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Abstract
Cloud providers are increasingly looking to use virtual ma-
chine checkpointing for new applications beyond fault tol-
erance. Existing checkpointing systems designed for fault
tolerance only optimize for saving checkpointed state,
so they cannot support these new applications, which
require better restore performance. Improving restore per-
formance requires a predictive technique to reduce the
number of disk accesses to bring in the VM’s memory on
restore. However, complex VM workloads can diverge
at any time due to external inputs, background processes,
and timing variation, so predicting which pages the VM
will access on restore to reduce faults to disk is impossi-
ble. Instead, we focus on predicting which pages the VM
will access together on restore to improve the efficiency
of disk accesses.

To reduce the number of faults to disk on restore, we
group memory pages likely to be accessed together into
locality blocks. On each fault, we can load a block of
pages that are likely to be accessed with the faulting page,
eliminating future faults and increasing disk efficiency.
We implement support for locality blocks, along with sev-
eral other optimizations, in a new checkpointing system
for VMware ESXi Server called Halite. Our experiments
show that Halite reduces restore overhead by up to 94%
for a range of workloads.

1 Overview
The ability to checkpoint and restore the state of a run-
ning virtual machine has been crucial for fault tolerance
of virtualized workloads. Recently, cloud providers have
been exploring new applications for VM checkpointing.
For example, they want to use checkpointing to save and
power off idle VMs to conserve energy. Restoring a check-
pointed “template” VM could be used to clone new VMs
on demand, which would enable fast, dynamic allocation
of VMs for stateless workloads.

Unlike traditional fault tolerance applications, these
new applications depend on efficient restore of check-
pointed VMs. For example, using checkpointing for dy-
namic allocation of VMs depends on the ability to quickly
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start up a VM on demand. Checkpointing systems de-
signed to support fault tolerance only restore on failures,
so they optimize for checkpoint save performance instead.
As a result, previous work rarely addresses restore be-
yond basic support, so existing systems would offer poor
performance for these new applications.

Virtual machine checkpointing takes a snapshot of the
state of a VM at a single point in time. The hypervisor
writes any temporary VM state, like VM memory, to
persistent storage and then reads it back into memory
when restoring the checkpoint. Since memory images
can be large, VMware ESXi uses a technique called lazy
restore that loads the memory image from disk while the
VM runs. While the VM’s memory is partially on disk,
any access to on-disk pages causes a fault that requires a
disk synchronous access before the VM’s execution can
resume. Pauses in execution for faults to disk can quickly
degrade the usability of the VM.

Improving lazy restore performance requires a predic-
tive technique that reduces the number of faults to pages
on disk. However, it is impossible to predict which pages
the VM will access on restore; the VM’s execution might
diverge at any time due to timing differences or external
inputs, particularly with complex workloads that have
many background tasks and user applications. Previous
work [24] based on predicting which pages the VM would
access on restore could not cope with divergence, leading
to poor performance for complex workloads like Win-
dows desktop applications.

Rather than reducing the number of faults to disk by
predicting the pages that the VM will access on restore,
we instead predict the pages that the VM will access to-
gether on restore. On each fault to disk during lazy restore,
we prefetch a few pages that are likely to be accessed with
the faulting page, rather than prefetching before the VM’s
execution begins. This technique is more resilient to di-
vergence since the prefetching decision is based directly
on pages that have been accessed by the VM after the re-
store. There is a smaller penalty for incorrect predictions
because only a few pages are prefetched at a time.

To allow for efficient prefetching on restore, we sort
pages likely to be accessed together into locality blocks
in the VM’s checkpointed memory image. On restore,



we load an entire locality block on each fault to disk.
Since the other pages in the locality block are likely to
be accessed with the faulting page, we eliminate faults to
disk for those pages. We implement this technique in a
new VM checkpointing system for VMware ESXi Server
called Halite.

Halite uses two techniques to predict the access local-
ity of memory pages. The first uses the VM’s memory
accesses during lazy save. The VM continues running
past the checkpoint while its memory is written to disk,
so the VM’s execution during lazy restore is actually a re-
execution of the VM’s execution during lazy save. While
the exact execution of the VM will vary on restore due
to divergence, there is less change to the access locality.
Pages accessed together during lazy save are likely to be
accessed together again on restore.

Since the VM may not access all of its pages during
checkpointing, we must use a second technique for pre-
dicting access locality. For the unaccessed pages, Halite
uses locality in the guest operating system’s virtual ad-
dress space to predict access locality. Pages that are
mapped together in the virtual address space are likely
to be accessed together, so locality in the virtual address
space is another good predictor of access locality.

We designed and implemented Halite as an improved
VM memory checkpointing system for VMware ESXi
5.1 [22] and included other optimizations to the current
system. Halite performs fine-grained compression of the
checkpointed memory file, so that compression can be
done in parallel on checkpoint save and only a small
amount of decompression is required for each fault to
disk on checkpoint restore. Compression increases the
effectiveness of locality blocks because more pages can
fit into each block. Unlike ESXi, Halite makes extensive
use of threads to parallelize work during checkpoint save
and restore, including threads for compression and I/O.
Halite dynamically throttles background work during lazy
save and restore to avoid disk contention.

The next section reviews some new applications for
VM checkpointing that VMware has explored. Section 3
gives background on the current virtual machine memory
checkpointing system in VMware ESX 5.1. Section 4
describes Halite’s new memory file layout with locality
blocks. Section 5 describes the algorithms that we use
for predicting access locality. Section 6 details the other
optimizations in Halite. Section 7 gives implementation
details including the algorithm for saving and restoring
VM memory in Halite. Section 8 presents our experimen-
tal results. Section 9 gives an overview of related work,
including our previous work, and Section 10 concludes.

2 Checkpointing Workloads
The primary motivation for Halite is to improve the check-
point restore performance of ESXi, enabling a variety of

new and emerging use cases. In contrast to fault toler-
ance scenarios, where restore is uncommon and happens
only on failure, these new use cases depend on efficient
checkpoint restore.

2.1 Dynamic VM Provisioning

One of the advantages to cloud computing is the ability to
allocate the appropriate amount of computing resources
for any workload. This allocation does not have to be
static; as a workload requires more or less resources,
the number of allocated VMs can be increased or de-
creased. However, most cloud infrastructures are not able
to quickly bring more VMs online. On Amazon EC2, it
can take up to 10 minutes to bring up a VM [1]. Due to
this delay, users must keep a buffer of unused VMs to
handle spikes in requests. Running a number of idle VMs
is both a waste of resources and still may not be sufficient
to protect against severe spikes in usage.

Halite enables fast checkpoint restore from a tem-
plate VM image, similar to VM fork supported by
Snowflock [10], Kaleidoscope [2] or FlurryDB [14]. This
feature allows users to better scale their resource alloca-
tion with usage. Using a checkpointed VM image with
a running Apache server, a VM could be online and han-
dling user requests in a few seconds. Using a check-
pointed VM also offers advantages over quickly booting
a VM; the applications in the VM benefit from a warm
cache and several applications can be running in the VM
without the overhead of application start up times, which
can sometimes be long. Alternatively, for some work-
loads, Halite gives users the ability to allocate a single
stateless VM for each incoming connection. Customers
have requested this feature because it is an easy solution
to ensure security between users.

2.2 Energy Conservation

Virtualization reduces energy usage with server consolida-
tion, but conserving energy consumed by idle VMs is still
a serious concern in cloud deployments. Some systems
have explored turning off servers [3] or suspending idle
VMs [5] to conserve power, but all of these systems strug-
gle with restarting servers or VMs. They use predictive
techniques to restart VMs in advance. When these tech-
niques incorrectly predict usage patterns, either energy is
wasted powering on VMs that are not needed, or users are
forced to wait for the needed VM to restart.

Halite makes it much easier to turn off idle VMs with-
out suffering from poor performance when the VM is
needed again. Using Halite, the user can checkpoint
VMs and power them off. Complex predictive models are
not required with Halite because suspended VMs can be
quickly restarted on demand.



2.3 Virtual Desktop Infrastructure
Large companies have started to move toward converting
desktop PCs into VMs running in a datacenter. These
virtual desktops are easier to maintain and reduce the
amount of hardware needed. However, since there are
more users sharing hardware, users can see performance
degradation when there are spikes in usage. In particular,
VMware has observed a “boot storm” problem, where all
users arrive at work in the morning and attempt to boot
their VMs close in time, leading to severe disk contention.
VM checkpointing can be used to mitigate this problem. If
users checkpoint their desktop VM before going home (or
an energy conservation system checkpoints it for them),
then they can simply restore their VM in the morning.
Restoring a checkpointed VM requires reading much less
from disk than a full boot, easing contention on the disk.
In addition, Halite efficiently restores the VM in much
less time than booting a VM, further reducing the disk
usage and wait time for the user.

3 ESXi Checkpointing
In order to give some background and motivation to
our work, we describe the state of the art in virtual ma-
chine checkpointing implemented in the current release
of VMware ESXi. We primarily discuss the mechanism
for checkpointing VM memory and not other VM state.

3.1 ESXi Save and Restore Algorithm
ESXi has used lazy checkpointing since VMware ESXi
4.0. Lazy checkpointing allows the VM to run while
its memory is saved or restored, reducing the amount of
downtime. ESXi implements a generic copy-on-write
scheme similar to the one described here [20] and similar
to Xen’s implementation [4]. VMware’s implementation
depends on ESXi’s memory tracing mechanism to track
write accesses, which is also used for Halite.

On checkpoint save, ESXi pauses the VM’s execution
and saves its CPU and device state. ESXi installs memory
traces on all of the VM’s pages and resumes the VM.
When the VM writes to an unsaved page, it triggers the
trace on that page. ESXi saves the page and removes the
memory trace before allowing the write to proceed.

While the VM runs, the hypervisor concurrently writes
out memory pages using a background thread. This thread
ensures that the checkpointing process finishes in a rea-
sonable amount of time. The background thread walks
the VM’s physical address space, saving any pages that
have not been already written. It removes the trace on any
page that it saves to avoid triggering the trace later. The
checkpoint save is complete when the background thread
has walked the entire address space.

ESXi supports lazy checkpoint restore using the swap
subsystem by treating a restoring VM like a VM with all
of its memory swapped. This implementation was chosen
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Figure 1: Block layout of checkpointed memory file.
Memory blocks (MB) consist of several pages in physical
address order. Locality blocks (LB) contain a variable
number of compressed memory blocks. Memory blocks
are grouped into locality blocks based on access locality.

for its simplicity and ease of deployment. To restore a
VM, ESXi sets up the checkpointed memory file as the
swap file and then restarts the VM at the checkpoint. On
each access by the VM, a single memory page is swapped
in from the memory file. Concurrently, a background
thread touches swapped out pages to ensure that the re-
store finishes in a reasonable period of time.

3.2 Memory File Organization
ESXi saves the VM’s memory in physical address order
from physical address 0 to the VM’s memory size. This
file layout is simple and requires no metadata, but is not
optimal for either checkpoint save or restore. On every
write to an unsaved page, ESXi must save the page be-
fore allowing the VM to continue executing. Since these
writes are to random memory pages, the disk accesses are
random as well. ESXi avoids having to write to disk on
each write access by buffering, but buffered pages still
cannot be written out sequentially because of the file lay-
out. These writes can degrade the VM’s performance if
the rate of writes to memory is high.

This organization is even worse for checkpoint restore.
On every access to an unrestored memory page, the VM
must pause while waiting for the page to be read from
disk. Since physical memory is inherently random ac-
cess, every access to an unrestored memory page requires
the disk to seek and read a single page, leading to poor
disk performance. Because ESXi treats the memory as
swapped, the hypervisor only reads one 4K page from
disk on each access, further degrading disk performance.

4 Halite Memory File Organization
This section describes Halite’s memory file layout. Halite
uses a significantly different memory file organization
from ESXi, with locality blocks and fine-grained com-
pression. Figure 1 shows the layout of the Halite memory
file. Locality blocks are crucial for efficient prefetching
on each fault to disk during restore.



4.1 Memory Blocks
For simplicity of implementation and to reduce the size
of meta-data, Halite divides the VM’s physical memory
into fixed-size, aligned blocks of a few pages each called
memory blocks. Halite uses memory blocks as the small-
est unit of processing (i.e., compression, buffering, etc.),
so memory blocks must be small enough that there is still
some access locality in the physical address space.

We found using a memory block size of two pages
was a good trade-off in our implementation; it halves the
amount of meta-data, but remains small enough for work-
loads with poor access locality in the physical address
space like Windows applications. Larger memory blocks
sizes can be used for Linux because of its use of a buddy
allocator1, but performed poorly for Windows.

4.2 Locality Blocks
Halite groups a number of memory blocks into each lo-
cality block, based on access locality. Halite loads an
entire locality block on each fault to disk, reducing disk
accesses and increasing disk efficiency. For simplicity,
locality blocks are fixed-size. Due to the fixed size of
locality blocks, they contain a variable number of com-
pressed memory blocks and some empty space. Locality
blocks also reduce the size of meta-data needed for com-
pression because only the byte offset within the locality
block is needed. Larger locality blocks increase the effi-
ciency of the disk, but also increase the latency of each
fault to disk on restore. In our implementation, we used a
locality block size of 64KB, which we found to be a good
trade-off between efficiency and latency.

5 Access Locality Prediction
Halite uses two techniques to predict access locality for
grouping memory pages into locality blocks. The first
technique traces the execution of the VM past the check-
point during the lazy save. The first technique only works
for pages that are accessed during the lazy save, so we
combine it with a second technique that uses guest vir-
tual address locality to predict access locality. Both of
these techniques are standard in CPU prefetching [19],
although not at the 4KB page level.

5.1 Lazy Save Memory Accesses
In our previous work [24], we observed that the check-
point restore period is a re-execution of the checkpoint
save period since the VM restores back to the point in time
at the beginning of the lazy save period. Unlike working
set restore, Halite uses the VM’s memory accesses during
lazy save to predict access locality, rather than access
ordering. If the VM accessed page X , followed by page

1Linux’s buddy allocator increases access locality in the physical
address space by mapping contiguous physical addresses to virtual
addresses whenever possible.

Y during lazy save, then it is highly likely that if the VM
accesses X or Y on restore, it will also access the other,
even with divergence due to timing or different external
inputs.

Halite groups the pages that were accessed together
during lazy save into locality blocks. The first N pages
accessed by the VM are stored in one locality block, the
next N in another, where N is the size of a locality block.
The number of pages in a locality block can vary due
to compression. Halite does this sorting during the save
process by writing pages out to locality blocks as they
are accessed. Simply filling locality blocks in access
order allows Halite to fill locality blocks without post-
processing, to easily fill a locality block at a time, and to
write locality blocks out sequentially to disk as they are
filled.

For VMs with more than one virtual CPU (vCPU),
Halite separates pages into locality blocks based on the
vCPU. Since each vCPU is running a separate thread of
execution, we believe that an access to page X on one
vCPU, followed by an access to page Y on another vCPU
is not a good predictor of access locality since differences
in timing can easily cause divergence. Sorting based on
vCPU simply requires Halite to fill one locality block per
vCPU at a time.

5.2 Guest Virtual Address Space

Divergence from the VM’s execution during lazy save on
restore is unavoidable; there will be pages that weren’t
accessed during lazy save that are accessed on restore. For
pages that are not accessed during lazy save, we use guest
virtual address space locality to predict access locality.
This technique assumes that if page X and Y are adjacent
in the virtual address space, then an access to page X or
Y is a good predictor that the VM will also access the
other page. Previous work [16] has shown that the virtual
address space is a better predictor of access locality than
the physical address space.

Halite sorts pages not accessed by the VM during the
checkpoint save into locality blocks based on virtual ad-
dress. The first N mapped pages in a guest virtual address
are stored in one locality block, the next N in another.
Again, N may vary due to compression. Halite collects
page table roots as the VM runs. The background thread
in Halite walks the guest virtual address space using the
guest page tables. As the background thread scans, it fills
locality blocks in the order it encounters pages and writes
them out sequentially to disk. We only save a single copy
of each memory page. Memory pages that are mapped in
more than one guest address are saved the first time we
encounter them in a page table.



6 Halite Checkpointing Optimizations
This section introduces other improvements made in
Halite to ESXi’s checkpointing system. These optimiza-
tions include dynamic background thread throttling, com-
pression, zero page optimizations, and threading. Some of
them take advantage of Halite’s more sophisticated mem-
ory file organization, while some of them are just general
improvements to the ESXi checkpointing infrastructure.

Dynamic Background Thread Throttling The back-
ground thread in ESXi is designed to ensure that the check-
pointing process finishes, even if the VM does not access
all of its memory pages. When the VM is rapidly touch-
ing pages, disk access to the checkpointing file becomes
a bottleneck and the background thread begins to contend
with the VM. However, we observed that if the VM is
accessing pages rapidly, there is no reason for the back-
ground thread to run since the checkpointing process is
clearly still making progress. Therefore, we only run the
background thread in Halite if the checkpointing process
is not progressing, which keeps the background thread
from contending with the VM. We do this throttling for
both checkpoint save and restore.

Compression Compression reduces the size of the
checkpointing image, which reduces not only the size
on disk of the image, but also the amount of data that
needs to be moved to and from the disk for the check-
point. Reducing the disk space required can be important,
especially if the VM has a large memory size, but reduc-
ing the amount of I/O is even more important because the
disk is a bottleneck during checkpointing. Compression
also allows more memory to be prefetched on each page
fault with the same amount of I/O. In Halite, each mem-
ory block in a locality block is separately compressed.
We chose to compress memory blocks instead of whole
locality blocks to allow more parallelization and to reduce
the amount of decompression required on each page fault.
We found that using smaller blocks for compression has
minimal impact on the compression ratio.

Zero Pages ESXi scans guest memory for pages that
are completely zero and does copy-on-write sharing of
those pages. For these pages, there is no reason to read or
write the page for checkpointing, so Halite tracks these
pages and does not include them in the memory image.
Halite also does this for pages that the VM has never
touched, and therefore, are not backed in the hypervisor.

Threading Halite introduces several threads to allow
more parallel processing of memory pages. On check-
point save, these threads reduce the amount of time that
the VM has to be paused on each page fault. Halite only
needs to pause the VM long enough to copy the memory
page to a buffer; threads perform the compression and
writing the memory out to the checkpointing file. On

restore, the faulting page must be read in from disk and
decompressed synchronously, so threads cannot improve
the performance. However, Halite decompresses and re-
stores the other memory blocks in the locality block using
threads in parallel. This minimizes the work for each
prefetched page on a page fault and eliminates the work
required if the VM later accesses one of the prefetched
pages.

7 Implementation
We implemented Halite using VMware ESXi 5.1. Halite
replaces ESXi’s existing checkpointing mechanisms be-
cause they are not designed to asynchronously process
memory and restore memory that is not organized in physi-
cal address order. In addition, ESXi does not save memory
to a separate file by default; memory is normally stored
in one file with other checkpointed state. Halite required
a separate file because there is no way to anticipate the
size of the region required for checkpointed memory due
to compression. ESXi does not support compression of
the memory image. Halite only replaces the VM memory
checkpointing system, so ESXi still handles saving any
other VM state.

7.1 Halite Save and Restore Algorithm
Like ESXi, Halite uses lazy checkpointing, but Halite
does copy-on-access, rather than copy-on-write check-
pointing to capture access locality. However, Halite
buffers pages on checkpoint save and writes to disk se-
quentially, rather than randomly, so the overhead is small.

On both checkpoint save and restore, Halite tries to do
as much work asynchronously as it can. During the lazy
save period, when a trace triggers, Halite simply copies
the memory block to a buffer and removes all of the traces
on the pages in that block. Later the memory block is
compressed by a thread and copied to a locality block.
When the locality block fills up, another thread writes it
out to disk. The thread also updates the mapping to record
which locality block contains each memory block.

When the VM faults on an unrestored page, Halite
consults the map to find which locality block it needs to
fetch. The locality block might already be in memory if
it was prefetched by a previous fault. If not, Halite reads
the locality block, and decompresses and restores just the
memory block of the faulting page. The other pages in
the locality block will be decompressed by threads later.

The background thread in Halite works similarly to
ESXi, except it is throttled as described in Section 6.

8 Evaluation
Our evaluation answers several questions about the per-
formance of Halite:

• How does Halite compare to ESXi 5.1 for some
representative workloads?



• How do locality blocks compare to other block orga-
nizations?

• How does compression impact the performance of
Halite for workloads with differing amounts of com-
pressibility?

• How much do locality blocks contribute to the per-
formance benefits offered by Halite?

• How does restoring a checkpointed VM using Halite
compare to a cold boot of the VM?

We evaluated Halite using a synthetic workload and
three application benchmarks. pgbench [18] is a stan-
dard database benchmark for PostgreSQL. Worldbench
is a Windows desktop application workload. We also
designed a simulated Apache [6] web server benchmark.
Our workloads represent a range of complexity from the
simple synthetic workload to the complex Worldbench
benchmark. We ran our experiments on a server with a
2.3GHz 8-core AMD Opteron processor and 24GB of
RAM. All of the VMs and checkpoints are stored on a
15,000 RPM Seagate 1TB drive running VMFS-5.

8.1 Microbenchmark
First, to evaluate the performance benefit of Halite and
its various optimizations in a controlled environment, we
created a synthetic workload generator. The benefit of the
workload generator is having control over every aspect of
the workload. VM workloads tend to be very complex,
making it difficult to isolate the source of performance
differences.

The workload sequentially accesses memory using one
thread per vCPU, with each thread accessing a separate
region of memory. We ran our workload on Red Hat 6
Enterprise Server in a VM with 4 vCPUs and 2GB of
RAM. The workload has a working set size of 256MB. It
allocates 1GB of memory for the test and fills that memory
with data that is 50% compressible. In order to increase
physical memory fragmentation, the workload allocates
memory in a 16 page stride. Workload performance is
measured by the time needed to access 100,000 pages.
We checkpointed the VM in the middle of the workload
test run, then restored the checkpoint and recorded the
time to complete the test. The VM restores back to the
start of the checkpointing, so the result does not include
any overhead from creating the checkpoint. We separately
discuss the cost of checkpoint save in Section 8.3.

8.1.1 Checkpoint Restore Overhead

We tested the overhead imposed by checkpoint restore
on the microbenchmark for several different test config-
urations. We tested the current implementation of VM
checkpointing in ESXi against Halite with all of its opti-
mizations. We also measured the impact of locality blocks
compared to other block organization schemes. We used a
version of Halite without any memory file optimizations,
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Figure 2: Synthetic workload performance for the current
ESXi implementation, Halite with different memory file
organizations and Halite with memory file optimizations.
The middle bars give Halite performance for an uncom-
pressed memory file using (from left to right) random
blocks, physical address blocks (P-A) and access local-
ity blocks (A-L). Performance is given as the increase in
runtime caused by the checkpoint restore (lower is better).

such as compression and the zero page optimization, but
with different block organizations. We do not use com-
pression in this test, so each file block holds 8 memory
blocks or 16 pages. Thus, on each fault to disk, 15 other
pages in the block are “prefetched” from disk. We tested
three organizations: memory pages grouped into blocks
randomly (random blocks), memory pages grouped by
physical address (physical address blocks) and locality
blocks.

Random blocks should be the lower bound worst-case
performance; on each fault to disk, 15 random pages are
loaded along with the faulting page. Physical address
blocks use the same memory file organization as the cur-
rent ESXi implementation, but group 16 pages into a
block to read for each fault to disk instead of a single
4KB page. This organization simulates the performance
of ESXi if we had added Halite’s other optimizations, but
kept the memory file organization. The test using locality
blocks simulates Halite, but isolates the effects of local-
ity blocks from Halite’s other memory file organizations,
including compression and the zero page optimization.

Figure 2 gives the performance overhead of checkpoint
restore for each of our test configurations. Each test result
is the average of 10 test runs. The baseline runtime of
the workload generator is 54 seconds on average. The
restore overhead is given as the increase in runtime of the
synthetic workload due to the VM being restored in the
middle of the run. We use the same snapshot for all test
configurations by reformatting the same memory file, so
the performance before the checkpoint is identical and the
difference in runtime is only due to the restore process.

Comparing ESXi and Halite, Halite reduces the restore
overhead by 100 seconds or more than 10x. The three



Table 1: Efficiency of each type of block organization
(no compression) given by number of blocks faulted in
from disk and percentage of other pages in the blocks
later accessed.

Disk Accesses VM Access %

Random 22,975 19%
P-A 14,501 36%
A-L 6,908 83%

bars in the middle of the graph show the impact of varying
just the block organization. It is important to isolate the
performance impact of different block organizations to
understand the benefit offered by locality blocks.

As expected, random blocks perform the worst. Ran-
dom blocks perform worse than even ESXi, although
reading blocks of pages from disk should increase disk
efficiency. This result shows that reading blocks from disk
only improves performance if the other pages in the block
are useful for eliminating future faults to disk. Otherwise,
using bigger blocks only increases the latency of each
fault to disk without reducing the overall number of faults.
Physical address blocks halve the overhead compared
to the random organization because the other pages in a
block are more likely to be accessed, eliminating some
faults to disk. This improvement is due to access locality
in the physical address space.

Locality blocks perform the best, improving perfor-
mance by 6x over random blocks and almost 3x over
physical address blocks. We see further improvement
because locality blocks have better access locality than
physical blocks. More of the other pages in the block are
likely to be accessed after the faulting page, eliminating
more faults to disk. These results show how crucial block
organization is for restore performance.

8.1.2 Memory File Organization

We can see how different block organizations impact per-
formance by looking at the checkpointing statistics col-
lected by Halite. Table 1 gives the total number of faults
to disk for each block organization and the percentage
of prefetched pages the VM accessed after each fault.
Prefetched pages are the pages other than the faulting
page in a block of pages brought in from disk. Accesses
to prefetched pages eliminate faults to disk, improving
disk efficiency.

It is clear that locality blocks lead to more efficient
disk access than the other block organizations. There
are fewer faults to disk and more pages in each faulted
block are eventually accessed, eliminating more faults
and increasing disk efficiency.

We collected hypervisor statistics on the percentage of
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Figure 3: VM performance during lazy restore given as
% of time spent executing in the VM (higher is better).
Results are given for three block organizations: random,
physical address blocks (P-A) and access locality blocks
(A-L)

time spent running guest code to show the impact of faults
to disk. Faults to disk pause the VM’s execution, leading
to less time spent running guest code and a reduction in
performance for the guest. For the best performance, we
want to return the guest to running almost 100% of the
time as soon as possible.

Figure 3 shows the impact on guest execution during
restore for the different block organizations. Locality
blocks improve performance by reducing the period of
time where the VM does not run much due to faults to
disk. With locality blocks, the VM sees a large number of
page faults for the first 30 seconds. That time increases to
120 seconds with a physical address blocks, and to 210
seconds with a random blocks. The total time to restore
the VM also decreases from locality blocks to random
blocks.

During the restore, the VM sees a large number of
faults until the working set is entirely faulted in. The
period where the VM sees performance degradation is
not directly related to the test overhead given in Figure 2
because the VM is making some progress during that
time. Locality blocks pack the VM’s working set into
fewer blocks and brings the working set in with fewer
faults to disk.

For some workloads, we could prefetch these page
before starting the VM as we previously proposed [24].
However, the working set cannot be determined before
the VM restores for some workload, and in fact, changes
while the VM runs. For those workloads, Halite provides
better performance because locality blocks group pages
that are likely to be accessed together into blocks, so
Halite will still be able to efficiently fault in the working
set, whereas working set restore would hurt performance
by prefetching pages that are not needed before the VM
starts. We saw this reduction in performance for work-
ing set restore with the Worldbench workload presented
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Figure 4: Restore overhead for Halite using compressed
and uncompressed memory files for workloads with vary-
ing compression ratios. Smaller compression ratio means
that the workload is more compressible. Performance is
given as the increase in the synthetic workload runtime
(lower is better).

in Section 8.2.1, whereas Halite provides a significant
performance improvement.

8.1.3 Compression

The performance impact of including compression in
Halite depends heavily on the compressibility of the work-
load. Thus, we compare Halite performance with a com-
pressed and uncompressed memory file for workloads
with different compression ratios. We varied the com-
pression ratio of the memory allocated by the workload
generator by packing some percentage of every page with
already compressed data. These tests were performed us-
ing zlib [13]. Halite also supports LZRW [23]; however,
we found that zlib performed similarly to or better than
LZRW in most cases.

Figure 4 shows the performance results for workloads
that compress to 10% of their original size to workloads
that compress to 90% of their original size. The perfor-
mance improvement due to compression varies from a
89% improvement to a 26% improvement depending on
the compressibility of the VM’s memory.

8.2 Application Benchmarks
In addition to our synthetic benchmark, we also evaluated
the performance of Halite for a number of representa-
tive application benchmarks. These workloads vary in
complexity, and therefore, the amount of divergence they
exhibit. Worldbench is a simulated desktop application
workload running in Windows XP. It is the most divergent;
there are timing variances in the inputs from the workload
generator, and Windows XP has many background pro-
cesses that run at various times. In comparison, pgbench
running on PostgreSQL in a server Linux install is more
deterministic. The benchmark is deterministic and there

are few background processes. Finally, our Apache server
benchmark is designed to have divergence in the random
selection of pages that we request from it, but it runs on
top of Linux and has a small working set.

The workloads also vary in their compressibility, which
affects the performance benefit of Halite, as shown in the
previous section. The Worldbench checkpointed memory
file only compresses to 67% of its original size due to
a large number of media files in memory. The pgbench
checkpointed memory file compresses to 10% of its origi-
nal size due to pgbench filling the database with patterns.

8.2.1 Worldbench

Worldbench is a simulated desktop workload with typical
desktop applications like word processing, web brows-
ing and video editing. Worldbench closely simulates the
expected workload of a VDI deployment described in
Section 2.3. We ran Worldbench in Windows XP in a VM
with 1GB of memory and 2 vCPUs. We used the multi-
tasking test from the test suite that simulates a browser
workload and media encoding. Worldbench reports the
amount of time taken to run the test suite once. We check-
pointed the VM 10 minutes into the test run, so the first 10
minutes are identical across runs. Each test is the average
of 10 test runs.

We evaluated the performance of Worldbench on ESXi
and three Halite configurations. The current ESXi im-
plementation of checkpointing uses a memory file that is
organized by physical address and reads one 4KB page
on each fault to disk. The first Halite configuration is
Halite (P-A), which gives the performance of Halite using
physical blocks. Halite (P-A) uses Halite’s checkpoint-
ing optimizations like threading and background thread
throttling, but none of the memory file optimizations like
locality blocks, compression and zero page optimization.
This configuration simulates the performance of ESXi
with the Halite optimizations that would be easy to add to
ESXi, like increasing the block size faulted in from disk
and throttling the background thread, but not changing
the memory file layout.

The next Halite configuration is Halite (A-L), which
gives the performance of Halite with locality blocks,
which is the key contribution in Halite. This configu-
ration isolates the performance impact of locality blocks,
from other memory file optimizations like compression
and zero page optimization. The last configuration is
Halite with all optimizations including compression and
zero page optimization. This configuration gives the total
performance benefit of Halite over ESXi.

The baseline performance of Worldbench without
checkpointing is 816 seconds. Figure 5 gives the World-
bench results as the average increase in the runtime due
to checkpointing. Again, there is no performance impact
from saving in these results because the checkpoint is
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Figure 5: Checkpointing overhead for Worldbench given
as number of seconds increase in runtime over baseline
(lower is better).

before the beginning of the save process, so the increase
in runtime is only due to the lazy restore process. All
configurations use the same memory file, re-organized
into the appropriate block organization, so there is only
one checkpoint across all of the configuration tests.

ESXi increases the runtime of Worldbench by more
than 25 seconds due to faults to disk during the lazy re-
store period. Halite (P-A) adds a number of optimizations
to ESXi, including physical blocks, which should increase
disk efficiency. However, Worldbench has poor access
locality in the physical address space, so physical blocks
actually reduce performance like random blocks did in
our microbenchmark test. Halite (P-A) actually increases
the runtime overhead by almost 2x, up to 56 seconds on
average.

Like Halite (P-A), Halite (A-L) also uses blocks, but
locality blocks instead of physical blocks. Halite (A-L)
reduces the runtime overhead by almost 6x compared to
Halite (P-A), showing the importance of block organi-
zation based on access locality. Halite, which includes
compression, further improves performance, reducing
the checkpointing overhead to an average of 1.6 seconds.
Compared to the current implementation of ESXi, Halite
reduces restore overhead by 94%. This performance is
a significant improvement over our previous work [24],
which did not cope with divergence well and actually
reduced performance for Worldbench.

8.2.2 pgbench

pgbench is a benchmarking tool, based on TPC-B, for the
PostgreSQL database used to test the performance of a
database installation. We used VMware’s vFabric Post-
greSQL [21] based on PostgreSQL 9.0. We ran pgbench
and PostgreSQL in a Red Hat 6 Enterprise server in a VM
with 2GB of memory and 4 vCPUs. pgbench measures
database performance by recording the total number of
transactions completed within a timed run.

We used a pgbench run of 5 minutes with 16 clients
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Figure 6: Checkpointing overhead for pgbench given as
a reduction in transactions completed in 5 minutes over
baseline (lower is better).

running on 4 threads. We ran pgbench with only select
queries because we found the performance to be more
consistent and it avoided disk contention. The default
85/15 read/write mix showed similar performance im-
provements, but with a larger range of performance over
test runs. We checkpointed pgbench at the beginning of
the run and collected the test results after restoring. vFab-
ric PostgreSQL is designed to be an in-memory database,
so we sized our database to 1.8GB.

We used ESXi with the same Halite configurations as
the Worldbench experiments. pgbench shows the differ-
ence between the different configurations for a workload
that has less divergence. The baseline performance of pg-
bench with no checkpoint taken is 6.9 million transactions.
Figure 6 shows checkpointing overhead for pgbench as
the reduction in number of transactions completed in 5
minutes. For example, pgbench completes 2.8 million
transactions after restoring from a checkpoint on ESXi, a
reduction of 4.1 million over the baseline. We chose to
plot the overhead metric because it stays constant regard-
less of the length of the test.

For pgbench, Halite (P-A) only increases checkpoint-
ing overhead by 20% compared to ESXi. This increase is
smaller than Worldbench because Linux workloads have
better physical address locality due to Linux’s buddy allo-
cator. Still, Halite (A-L) reduces performance overhead
by more than 2x for both ESXi and Halite (P-A). Halite
with compression and the zero page optimization further
reduces the overhead by 75%. Compared to ESXi, Halite
reduces performance overhead by 89%.

8.2.3 Apache Webserver

To evaluate the performance of Halite for dynamic VM
allocation that we described in Section 2.1, we created
an experiment to simulate an Apache server application
running in a VM. The test uses an Apache server with an
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Figure 7: Apache Response Times. Time until first re-
sponse (lower is better) from Apache server starting from
boot of the VM, an ESXi checkpoint and a Halite check-
point.

HTML dump of Spanish Wikipedia2. The test client re-
quests pages randomly with a Gaussian distribution from
a set of 10,000 pages from the dump. Before checkpoint-
ing, the client makes 10,000 requests to warm the cache.
We ran Apache in Ubuntu 10.04 Server in a VM with 2
vCPUs and 2GB of memory.

We tested the performance of our server application
with a few scenarios. First, we measured the response la-
tency of the server when booting the VM and starting the
web server on the first HTTP request. This scenario sim-
ulates dynamic allocation of VMs without using check-
pointing. Next, we measured the response latency when
restoring a checkpoint of a VM with a running Apache
server using the current ESXi implementation. This sce-
nario reflects the performance of using ESXi checkpoint-
ing for dynamic VM allocation. Finally, we tested the
latency using Halite to restore the server VM.

Figure 7 gives the response times for each setup. Dy-
namically allocating a new VM for each connection re-
quires 23 seconds on average to respond to the first HTTP
request. Restoring a checkpointed VM with a running
Apache server using the current ESXi checkpointing im-
plementation gives response times of 18.4 seconds on
average. Using Halite reduces response time to 7.3 sec-
onds. Halite reduces the response time of a dynamically
allocated web server VM by a factor of three compared
to a cold boot of the VM and a factor of 2.5 compared to
a restore using the current ESXi implementation, making
it much more feasible to dynamically allocate VMs.

We also measured the response times for subsequent
HTTP requests to the web server. Once the connection
to the server has been established, our test client issues
10,000 random page requests, also with a Gaussian distri-
bution. These measurements further show the benefits of
Halite as well as showing the benefit of using a checkpoint,

2http://dumps.wikimedia.org/eswiki/

Table 2: Average response time and maximum response
time for the first 10,000 requests, excluding the first re-
quest.

Avg. Response Time Max Response Time

Boot 18 ms 25.168 s
ESXi 13 ms 9.333 s
Halite 3 ms 3.010 s

Table 3: Checkpoint save overhead for ESXi and Halite
given as increase in runtime or reduction in transactions
over baseline.

Workload ESXi Halite

Synthetic workload (sec) 1 4
pgbench (millions of trans.) .31 .76
Worldbench (seconds) 11 5

rather than a newly booted VM, for dynamic allocation.
Table 2 shows the average and maximum response time
for HTTP requests issued to the web server.

Since the VM’s cache is on disk at the beginning of
all of these scenarios, the performance of the web server
depends entirely on how efficiently the VM’s cache can
be filled from disk. Using a checkpointed VM reduces
both average and maximum response times. The web
server running in the VM already has a warmed cache, so
the VM’s working set just has to be restored, the cache
does not have to be refilled. Restoring the checkpoint
using ESXi reduces the response times, however, Halite
performs the best because it is able to most efficiently
restore the VM’s working set from disk. Halite reduces
the average response time of the web server by a factor
of 6 and the maximum response time by a factor of more
than 8 over booting the VM and starting the web server
for each connection.

8.3 Checkpoint Save
Since most of the work for checkpoint save is done asyn-
chronously in ESXi and Halite, the difference in perfor-
mance between the two is minimal. Halite does copy-on-
access checkpointing, which increases the checkpointing
overhead, but writes out to disk sequentially, which re-
duces the overhead.

Table 3 gives performance results for our synthetic
workload, pgbench and Worldbench. Performance was
measured for each workload after a checkpoint was taken
in the middle of the run. For the synthetic workload and
pgbench, the additional read traces only reduced perfor-
mance by 7-8%. These two workloads are both read-only



workloads, so the performance impact is higher than for a
more balanced read-write workload. Halite performs bet-
ter than ESXi for Worldbench due to the more write-heavy
workload.

9 Related Work
Most previous checkpointing systems focused on check-
point save performance for supporting fault tolerance, so
there is a limited body of work on improving checkpoint
restore performance. For systems that do not support lazy
restore, the memory file organization is not important,
so it is frequently not addressed. We also describe some
techniques used by process and file system checkpointing
systems to optimize checkpointing.

9.1 Virtual Machine Checkpointing
There is not a large body of work on virtual machine
checkpointing and almost all of it focuses on checkpoint
save performance. Many [15, 20] do not address the
restore algorithm at all.

Commercial hypervisors all include support for check-
pointing and restoring VMs, however not all support lazy
checkpoint save or restore due to the complex implemen-
tation. For systems that do not support lazy checkpoint
restore, the disk layout of checkpointed memory does not
matter, although performance could be improved using
compression. Xen supports lazy checkpointing [4], but
it is not clear whether it supports lazy restore or what
organization is used for checkpointed memory.

Our previous work [24] addressed the issue of lazy
restore performance by prefetching the working set of
the VM’s memory before restarting the VM. However,
we found that, while it was effective for simple work-
loads like MPlayer running on basic Linux, it offered
little benefit for more complex workloads, like Windows
desktop applications. These complex workloads have
more divergence, and since working set restore depends
on predicting which memory pages the VM will access
on restore, it cannot cope with divergence. In contrast,
Halite focuses on predicting which pages the VM will
access together on restore, making it more effective for a
wider range of workloads, including a 94% reduction in
restore overhead for Windows workloads.

9.2 Other Virtualization
One related area of work is VM migration. Post-copy
migration suffers from the same performance challenges
as lazy restore due to the network latency while the VM is
paused waiting for the page to be copied from the source.
However, the organization of VM memory is not a factor
because the VM’s memory is not on disk on the source,
so it can be accessed in any order with no performance
penalty.

Hines et al. [7] implemented a background page walk-

ing thread that adaptively picks the order in which it walks
depending on the last access. For each access, the page
walker will try to push some of the other pages around
that access in the physical address space. However, previ-
ous work [16] found that the guest virtual address space is
a more reliable predictor of access locality and we found
in our experiments that locality in the physical address
space can be poor.

VM fork is another solution for dynamic allocation of
virtual machines that requires restoring memory while the
VM runs. Snowflock [10] depends on there being a small
difference between forked VMs that the memory can be
sent from the parent to the child with little performance
degradation for the child VM. Kaleidoscope [2] groups
pages based on what the page is used for as another way
to predict access locality. Our approach is more general
because it does not require paravirtualization to categorize
pages.

9.3 Process Checkpointing
Previous work in optimizing checkpointing for individual
or distributed processes has focused primarily on check-
point save, but not checkpoint restore. Plank et al. [17]
implemented the process checkpointing system Ickp us-
ing copy-on-write checkpointing as well as compression
as an optimization. Li et al. [11] compare performance
characteristics of four algorithms for checkpoint/restart
of parallel programs. The work of Liao et al. [12], called
Concurrent CKPT, aims to improve on the CLL algorithm
by avoiding page table manipulation. However, all of this
work focuses solely on checkpoint save performance, and
does not discuss checkpoint restore.

9.4 Fast OS and Application boot
There has been some work on organizing operating sys-
tems and application files to improve boot times for both.
Windows uses a mechanism called SuperFetch [8] that or-
ders files on disk in the order that they are accessed during
boot. SuperFetch uses an adaptive algorithm that tracks
past boot processes to predict the order of accesses. Like
Halite, SuperFetch addresses the performance of restor-
ing some set of data by reordering the data on disk in a
more optimal way. Unlike Halite, SuperFetch attempts to
predict the order of all accesses, not just the locality, so
performance suffers when there is divergence. However,
divergence may be less of a concern for booting the OS.

Joo et al. [9] implemented a system that predicts and
prefetches application data on application startup to opti-
mize for interleaving application execution and I/O. Like
other predictive techniques, theirs suffers from reduced
performance on divergence, although divergence is less
of a problem for applications. They do not address disk
layout at all because their system is designed for SSDs.
However, they could improve performance on SSDs by



reorganizing the data for prefetching into fewer blocks.

10 Conclusion
We presented a new checkpointing system, Halite, for
VMware ESXi that reduces restore overhead for a range
of workloads. Halite predicts which pages the VM will
access together on restore and groups these pages into
locality blocks. We showed that locality blocks offer
significant performance benefits over other block organi-
zations and copes well with divergence in complex VM
workloads like Windows desktop applications. In partic-
ular, locality blocks outperform physical address blocks
by 10x for Windows. Combining locality blocks with
Halite’s other optimizations, Halite reduces the overhead
of checkpoint restore in VMware ESXi to 1.6 seconds
for a Windows desktop workload, a reduction of 94%.
This significant improvement in restore performance al-
lows Halite to efficiently support new applications for
VM checkpointing.
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