truthmonitor on a healthy

sleeping infant, we first use an infant simulator (SimNewB®,

Laerdal, Stavanger, Norway [10]), co-created by the Amer-

ican Academy of Pediatrics, that mimics the physiology of

newborn infants. SimNewB is a tetherless newborn simulator

designed to help train physicians on neonatal resuscitation

and is focused on the physiological response in the first 10

minutes of life. It comes with an anatomically realistic airway

and supports various breathing features including bilateral

and unilateral chest rise and fall, normal and abnormal breath

sounds, spontaneous breathing, anterior lung sounds, uni-

lateral breath sounds and oxygen saturation. These life-like

simulator mannequins, which retail >$25,000, are used to

train medical personnel on identifying vital sign abnormali-

ties in infants, including respiratory anomalies. SimNewB is

operated and controlled by SimPad PLUS, which is a wire-

less tablet. We are able to control various parameters of the

simulator including a) respiration rate and intensity; b) limb

motion; and c) sound generation. We use this to evaluate

different aspects of BreathJunior’s performance.

Figure 8: Setup with a neonatal simulator.
Specifically, we perform experiments in the simulator lab

at the University of Washington medical school where we

put the infant simulator in a 26 inch x 32 inch bassonette by

one of the walls shown in Fig. 8. We put the smart speaker

prototype on a stand that can adjust the orientation, and put

the stand on a table which can adjust its position around the

crib. We set its height to 10 cm above the simulator so that

the rails of the bassonette will not obstruct the path between

the prototype and the simulator.

3.1.1 Effect of distance, orientation and position. We eval-

uate the effect of the smart speaker distance, orientation and

position on the breathing rate accuracy.

Effect of the smart speaker position.We first measure the

effect of the smart speaker position with respect to the infant

on breathing rate accuracy. To do this, we place the smart

speaker hardware in four different positions around the bas-

sonette: left, right, front and rear. This effectively evaluates

the effect of placing the smart speaker at different sides of a

crib. We place the smart speaker at different distances from

the chest of the infant, from 30 cm to 60 cm. At each of the

distances, we set the infant simulator to breathe at a breath-

ing rate of 40 breaths per minute, which is right in the middle

of the expected breathing rate for infants. As the default, we

set the sound pressure to be 56 dB at the infant’s ear. The

smart speaker transmits the white noise signal and we record

the acoustic signals for one minute, which we then use to

compute the breathing rate. We repeat this experiment ten

times.

Fig. 9 plots the results of these experiments. The plots

show the following key trends: First, the average computed

respiratory rate across the distances up to 60 cm is around 40

breaths per minute, which is the configured breathing rate of

the infant simulator (shown by the dotted line). Second, the

position of the smart speaker does not significantly affect the

breathing error rate. The only exception is when the smart

speaker is placed at the rear, where we have slightly higher

variance in the measured breathing rate. This is because

there is more obstruction from the abdomen and legs. Finally,

as expected, the variance in the measured breathing rate
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Figure 9: Respiration rate accuracy with different
placement locations of the microphone array at 56
dB(A). Error bars represent the min-max interval.

increases with distance. Specifically, the mean absolute error

is around 3 breaths per minute when the smart speaker is at

a distance of 60 cm, compared to 0.4 breaths per minute at a

distance of 40 cm. This is because the reflections from the

infant’s breathing motion attenuate with distance.

Effect of smart speaker orientation. Next, we run experi-

ments with three different smart speaker orientations. This

allows us to evaluate the effectiveness of beamforming as a

function of the smart speaker angle.We set the breathing rate

of the simulator to 40 BPM and vary the distance of the smart

speaker from the infant’s chest. We also set the at-ear sound

pressure to 56 dB. Fig. 10 shows the detected respiration rates

using the three orientations as a function of distance, where

0
◦
is when the microphone array faces the simulator and 90

◦

is when the microphone array faces the ceiling. The plots

show that there is no significant difference in the respiratory

rate variance across the three orientations. This is because

the microphone array is designed to be omni-directional to

detect sound across all angles.

3.1.2 Effect of volume, respiration rate & intensity. Next,
we evaluate the effect of sound volume, respiration rate and

intensity on breathing rate accuracy.

Effect of sound volume. The higher the sound volume from

the smart speaker, the better the reflections from the infant

breathing motion. However, our target is to keep the white

noise volume to be under 60 dB at-ear to be conservatively

safe. Here, we evaluate the effect of different at-ear white

noise volumes. Specifically, we change the white-noise vol-

ume to be between 50-59 dB(A). As before we change the

distance between the smart speaker and the infant simulator

between 30-70 cm and measure the breathing rate using the

white noise reflections at each of these volume levels. The

smart speaker is placed at the left and 0° with respect to the

infant. As before, we repeat the experiment ten times to com-

pute the mean and variance in the estimated breathing rate

while the simulator is set to a breathing rate of 40 breaths

per minute.
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Figure 10: Respiration rate accuracy with different an-
gles of the microphone array at 56 dB(A).
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Figure 11: Accuracy of computing respiratory rate
with different at-ear sound pressures.

Fig. 11 shows the results for these experiments. The plots

show that when the at-ear sound volume is around 56 dB(A),

we achieve low variance in the breathing rate up to distances

of 50 cm. When we increase the white noise volume at the

infant by 3 dB to 59 dB(A), the breathing rate can be estimated

with low variance from a distance of up to 70 cm. This is

expected since the reflections from the breathing motion are

stronger when the white noise volume is higher.

Effect of respiration rate and intensity. Next, we evaluate
the accuracy of the system with varying respiration rates as

well as the intensity of each breath. For a typical infant less

than one year old, the respiration rate is less than 60 breaths

per minute. So, we evaluate the accuracy by varying the

breathing rate of the infant simulator between 20-60 breaths

per minute. To verify the robustness, we also change the

intensity of each breath on the simulator to two different

settings: normal andweak. The weak intensity is triggered by

a simulated respiratory distress syndrome (RDS), an ailment

that can be experienced by infants and particularly those

born prematurely. We set the distance of the infant simulator

from the smart speaker to 40 cm and the speaker is placed

at the left and at 0°.

Fig. 12 shows the results of these experiments with the

smart speaker-computed breathing rate as a function of the

simulator breathing setting. We also note the results for the

two intensity settings. The plots show that we see higher
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Figure 12: Accuracy w.r.t. breathing intensity.

variance in the computed breathing rate as we increase the

breathing rate. This is because, as the breathing rate in-

creases, we see more changes within the received signal,

which requires higher sampling rates to get the same error

resolution. In our implementation, we set the block of each

white noise signal to 0.2 s. Thus, as the breathing rate in-

creases, we see less blocks per each breath, which effectively

reduces the number of samples per breath, which in turn

introduces more errors. As expected, we also see more vari-

ance in weak breath situations associated with respiratory

distress syndrome. This is because lower intensity results in

smaller phase change, resulting in a lower SNR.

3.1.3 Effect of clothes and interference. Finally, we evalu-
ate the effect of blankets and other interfering motion and

environmental noise in the environment.

Effect of clothes. We use a typical infant one-piece sleep

sack made of cotton which is provided with the simulator

to help trainees learn the correct method for putting on this

garment that helps swaddle the baby. We repeat the experi-

ments with and without the sleep sack. We run experiments

by placing the smart speaker to the left of the infant simu-

lator and at an angle of 0
o
, while setting the simulator to

breathe at a rate of 40 breaths per minute. We change the

distance between the simulator and the smart speaker and

compute the breathing rate. Fig. 13a shows the respiratory

rate as a function of distance. The plots show that the pres-

ence of sleep sack does not significantly affect the breathing

rate accuracy. We further evaluate BreathJunior with human

infants who are swaddled in blankets in §3.2 and show that

it can track their breathing motion.

Effect of interference. The above experiments are all done

when an adult is sitting about three meters away from the

crib. To further assess if the interference from other peo-

ple would affect the accuracy, we additionally did the same

experiments with an adult sitting at consecutively closer dis-

tances. As shown in Fig. 13b, we cannot see much difference

except when the distance between the adult and the smart

speaker is 1 meter, while the distance between the simulator
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Figure 13: Effect of clothes, interference and ambient
sound with white noise at 56 dB(A).

and the smart speaker is 60 cm, since the small distance dif-

ference leads to spectrum leakage in the FFT of the FMCW

demodulation. However, BreathJunior could still extract a

breathing rate at this distance.

Effect of ambient noise. We evaluate the effect of ambient

noise by playing a clip of pop music using a smartphone

placed two meters away from the crib. We set the volume

so that the measured sound pressure at the crib is around

40 dB(A), 50 dB(A) and 60 dB(A) respectively.We then turn on

the smart speaker playing white noise at 56 dB(A) and report

the respiration rate accuracy in Fig. 13c. We see no obvious

effect for the ambient noise between 40 and 60 dB(A). This is

because frequencies below 6 kHz are filtered out during our

white noise transformation algorithm. Further, white noise

can be thought of as wide-band spread spectrum which can

be resilient to structured acoustic signals like music.
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Figure 14: Respiration accuracy w.r.t. beamforming.

3.1.4 Effect of receive beamforming. Here, we quantita-
tively evaluate the benefits of using receive beamforming.

As before, we run experiments by placing the smart speaker

to the left of the infant simulator and at an angle of 0
o
, while

setting the simulator to breathe at a rate of 40 breaths per

minute. We keep at-ear sound pressure at 59dB and change

the distance of the smart speaker and the infant simulator

and collect the data on the smart speaker. We then extract the

breathing signals using a) only a single center microphone

on the smart speaker without using our receive beamforming

algorithm; b) four microphones on the top and bottom of the

smart speaker; and c) all seven microphones to decode the

signal. We plot the three results in Fig. 14. The plot shows

that receive beamforming improves the range by approxi-

mately 1.75x — without beamforming, BreathJunior with a

single microphone can support up to 40 cm range, whereas

receiver beamforming with seven microphones improves the

range to 70 cm. Moreover, while using four microphones

reduces the variance in the estimated respiratory rate it does

not significantly increase the distance compared to using

only a single microphone without beamforming.

3.1.5 Apnea, motion and sound detection. Here we eval-
uate BreathJunior’s ability to identify apnea events, body

motion as well as audible sound.

Apnea detection. An apnea event is defined as a 15-second

respiratory pause [18].While it is difficult to run experiments

with human infants that also have apnea events, we can sim-

ulate them on our infant simulator. Specifically, we simualte

a 15 second central apnea event by remotely pausing the

respiration of the infant simulator and resuming it after 15

seconds. We use the thresholding method in §2.2.3 to detect

the presence of an apnea event during the 15 second. We

use the 15-second duration before the apnea event where

the infant simulator breathes normally to evaluate the false

positive rate (FP). We place the smart speaker 50 cm left of

the simulator at an angle of zero degree. The simulator is set

to breathe at a rate of 40 breaths per minute. We repeat this

experiment 20 times to generate the receiver operating char-

acteristic (ROC) curve by different values of the threshold by
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Figure 15: Apnea event detection ROC curves.

computing the sensitivity and specificity of the algorithm in

identifying apnea events. Fig. 15 shows the ROC curves when

we vary the volume of white noise between 50-59 dB(A). As

expected, the accuracy improves at higher volume.

Motion detection. Next, we evaluate BreathJunior’s ability
to detection body movements such as hand and leg motion.

We can remotely control the infant simulator to move its

arms and legs. Specifically, for each movement, the arm or

leg rotates around the shoulder joint away from the body

for an angle of approximately 30°, than rotates back to its

original position. Each movement takes approximately two

seconds. We perform each of these movements 20 times and

record the true positive events. Like before, we also use 20

2-second clips of normal breathing motion under the same

condition. We set the distance between the infant simulator

and the smart speaker to 50 cm and set the simulator to

breath at 40 breaths per minute.

Fig. 16a shows the ROC curves for each of the three move-

ments: arm motion, leg motion and arm+leg motion. The

AUC for the three movements was 0.9925, 0.995 and 1 re-

spectively. The plots show that BreathJunior’s accuracy for

motion detection is high. For instance, the operating point

for arm motion had an overall sensitivity and specificity of

95% (95% CI: 75.13% to 99.87%) and 100% (95% CI: 83.16% to

100.00%), respectively. This is expected because these move-

ments reflect more power than the minute breathing motion

and hence can be readily identified.

Sound detection. Finally, we evaluate BreathJunior’s ability
to detect infant audible sounds. The infant simulator has

an internal speaker that plays realistic recorded sounds of

infant crying, coughing and screaming, which are frequent

sounds from infants. The volume is to set to be similar to an

infant sound. As before, we record 20 2-second clops of each

sound type and use 20 2-second clips where the simulator

was breathing but was silent. The infant simulator was set to

breathe at 40 BPM and the distance from the smart speaker

was 60 cm. Fig. 16b shows the ROC curves for each of the

three infant sounds. The area under the curve (AUC) for

detecting the three sounds was 1, 0.965, 1 respectively.
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Figure 16: Motion/sound detection ROC curves.

3.2 Clinical Study with Infants
The American Academy of Pediatrics strongly recommends

against any wired systems in an infant’s sleep environment,

making ground truth collection of respiratory signals on

healthy infants at home unsafe and potentially ethically chal-

lenging [1]. To overcome this challenge, we conduct clinical

studies at the Neonatal Intensive Care Unit (NICU) of a major

medical center. The vast majority of infants in this NICU are

born prematurely (i.e., before 38 weeks gestation). We choose

this environment because the infants are all connected to

wired, hospital-grade respiratory monitors providing respi-

ratory rates while they sleep in their bassinets. Each infant

is treated in individual bassinets in a separate room, where

their parents and nurses are also sitting around 1.5 meters

away from the bassinet, most of the time. We recruited five

infants, with consent from their parents, over the course of

a few months. This study was approved by University of

Washington’s Institutional Review Board and followed all

the prescribed criteria.

Clinical study setup. Since infants at this age sleep intermit-

tently between feedings, our recording sessions ranged from

20 minutes to 50 minutes. All infants, because they were

in the NICU, were connected to hospital grade respiratory

monitoring equipment (Phillips LTD). Fig. 1 shows the setup

with our study smart speaker. The smart speaker prototype

Infant Total
session

Total
duration

Effective
duration

Sleep
duration

1 1 40min 33min 20min

2 3 125min 90min 63min

3 1 40min 35min 9min

4 1 30min 20min 11min

5 1 45min 40min 33min

Table 1: Statistics across the recruited infants.

is placed outside the crib to ensure safety, and the distance

between the prototype and the monitored infant is kept be-

tween 40-50cm. We ensure that the at-ear sound pressure

is 59dB(A). We performed a total of 7 sessions over a total

duration of 280 minutes. Of these, the nurses or parents were

interacting or feeding the infant for 62 minutes. We perform

our algorithms over the remaining 218 minutes.

Respiratory rate accuracy.We could access respiratory rate

measurements from the Phillips hospital systemwithminute-

to-minute granularity. We synchronize the clocks between

the logging computer in the hospital and our laptop to align

the start of each minute. Note that the precision of the respi-

ratory rate from the Phillips system is 1 BPM, and we use it

as ground truth and compare the error of our system with it.

Our breathing rate experiments had infants with a minimum

weight of 3.5 kg and a maximum weight of 4.5 kg. This is

within the weight range for our target application popula-

tion of normal infants above the age of 1 month. Note that

BreathJunior only monitors breathing when the infant is not

moving. We note that while infants can move their limbs

to varying degrees in the post-natal period, they are gener-

ally unable to roll over (back-to-front) until approximately

6 months of age [6]. Further, when the infant is moving or

crying the ground truth breathing rate signal is also affected.

So we focus on the time duration when the infant is not

moving or crying but is either stationary or sleeping.

Fig. 17 shows the respiratory rates detected by our sys-

tem compared to that reported by the groundtruth. The plot

shows multiple key trends.

• Unlike adults, the respiratory rate for infants is signifi-

cantly higher. In the NICU, the population is typically prema-

ture babies, many of whom have respiratory problems, often

with breathing rates above 35 BPM and in some instances as

high as 70 BPM.

• At a breathing rate above 65 BPM, we see larger errors.

This is expected because the various parameters in our sys-

tem are designed for a maximum breathing rate of 60 BPM

and for non-NICU infants. This limitation can be further

addressed, and the algorithm improved, by using a combi-

nation of shorter block duration and a band-pass filter that

adaptively adjusts its pass band to the frequency range of the



 30
 35
 40
 45
 50
 55
 60
 65
 70

 30  35  40  45  50  55  60  65  70

m
e

a
s
u

re
d

 (
B

P
M

)

groundtruth (BPM)

Figure 17: Comparison between respiratory rate from
BreathJunior and groundtruth with infants at NICU.

respiration. We also note that these respiration rates were

observed in atypical infants (i.e., born prematurely, under

weight, or with underlying respiratory problems hence their

admission in an NICU).

• The respiratory rate computed by BreathJunior is highly

correlated with the baseline — the interclass correlation (ICC)

between them was 0.938.

Motion and crying detection accuracy. Finally, we compare

BreathJunior’s motion and sound detection capabilities with

the ground truth. We used the threshold values from the

simulator experiments which gave us the best sensitivity

and specificity (top-left points of Fig. 16a and Fig. 16b) for

this purpose. We manually note the duration, on a minute

resolution, when the infant is crying and moving; we use

this as the ground truth for these experiments. Figs. 18 show

the results for both the ground truth as well as BreathJunior

for both body movements (e.g., arms/legs) as well as crying,

for each of the five infants. The figures show that there is a

good correlation with the ground truth.

4 RELATEDWORK
Physiologicalmonitoring solutions.Wired vital signmon-

itors are traditionally used for both hospital and home use [44].

By definition, they require physical contact of the sensors

with the infant’s body or on their sleep surface. These sen-

sors include pulse oximeters [31], and thoracic impedance

monitors [19]. A critical drawback of these wired systems

is that they may interrupt sleep and can lead to severe com-

plications including death from strangulation [4]. More re-

cently, wireless wearable solutions are being designed to

track vital signs. These require wearables in contact with

the infant body including smart socks [9], wristbands [7]

or other probes [21, 60] which track the heart rate of in-

fants. Sleep surfaces embedded with sensors have also been

designed for tracking physiological signals [3, 8]. All these

solutions however require contact with the infant body. In

contrast, our design is the first contactless solution that uses

white noise, which can facilitate sleep, to track breathing

and other infant movements.
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Figure 18: Accuracy for detecting motion as well as
sounds with infants at NICU.

There has also been a renewed interest in designing con-

tactless solutions that utilize cameras and radar [35, 61]. [40]

uses cameras to recognize respiration and heart rate, however

cameras are sensitive to light conditions especially during

sleep. [61] use ultra-wideband radar to track respiration and

heart rate in adult participants. [11, 56] use millimeter wave

radar to track heart rate and respiration in infants. Radar so-

lutions however require specialized hardware and ultra wide

bandwidth which are not available on existing Wi-Fi radios

or smart speakers. [35] uses WiFi signals to track respira-

tion in adult participants. Wi-Fi based breathing monitoring

has not yet been demonstrated for infants. Further, Wi-Fi

based tracking solutions are prone to interference from other

moving objects given their long range and are affected by

ambient Wi-Fi data transmissions [29, 46]. We take an alter-

nate approach that operates at short-range using white noise

as an active sonar system.

Acoustic sensing. Acoustic signals are widely studied

for motion tracking and localization because of their slow

propagation speed and ease of use in commodity devices.

[43, 55, 57] track finger motion, [15, 25, 58] track gestures

using acoustic signals. Acoustic signals are also used to track

devices [59] such as smartwatches and smartphones using a



microphone array; [36, 54] tracks smartphones using mul-

tiple speakers. Acoustic reflections have also been used for

detecting middle ear fluid using smartphones [20].

The closest to our approach is prior work on active sonar

that uses 18-20 kHz acoustic transmissions from a phone

speaker to track breathing in adult participants for diagnosis

of sleep apnea [42] and opioid overdose [41]. [47] uses sound

between 17-19 kHz to detect respiration as well as heart

rate. While adults generally cannot hear 18–20 kHz acoustic

signals, infants have much better sensitivity compared to

adults at higher frequencies up to 20 kHz [37, 52], which

makes those high frequency sounds potentially audible and

thus inappropriate for infant sleep monitoring. Long-term

exposure to ultrasound in infants may also cause headache,

nausea and temporary hearing loss [27, 48]. Our approach

differs in three keyways: 1) we explore the use ofmicrophone

arrays on smart-speaker devices such as Amazon echo to

achieve contactless respiratory monitoring and 2) we use

white noise as a signal source and develop algorithms to

extract the breathing motion from reflections of these white

noise transmissions and 3) we show for the first time that

an active sonar system can be used for tracking the minute

breathing motion from infants.

5 CONCLUSION AND DISCUSSION
We present a contactless solution that can monitor infants

using white noise. From a clinical utility perspective, there

are several potential use cases for a smart speaker-based

respiratory monitor. These include respiratory rate monitor-

ing for the purposes of identifying early signs of incipient

infection, non-invasive monitoring for respiratory changes

of chronic diseases (e.g., asthma, COPD, congestive heart

failure), non-invasive monitoring of older kids with epilepsy

or recurrent central apneas, and even monitoring for the

purposes of wellness. All these are areas that require fur-

ther inquiry. The use case presented here is compelling for

children and parents because it provides two functionalities:

white noise to facilitate sleep and respiratory monitoring.

And the system can do these tasks at low cost, using a com-

modity smart speaker. While the use of consumer infant

vital sign monitoring devices is a source of debate [16], these

systems remain a fixture among many parents who make a

conscious choice to monitor their children while they sleep.

There are a few studies about the effects of noise on in-

fants as well as adults. Although 50 dB(A) is recommended

for a hospital nursery, there is significant related work that

notes that there is no known negative consequences of white

noise exposure as long as the sound pressure is less than

75 dB(A) [22, 45]. For adults, the WHO recommends a noise

limit of 85dB (A) on an average of 8 working hours. White

noise machines currently on the market have an average

noise level of 63.3 dB (A) at a distance of 2 m [30]. As a result,

59 dB(A) is considered safe and within normal limits for a

clinical as well as home environment.

While we focus on white noise, using other noise types

including pink noise, brown noise and natural sounds (e.g.,
raindrops, fan noise) is worth exploring as well. Further, we

may use shorter block duration to support higher respiratory

rates greater than 65 BPM and combine them with adaptive

filters that dynamically infer the range of respiratory rates.

Finally, BreathJunior achieves an operational range of 0.7 m

using white noise with 59 dB(A) at-ear sound pressure. How-

ever, longer ranges can be achieved using microphones with

higher sampling rate and bit resolution. Further, our breath-

ing experiments were limited to a minimum infant weight of

3.5 kg. Evaluating the system with infants with lower weight

is a worthwhile research direction.
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