Neo-Riemannian cycle detection with weighted finite-state transducers

Research goal
Automatically identify and label neo-Riemannian cycles in a score of music.

Motivations
- Why automate what music theorists already do?
- Formalize the task with a rigorous definition of what constitutes a cycle.
- Understand musical judgments made during an analysis.
- Facilitate a comprehensive study.
- Facilitate a critique of neo-Riemannian theory.

Neo-Riemannian theory
- Harmonies are related by transformations, rather than common tonic.
- Basic transformations P (parallel), L (leading tone), R (relative).
- Repeated patterns of transformations generate cycles of harmonies.

Experiment
- Data are analyses of four chamber pieces by Franz Schubert.
- Training parameters set from system of linear inequalities (empirical):
 - $B + D + D + X$ (privilege labeling over deletion of an observed cycle of n triads with i insertions and m deletions).
 - $D = X$ (prevent arbitrary cycle extension).
- Evaluation scores from global string alignment on each region (calculate edit distance between the strings of triads labeled with transformations in ground truth and prediction).

Results
- Precision $= 0.18$, Recall $= 1.0$, where successful cycle retrieval is prediction of cycle in same aligned region as ground truth.
- Average cycle length 6.4 and alignment score 3.2.
- Handled cycles with many insertions better than many deletions.

Conclusion
- Natural language processing
- Neo-Riemannian music theory

Noisy channel model
- Hypothetical score C / G (input is a harmonic analysis).
- Composition of weighted finite-state transducers.

Cycles
- Transduces chords to transformations (only portion corresponding to LRP transducer shown).

Related work
- For more details, please visit http://www.jonathanbragg.com/ismir2011

This work was supported in part by the Harvard College Program for Research in Science and Engineering and NSF Grant No. 0347988. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect those of Harvard University or NSF.