High-Dimensional Regression
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(The talk involved discussion using the whiteboard also)
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e Smallest risk can be in the overparameterized regime
e Overfitting is “benign” when highly overparameterized




Benign Overfitting
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(a) Features {cos(mz)}2,_,: underfitting. A linear

combination of features cannot approximate the true
dependence.
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(c) Features {cos(mx)}39_, : overfitting. As the num-

ber of features approaches the number of data points,
the effect of the noise becomes stronger.
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(e) Features {cos(mx)/m}2%: benign overfitting.

Adding weights to cosine features results in inter-
polating the noise with high frequency features and
learning the signal with low frequency features.
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(b) Features {cos(mz)}3 _,: the best fit. This is
the minimum number of features that span the true
dependence.
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(d) Features {cos(mz)}2%9: isotropic overparame-
terization. As the number of cosine features grows
above the interpolation threshold, the learned solu-
tion goes to zero out of sample.

—— learned dependence
true function: cos(3x)
° data

(f) Legend for all the plots.




Double Descent Sample-wise e n=p is the interpolation threshold
e More data can hurt linear regr
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(a) Test MSE for d = 1000,0 = 0.1. (b) Test MSE in theory for d = 1000,0 = 0.1

Figure 1: Test MSE vs. Num. Train Samples for the min-norm ridgeless regression estimator in
d = 1000 dimensions. The distribution is a linear model with noise: covariates x ~ N (0, ;) and response
y = (z,8) + N(0,02), for d = 1000,0 = 0.1, and ||3|| = 1. The estimator is 3 = XTy. Left: Solid line
shows mean over 50 trials, and individual points show a single trial. Right: Theoretical predictions for the
bias, variance, and risk from Claims 1 and 2.
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Empirically observed optimal ridge penalty for a

“real-world” dataset

a liver.toxicity data set. n=64, p=50
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liver.toxicity data set. n=64, p=3116
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Figure 1: Cross-validation estimate of ridge regression performance for the liver.toxicity dataset. a. Us-
ing p = 50 randomly chosen predictors. b. Using all p = 3116 predictors. Lines correspond to 10 dependent




Simulation using spiked covariance model > =I+pl1"
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Definition of the ridge estimator with negative A?

e A20 e A<O
< : 5 5 o Can'’t define using argmin problem,
By = arg minga Hy — Xﬁ” + )\HBH because its solution is not defined
= (XTX + A1 Xy (since |BI] — =)
= Vel v =V U7
(where X = USV ") AT + A -

I computed 3, = VS%HUTy for various values of A and then found MSE (risk) of B, using the I

formula

R(,éx) =Exc [((XT}B +E)— XT/éA)z] = (:é)\ - ,B)Tz(,éA - B) + o’ (8)




Simulation using spiked covariance model (contd)
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Simulation using spiked covariance model (contd)
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Figure 3: a. The optimal regularization parameter Aopt as a function of sample size (n) and dimensionality

(p) in the model with uncorrelated predictors (p = 0). In this case \opt = po’/||B|| = p/a. Black line
corresponds to n = p. b. The optimal regularization parameter Aop¢ in the model with correlated predictors

(p=0.1).




Analysis for the spiked covariance model
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Figure 5: a. The derivative of the expected risk as a function of ridge penalty A at A = 0, in the model
with p weakly correlated predictors (Eq. 24). Sample size n = 64. b. Zoom-in into panel (a). The derivative
becomes positive for p 2 600, implying that Aqpe < 0.




Discussion



