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FIGURE 2.11. Test and training error as a function of model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

interpolating fits... [are] unlikely to predict future
data well at all.”
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Is Benign Overfitting “Benign”

e Privacy concerns

e Benchmarks might not have label noise characteristic of “real-world” data

e Clearly, interpolation suffices to learn models with strong generalization, but
is it necessary in the overparameterized regime?
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feH
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Overall Summary

e Framework: random design linear regression with independent noise
e Setting 1: estimator linear in y (least norm, ridge, etc.)
e Setting 2: square integrable estimators.

Findings

e Asymptotic characterization of optimal solution to problem

e Memorization of label noise is necessary for generalization
o The threshold for optimal prediction risk goes to zero asymptotically faster than the variance of
label noise
o Consequence: fit linear regression models to accuracy much better than the noise floor



Problem Formulation

TrainXQ/(\) = 1IE [||X0 —y||2 | X, 0],
Predx (0) = Eswl(z'0 —276)? | X,0)

AN

Trainx (6) = Eo[Trainxo(6)]
Predx (6) = Eg[Predx ¢(6)].



Problem Formulation

minimize Predx (9)
oeH

subject to Trainx (@\) 0 g

Costx(€) := min Predy (@\) — min Predx (5) ;
0cH (€) 0€H(0)

Costx (€) == min Predy (@) — Predy (@o.s) .



Assumptions

Assumption A1l (Proportional asymptotics and spherical prior). The dimension d := d(n)
satisfies d/n — v € (1,00). The data matrix X = [z] 22 --- z,]' € R™? where X :=
X (n) = (zij(n))icln),je[q forms a triangular array of random variables with independent rows.
There is a deterministic sequence of symmetric positive definite matrices ¥ := X(n) € R4x4
such that X = Z%3, where Z = (#ij)iem)],jeldq) @nd z;; are ii.d. random variables with
distribution independent of n such that E[z;] = 0, Var(z;) = 1, and E[z};] < M for a
universal constant M. In addition, we assume 6 has prior independent of the data X, y, with
zero mean and variance Var(0) = I;/d.

Assumption A2 (Linear estimators). The hypothesis class consists of all linear estimators,
ie.,

H = {5(X, y) = Ay, A= A(X) e Rdx"} |

where A may depend on the features X but not the labels y.



|sotropic Setting

. 1 2 210 A2
minimize P(A) = p |AX —I||7 + o || Al
D

1
subject to  T(4) = — | XAX — X[ + % IXA—I|% > €.

e Notice that this problem has quadratic objective and a quadratic constraint —
this lets us leverage strong duality



Some Linear Algebra

Trainx (B) = Eq [ Trainy(8)] = %Eg,w (XA - 1) (X6 +w)|3| X]

1
~Tr (]Eg,w [(Xe +w) (XA-DT(XA—1)(X0+w) | XD

2
Tt ((XA ~DX00"'XT (XA - I)T) +ZTr ((XA — ) (XA - I)T)
n n
e IXAX — X||% + 0—2 I XA —I|?
" nd Eon <



Some Linear Algebra
Predx(9) = E, [Predxg ] Eg.. [||(AX 160 + Aw|)2 | X]

( [ (AX — D)0 + Aw)" ¥ ((AX — I)9+Aw)|XD
( [ S(AX —1)00T(AX — D)7 | X]) + 02T (ATEA)

.
= 3 [ ax - D+ |2E4] .



Duality Interpretation

Thus we may leverage strong duality [iO, Appendiux B.1], writing auLag;ra,ngian and solving,
to conclude that for some p, := p,(€) such that I — 22X TX > 0, the optimal A for the
problem (2) is

i
A(pn) = (I — ppo? (1 - %"XTX) ) (XTX +do?1)1XT,

where p,, is the dual optimal value of the Lagrange multiplier associated with the constraint
T(A) > 2. When p, = 0, the constraint is inactive, so A(0) is the global minimizer of



Duality Interpretation

Thus we may leverage strong duality [10, Appendix B.1], writing a Lagrangian and solving,
to conclude that for some p, := pn(€) such that I — 22X TX > 0, the optimal A for the
problem (2) is

A(pn) = <I - pn02 (I - %XTX> 1) (XTX -+ ddzf)_lXT,
where p,, is the dual optimal value of the Lagrange multiplier associated with the constraint
T(A) > €. When p, = 0, the constraint is inactive, so A(0) is the global minimizer of
the unconstrained problem and evidently corresponds to a ridge regression estimate; we have
Costx (€) = P(A(pn)) — P(A(0)) and T (A(pn)) = €. Substituting A = A(p) into P(A) and
T (A), we obtain

PA()) — P(AO) = 20T ((1 _ BxTx)_2 & 4 (XTX + a2z> _1) ,

d d d d

T(A(p)) = %4Tr ((1 - g)ﬂx)_2 (XTTX + 021)_1) .



Linear Algebra before RMT

2.4 -1
P(A(p, I);T) — PAQO, I); I) = 20y ((1_ OXTX) XX (XX +do1) )
NS SRR S
~d/n n < (1 —p)\z/d) d M\/d+ o2
T T g R S N L 27\
T(A(p,I); I) = —Tr( I——X X T x X(I—EX X) (X X) (X X +do I) )

(<f—fm> ) () () )

4 1Z 1 22 1 1 1
1— Az/d d l—p)\,%/d N/d N2/d+ o?




Two RMT Lemmas

Lemma A.1 (Marchenko-Pastur law, Bai and Silverstein [4], Thm. 3.4). Let Z have singular
values A1 > Ao > - > A\, >0, and let %ZZT have spectral distribution with c.d.f.

n(s Z]l)\z/d<s

Then with probability one H,, converges weakly to the c.d.f. H supported on [A_, \;], with

rom (10 2) e a= (12 1)

dH(s) = 7 \/)\+—8)(8—

Lemma A.2 (Bai-Yin law, Bai and Silverstein [4], Thm. 5.10). Let the conditions of Lemma A.1
hold, and assume additionally that sup; E[zfj] < 00. Then the largest and smallest singular
values A\1 = A\1(Z) and A\, = A\ (Z) of Z satisfy

2 a4 < 12 M 1\?
AN =(14— TS =(1-—]) .
; 7)o wur=(-5)

and H has density

)]lse[)\_,)\+]d8.




RMT Time (

P(A(,O, I)al) o P(A(O’ I)’I) —

2 4 -9 -1
p ; Tr ((1 _ ngX) xTx (XTX + dozl) )
P20t 1 ¢ 1 A? 1

d/n n = (1 —p)\?/d)2 d A /d + o?

7/

0'48

(1—ps)*(s+0?)

dH,(s).

By the assumption that p < A;l, the Bai-Yin law (Lemma A.2) guarantees that I — £XX T

is eventually positive definite

0'48
(1—ps)?(s+0?)
Pastur law, we deduce

Jim (P(A(p, 1); D)

and with probability one A\2/d — A;. The function s +

is thus eventually bounded on the support of H,. Applying the Marchenko-

— P(A(0,1); 1))

/o2 os
- 7/ =P+ 7))



RMT Time (

n
o por -1 XTX o TN AT o N
_;Tr(( °X X) - (I—EX X) ( y ) ( y —|—0I)
4 1Z 1 22 1 1 1
1— Az/d d 1—p)\12/d NJd N2/d+ o2

0.4
- | T

Applying the Marchenko-Pastur law gives the desired limit.

T(A(p,I);I) = diTr (( — gXTX)_lXTX (I— SXTX)_l (XTX)T (XTX—i—d0'2I)_1)




Main Punchline 1

Theorem 1. Let Assumption A1 and either Assumption A2 or A2 hold. Then as n — oo,
(i) (threshold value) for ¢, defined in Eq. (7), €2 = ﬁ + o(c?).

(i) (no cost below threshold) if € < €, then with probability one lim,_,, Costx(e) = 0. In
addition, for the ridge estimator 0,2 = (X' X +do?I)"1X Ty, we have

Tim. (521(16) Predx (5) — Predy (5,102)) —0.

(iii) (cost of mot fitting) if € > €5, there exists a scalar p := p(e) € [0, )\4__1) that uniquely
solves

0.4
| T = ¥

and with probability one

2 0'48
lim Costx(e) = % / TG ) 9)

2
For the constants ¢ = % and C = m, we have lim,,_, ., Costx(e) > Ce?

whenever €2 > co?.



Main Punchline 2

Theorem 2. Let Assumption A1 and either Assumption A2 or A2 hold. Then

~

(i) (interpolation cost) for any € > 0, Costx (€) — Costx (€) = Predx (fo1s) — Predx (8(0)),
and with probability one

) ~ _ ot 1 _ ot
Jim_ (Predx (@) — Predx(0(0))) = Z- / e O = T olo)

(i) (interpolation threshold) for any o > 0, there ezists a p = pois € (0, A1) that uniquely

solves
o / s dH (s) = / 1 ams) (10)
(1—ps)? (s +0?) s(s +0?) ’
where for the threshold ea =t WdH (s) we have

<0 ife< €o,0ls
I =0 ife=
Jim Costx (€) 0 fe=¢csols
>0 ife> €o,0ls-

In comparison to the threshold €, in Eq. (7) and Theorem 1, we have €, < €, 015 < 2/\)\—j60.



