Introduction

- AI can dramatically reduce crowdsourcing costs
- Binary / multiclass classification well-studied
- Multi-label classification
 - Common problem (e.g., tags on websites)
 - Previously unoptimized
- Our most sophisticated multi-label classifier:
 - Uses learned model of label co-occurrence to infer true item-label relationships
 - Chooses questions that maximize value of information toward a joint classification

Problem Definition

- For each item, find the subset of labels that apply
 - \(n \) = # of items in dataset
 - \(m \) = # of labels
 - \(nm \) binary classification problems

Threshold Models

- Standard threshold voting
 - \(k \) votes per binary classification problem
 - Accept iff at least \(T \) out of \(k \) votes are positive
- Observation: \(k \) votes not always needed
- **Model #1: Lossless stopping**
 - Stop after \(T \) positive votes (or \(k-T+1 \) negatives)
 - No error compared to requesting all \(k \) votes
- **Model #2: One-way heuristic**
 - Stop after \(T-1 \) positive votes and no negative votes (or \(k-T \) negatives and no positives)
 - Small amount of error

Probabilistic Models

- **Model #3: Independent**
 - Assume labels are independent
 - \(m \) label parameters, 2 noisy worker parameters
 \[P(label|votes) = P(label) \prod_{v \in votes} P(v|label) \]
- **Model #4: Multi-Label Naive Bayes (MLNB)**
 - Model pairwise label co-occurrence
 - \(O(m^2) \) parameters
 \[P(label|otherLabels) = P(label) \prod_{L \in OtherLabels} P(L|label) \]
 - **Submodularity** enables greedy selection of votes on labels that achieves \((1-1/e) \approx 63\% \) of optimal

Probabilistic Results

- **Threshold Results**
 - Optimize categorization step in Cascade algorithm for crowdsourcing taxonomy creation [2]
 - \(n = 100 \) items, \(m = 33 \) labels, \(k = 15 \) votes

Conclusions

- **MLNB uses less than 10\% as much labor** as Cascade (standard threshold voting)
- Extension: selecting batches of questions (labels)
 - Useful in online labor marketplaces
 - Little reduction in accuracy
- See [1] for full results

References

Acknowledgements: This work was supported by the WRF / TJ Cable Professorship, Office of Naval Research grant N00014-12-1-0211, and National Science Foundation grants IIS 1016713 and IIS 1016465.