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Problem Setting

We observe n training samples (xi , yi ) ∈ Rp × Y drawn independently from
D. We want to find an h(x) = g(ω⊤x) that makes the following error small

ED[ℓ(h(x), y)]

Regression and classification are specific cases of this
1 Regression: Y = R, g(x) = x , and ℓ(x , y) = (x − y)2

2 Classification: Y = {0, 1}, g(x) = sgn(x), and ℓ is 0-1 loss
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Problem Setting cont.

Hypothesis
Each predictor (ωi ) has a small, independent random effect on the outcome

As an example, in the regression setting we will assume that E[ω] = 0 and
Var[ω] = p−1α2Ip where α2 = E∥ω∥2

Then for regression X ,Y are related through Xω = Y + ϵ for an
independent mean zero, unit variance ϵ. As is standard we define the ridge
solution as

ω̂λ = (X⊤X + nλIp)
−1X⊤Y

and the corresponding estimates are ŷλ = ω̂⊤
λ x

Furthermore, we are interested specifically in the asymptotic setting for
both n, p, that is n, p → ∞ and

p

n
→ γ > 0
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Definitions

Definition
The spectral distribution of a matrix A ∈ Rp×p is the CDF of the
eigenvalues

FA(x) =
1
p

p∑
i=1

1(λi (A) ≤ x)

Definition
If X is a measurable space, then we say a sequence of probability measures
Pi converges weakly to P if for all f ∈ CB(X ) we have∫

X
f dPi →

∫
X
f dP
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Marchenko Pastur

Assumptions
1 We will assume that we can factor our data matrix X ∈ Rb×p as

X = ZΣ1/2 where Z has iid mean zero, unit variance entries, and Σ is
a constant PSD covariance matrix.

2 The spectral distributions FΣ converge weakly to a probability
measure H called the population spectral distribution (PSD).

Theorem
Under these assumptions, then FΣ̂ converges weakly with probability 1 to a
limiting distribution F called the empirical spectral distribution (ESD),
where Σ̂ is the sample covariance of X .
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Stieltjes Transform

Definition
For any measure G , defined on [0,∞), it defines a function called the
Stieltjes transform defined by

mG (z) =

∫ ∞

0

G (t)dt

z − t

We define m(z) := mF (z) for F defined earlier, and also define the
companion transform v(z) as the Stieltjes transform of the limit of
Σ̂ = 1

nXX
⊤. These two are related by

γ(m(z) + z−1) = v(z) + z−1

For a distribution G with moments mn, the Stieltjes transform has
expansion

mG (z) =
∞∑
n=0

mn

zn+1

Noah Feinberg High-Dimensional Asymptotics of Prediction: Ridge Regression and ClassificationAugust 26, 2024 6 / 17



More Random Matrix Theory

The proof also uses the following result on random matrices and requires
finite 12th moments

Theorem
1
p
tr
(
Σ(Σ̂ + λIp)

−1
)
→a.s

1
γ

(
1

λv(−λ)
− 1
)
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Predictive Risk of Ridge Regression

Theorem
Under the previous assumptions, and the additional assumptions that
∥Σ∥ ≤ C and E[Z 12

ij ] < C for all the Σ,Z , then for all choices of λ > 0

rλ(X ) : = E[(y − ŷλ)
2 |X ]

→a.s R(H, α2, γ)

: =
1

λv(−λ)

(
1 +

(γα2

λ
− 1
)(

1 − λv ′(−λ)

v(−λ)

))
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Cont.

Theorem cont.
Furthermore, if we define γp = p

n and choose the optimal ridge parameter
λ∗
p = γpα

−2 then we have

rλ∗
p
(X ) = 1 +

γp
p

tr

(
Σ
(
Σ̂ +

γp
α2 Ip

)−1
)

→a.s R
∗(H, α2γ)

:=
1

λ∗v(−λ∗)

for λ∗ = γα−2
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Graph

For BinaryTree p = 16 and n = pγ−1 while for Exponential n = 20 and
p = nγ.
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Partial Proof of Theorem

The proof for the optimal cases is shorter so we will give that

rλ∗
p
(X ) = 1 + E[(x⊤(ω − ω̂λ∗

p
))2 |X ]

= 1 + E[(ω − ω̂λ∗
p
)⊤(xx⊤)(ω − ω̂λ∗

p
) |X ]

= 1 + E[(ω − ω̂λ∗
p
)⊤Σ(ω − ω̂λ∗

p
) |X ]

= 1 + tr
(
ΣE[(ω − ω̂λ∗

p
)(ω − ω̂λ∗

p
)⊤ |X ]

)

Now note that

ω − ω̂λ∗
p
= ω − (X⊤X + nλ∗

pIp)
−1X⊤(Xω + X⊤ϵ)

= ω − (X⊤X + nλ∗
pIp)

−1(X⊤Xω + nλ∗
pIpω − nλ∗

pIpω + X⊤ϵ)

= (X⊤X + nλ∗
pIp)

−1(X⊤ϵ− nλ∗
pω)

Noah Feinberg High-Dimensional Asymptotics of Prediction: Ridge Regression and ClassificationAugust 26, 2024 11 / 17



Partial Proof cont.

Now we can substitute this back into where we previously were, let
A = (X⊤X + nλ∗

pIp)

rλ∗
p
(X ) = 1 + tr

(
ΣE[(ω − ω̂λ∗

p
)(ω − ω̂λ∗

p
)⊤ |X ]

)
= 1 + tr

(
ΣA−1E[(X⊤ϵ− nλ∗

pω)(X
⊤ϵ− nλ∗

pω)
⊤ |X ]A−1

)
= 1 + tr

(
ΣA−1(X⊤X + n2(λ∗

p)
2p−1α2Ip)A

−1
)

= 1 + tr
(
ΣA−1

)
= 1 +

γp
p

tr

(
Σ(Σ̂ +

γp
α2 Ip)

−1
)

Now by the theorem of Lenoit, this converges a.s to
1

λ∗v(−λ∗)
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Identity Covariance

In the special case of identity covariance, then the Stieltjes transform
admits a simple formula

mIp(−λ; γ) =
−(1 − γ − λ) +

√
(1 − γ − λ)2 + 4γλ

2γλ

And from this we find that the optimal risk is equal to

1
2

1 +
γ − 1
γ

α2 +

√(
1 − γ − 1

γ
α2
)2

+ 4α2


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Learning Regimes, Small α2

For small signal strength, the optimal regret doesn’t depend on the aspect
ratio γ, we can see this by using the asymptotics of the Stieltjes transform

lim
α2→0

1
λ∗v(−λ∗)

= lim
α2→0

λ∗
∞∑
n=0

mn

(λ∗)n+1

−1

= lim
α2→0

(
λ∗m0

λ∗

)−1

= 1

Further more, the first order behavior of this limit is

lim
α2→0

(λ∗v(−λ∗))−1 − 1
α2 = lim

p→∞
p−1 tr(Σp)
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Learning Regimes, Large α2

As α2 → ∞, we have the following regimes based on the aspect ratio γ

For γ < 1

lim
α2→∞

R∗(H, α2γ) =
1

1 − γ

which is the same as the risk for OLS
For γ > 1 the risk may be unbounded

lim
α2→∞

α−2R∗(H, α2γ) =
1

γv(0)
≥ 0

For identity covariance this has a closed form of γ−1
γ

Finally, when γ = 1

lim
α2→∞

α−1R∗(H, α2γ) = lim
p→∞

1√
p−1 tr(Σ−1)
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Learning Regimes, Large α2

This may be summarized by saying that for γ < 1 the risk behaves like
Θ(1), for λ = 1 it behaves like Θ(α), and for γ > 1 it behaves like Θ(α2)
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Inaccuracy Principle

The estimation error is defined as

RE ,n(λ) = E∥ω − ω̂λ∥2

Under the conditions of the main theorem its known that

lim
n→∞

RE ,n(λ
∗) := RE = λ∗m(−λ∗)

where m is the limiting Stieltjes transform from before. Now we can find a
relation between RE and RP

1 − 1
RP

= γ

(
1 − RE

α2

)
In particular, for γ = 1 this simplifies to

RERp ≥ α2
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