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ABSTRACT 
The rigidity and fragmentation of GUI toolkits are 
fundamentally limiting the progress and impact of interaction 
research. Pixel-based methods offer unique potential for 
addressing these challenges independent of the 
implementation of any particular interface or toolkit. This 
work builds upon Prefab, which enables the modification of 
existing interfaces. We present new methods for hierarchical 
models of complex widgets, real-time interpretation of 
interface content, and real-time interpretation of content and 
hierarchy throughout an entire interface. We validate our new 
methods through implementations of four applications: 
stencil-based tutorials, ephemeral adaptation, interface 
translation, and end-user interface customization. We 
demonstrate these enhancements in complex existing 
applications created from different user interface toolkits 
running on different operating systems. 
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INTRODUCTION AND MOTIVATION 
Nearly every modern graphical user interface (GUI) is 
implemented using some form of GUI toolkit. Toolkits 
provide libraries of widgets and associated frameworks that 
reduce the time, effort, and amount of code needed to 
implement an interface. Although these toolkits have 
enabled many successes of the past forty years of 
human-computer interaction research and practice [19], the 
current state of toolkits has become stifling [8, 12, 21].  

Specifically, researchers and practitioners are limited by the 
rigidity and fragmentation of existing toolkits. Rigidity 
makes it difficult or impossible for an application developer 
to modify a toolkit’s core behaviors. Similarly, application 
rigidity generally precludes modification and customization 
of existing interfaces (except in limited ways envisioned 
and supported by an application’s original developer). 

Fragmentation results from the fact that people generally 
use many different applications built with a variety of 
toolkits. Each is implemented differently, so it is difficult to 
consistently add new functionality. Researchers are often 
limited to demonstrating new ideas in small testbeds, and 
practitioners often find it difficult to adopt and deploy ideas 
from the literature. These challenges limit the progress and 
impact of interaction research [8, 12, 21].  

Because all GUIs ultimately consist of pixels, researchers 
have proposed methods for enhancing existing interfaces 
based only upon pixel-level interpretation. Pixel methods 
were initially proposed to support research in interface 
agents and programming by example [23, 25, 26, 32, 33]. 
More recent research examines broader opportunities for 
pixel-based methods: ScreenCrayons supports annotation of 
documents and visual information in any application [22], 
Sikuli applies computer vision to interface scripting and 
testing [3, 31], Hurst et al. use pixel-based methods to 
improve the accessibility API’s target detection [15], and 
Prefab enables real-time modification of existing interfaces 
based on pixel-level interpretation [4]. 

The capabilities of these and other pixel-based systems are 
inherently defined and limited by a system’s ability to 
meaningfully interpret raw interface pixels. This paper 
advances state-of-the-art systems by presenting the first 
pixel-based methods for real-time interpretation of interface 
content and hierarchy. Specifically, we build upon Prefab’s 
pixel-based models of widget layout and appearance [4]. 
We first introduce the use of hierarchy to characterize 
complex widgets. We then introduce content regions and 
show how they enable efficient recovery of widget content. 
Finally, we show how these insights can be combined to 
recover a hierarchical interpretation of an entire interface. 
We validate our novel methods in a set of applications that 
demonstrate new capabilities enabled by interpretation of 
content and hierarchy, and we discuss future research 
opportunities suggested by this work.  

Figure 1 illustrates several applications enabled by our new 
pixel-based methods. A pixel-based implementation of 
Kelleher and Pausch’s Stencils-based tutorials [16] uses 
interface hierarchy to robustly reference specific widgets 
(i.e., differentiating among identical widgets by their 
position in the hierarchy). Our implementation of Findlater 
et al.’s Ephemeral Adaptation [5] is independent of interface 
implementation and leverages our models of content 
regions to create the necessary gradual onset animations. A 
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translantion enhancement highlights our real-time 
identification of interface content by extracting text, 
translating it, and re-painting it in the interface’s original 
look and feel. Finally, adding customization to an existing 
interface illustrates support for managing occlusion and 
rendering new content using our pixel-based models. 

The contributions of this work to pixel-based methods are: 

• Methods for hierarchical models of complex widgets. 
These improve model implementation, example-based 
prototype creation, and runtime widget detection. 

• Methods for modeling widget content regions. These 
enable efficient runtime recovery and interpretation of 
widget content. 

• Methods for example-based parameterization of widget 
content regions. This is challenging because examples 
include content that should not be part of a prototype. 

• Methods for recovering the content and hierarchy of an 
entire interface. This enables DOM-like interpretations 
of interfaces independent of their implementation. 

• Validation of our methods in a set of novel pixel-based 
applications. These demonstrate our core methods and 
also illustrate opportunities to leverage our methods in 
addressing other challenges, such as robustly 
referencing widgets, re-rendering interfaces from 
pixel-based models, and managing interface occlusion. 

RELATED WORK 
This paper’s pixel-based interpretation of interface content 
and hierarchy is implemented within the Prefab system [4]. 
To provide a context for our current contributions, we first 
discuss several relevant aspects of prior research and then 
review key components of the Prefab system. 

Interpreting and Customizing Existing Interfaces 
Our work is informed by GUI toolkit research [19]. 
For example, Hudson and Smith propose toolkit support for 
separating interface style from content, drawing an analogy 
to painting the same text with different fonts [13]. Hudson 
and Tanaka develop toolkit methods for painting stylized 
widgets, including an eight-part border defined by fixed 
corners and variable edges [14]. Our reverse engineering 
strategy turns such methods for painting interfaces on their 
heads: an eight-part model can be used to characterize 
many widget borders regardless of whether they were 
painted using Hudson and Tanaka’s method. This paper is 
based on similar insights regarding tree-based interface 
layout and common approaches to painting variable content 
within widgets. We thus leverage knowledge of toolkit 
methods but remain independent of any particular toolkit. 

Extensive research has examined interface customization. 
Most is limited to the web, where the Document Object 
Model (DOM) provides a structured representation of an 
interface. ChickenFoot [2] and CoScripter [18] are classic 
examples, and systems like Highlight extend these ideas to 
task-centric re-authoring for mobile devices [20]. Systems 
like Clip, Connect, Clone [6], d.mix [10], and Vegemite 
[17] demonstrate promising end-user mash-up methods.  

For non-web interfaces, structure analogous to the DOM is 
provided the accessibility API. Stuerzlinger et al.’s research 
on User Interface Facades uses the accessibility API to 
enable runtime interface modification [27]. Compared to 
pixel-based methods, accessibility APIs are advantageous 
because they can access information that is not visible, such 
as items contained in a closed drop-down menu. Direct 
access to an interface’s underlying data also removes the 

 
Kelleher and Pausch present the use of stencils to provide 
tutorials directly within the context of an interface [16]. This is a 
screenshot of our pixel-based implementation of a tutorial for 
downloading résumé templates in Microsoft Office 2010. 

 
We present a GUI translator that works solely from an interface’s pixels. Our translator 
identifies, interprets, and translates textual content while maintaining the same look and 
feel as the original application. Here is a portion of a Google Chrome Options dialog 
running in Microsoft Windows 7, translated from English into French. 

 
Findlater et al.’s Ephemeral Adaptation improves targeting 
performance by reducing visual search while maintaining spatial 
consistency [5]. Likely targets appear as normal, but unlikely 
targets are initially missing and slowly fade in. This is a 
screenshot from our implementation of the technique in the 
context of a Skype settings dialog box running on Mac OS X. 

 
Our methods enable end-user customization of everyday interfaces. We implemented a 
technique that allows end-users to aggregate commonly used widgets of a tab control 
into a “favorites” tab. This is shown here in the context of the Skype settings dialog. 
Clicking on stars (left) adds the corresponding widgets to the “favorites” tab (right). 

Figure 1: We introduce new pixel-based methods to reverse engineer interface content and hierarchy in real time. These methods 
enable a new range of advanced behaviors that are agnostic of an application’s underlying implementation. All of these 
enhancements are implemented in the Prefab system and are discussed in greater detail later in this paper and in our associated video. 



 

 

possibility for recognition errors. On the other hand, 
accessibility APIs require additional implementation effort 
to correctly expose hooks into an interface’s underlying 
state. Toolkits generally attempt to provide default 
implementations, but many widgets are missing from the 
accessibility API because of application failures to 
implement necessary hooks. Hurst et al. found roughly 25% 
of widgets are completely missing from the accessibility 
API’s view on many common applications [15]. The 
severity of this problem is magnified by the fact that it can 
be corrected only by an application’s original developer 
(or somebody else with the application source). Pixel 
methods have the critical advantage that they do not require 
cooperation from the original application. The application 
exposes its pixels as normal, and anybody can then use 
those pixels as a basis for additional functionality. For 
example, Hurst et al. show a hybrid technique that uses 
pixel-based methods to augment the accessibility API to 
improve target boundary detection [15]. Our current work 
focuses on pixel-based methods, presenting advances 
toward a DOM-like representation obtained entirely from 
pixels without cooperation of an underlying application. 
Deeper exploration of additional hybrid techniques is an 
important opportunity for future work. 

The most relevant prior work is therefore that examining 
pixel-based interface interpretation. Classic work by 
Zettlemoyer et al. examined widget identification in IBOTS 
and VisMap [32, 33] for interface agents and programming 
by example [23, 25]. Their methods require code-based 
descriptions of individual widgets, and Zettlemoyer et al. 
report 40% of VisMap code is specific to particular 
Microsoft Windows widgets. Our methods use examples to 
describe widget appearance, making it possible to scale to 
address the fragmentation of current interfaces. Perhaps 
more importantly, continued development of Zettlemoyer 
et al.’s methods in Segman found their performance 
insufficient for real-time demands of interactive 
applications [26]. In an interactive context, Olsen et al.’s 
ScreenCrayons leverages the universality of pixels to 
associate ink annotations with images of interfaces, but 
does not interpret those images [22]. Tan et al.’s WinCuts 
allows subdivision of windows with a copy-paste metaphor, 
but does not attempt to interpret or modify content [29]. 
Yeh et al.’s Sikuli uses template matching and voting based 
on invariant local features to identify occurrences of a 
target in an image of an interface (requiring 200msec to 
find all occurrences of a single target) [3, 31]. None of 
these existing pixel-based methods are capable of real-time 
interpretation of content and hierarchy, and so none are 
capable of the demonstrations presented in this paper. 

Prefab 
Prefab modifies the apparent behavior of existing interfaces 
using pixel-based interpretation with input and output 
redirection. Figure 2 illustrates a basic mechanism, where 
(1) a source window bitmap is captured, (2) the source 
image is interpreted, (3) the modified interface is presented 

in a target window (with the source potentially hidden 
using virtual desktop methods), (4) input in the target is 
mapped back to the source, which then (5) generates new 
output that is captured and used to update the target. Prefab 
is the first system to combine pixel-based methods with 
input and output redirection, allowing it to modify an 
interface independent of that interface’s implementation.  

This requires interpreting images of an interface many 
times per second, which Prefab accomplishes using four 
major types of components: models, prototypes, parts 
(including features and regions), and constraints. 

Models consist of abstract parts and concrete constraints on 
those parts. A typical model might include several 
constraints requiring that parts are adjacent. The parts are 
abstract, so a model does not describe any particular widget 
or set of widgets. Instead, a model describes a pattern for 
composing parts to create a widget. 

Parts can be either features or regions. A feature stores an 
exact patch of pixels (exact colors in an exact arrangement). 
A region stores a procedural description of an area (e.g., 
painting a gradient or a repeating pattern). Because the 
same parts can be arranged in multiple ways, they alone do 
not describe any particular widget or set of widgets. 

Prototypes parameterize a model with concrete parts, thus 
characterizing both the arrangement and the appearance of 
those parts. A prototype therefore describes a particular 
widget or set of widgets (e.g., the Mozilla Firefox Home 
toolbar button, all Microsoft Windows 7 Steel buttons).  

        
Figure 2: Prefab combines pixel-based interpretation with 
input and output redirection, allowing it to modify an 
interface independent of that interface’s implementation. 
This requires real-time pixel-based interpretation.  

 
Figure 3: This Prefab prototype for Microsoft Windows 7 
Steel buttons is an example of an eight-part model. Four 
features define the corners, each edge is defined by a 
region, and constraints require the parts form a rectangle. 
This prototype recognizes all Microsoft Windows 7 Steel 
buttons, independent of their interior content. 



 

 

Figure 3 presents an example eight-part prototype that 
parameterizes an abstract model of an eight-part border with 
parts corresponding to a Microsoft Windows 7 Steel button. 
It recognizes all Microsoft Windows 7 Steel buttons, 
independent of their interior content. Prototypes that assign 
different pixels to its parts can recognize different styles of 
buttons or different widgets that paint a border. Prefab is 
implemented as a library of prototypes with methods for 
applying those prototypes to identify widgets. Specifically, 
Prefab locates all features in a pass over an image and then 
tests the regions and constraints of potential prototypes. 

Creating a prototype by manually specifying the parts of a 
model is possible, but tedious and error-prone. Prefab helps 
by fitting prototypes from examples. We have found that 
the most appropriate prototype for a widget is typically the 
one which requires the fewest pixels to explain its 
appearance. The intuition behind this approach is similar to 
the minimum description length principle, a formalization 
of Occam’s Razor in machine learning [24]. Prefab uses a 
branch-and-bound search to determine what assignment of 
parts to a model best explains an example. For example, the 
prototype in Figure 3 is learned from a single example of a 
Microsoft Windows 7 Steel button. This ability to quickly 
create new prototypes is important to Prefab’s potential for 
scaling to address GUI toolkit fragmentation. 

INTERPRETING CONTENT AND HIERARCHY 
This section addresses key challenges facing Prefab and 
other pixel-based systems. We first address the complexity 
of widgets with multiple components by introducing 
hierarchical models. We then address the difficulty of 
modeling unpredictable content by leveraging knowledge of 
containment in content regions. Finally, we combine and 
extend these ideas to enable efficient interpretation of the 
content and hierarchy of an entire interface. 

Hierarchical Models 
The eight-part model in Figure 3 was the most complex 
model explored in Prefab’s initial development. Although 
Prefab’s original methods can characterize many widgets, 
significant challenges arise when considering more 
complex models needed to represent widgets consisting of 
multiple components. Figure 4 illustrates this by comparing 
the modeling of a slider with that of a scrollbar.  

Figure 4a shows a five-part model of a slider, consisting of 
a feature for the thumb, features for the trough endpoints, 
and regions for the variable-length trough. This model 
effectively characterizes many sliders. Although a scrollbar 
might seem to have a similar layout, Figure 4b shows that 
scrollbars vary the size of their thumb to illustrate what 
portion of the scrollable area is currently within view. 
A single feature is therefore insufficient for characterizing 
the scrollbar thumb, so we replace the feature with eight 
parts describing a thumb of varying size. If we want our 
model to represent the buttons at either end of the scrollbar, 
we also need to replace the end features with eight parts. 
Figure 4c shows the resulting model, which characterizes 

the components of these scrollbars but has become too 
complex for practical use. It is difficult to correctly 
implement, and its many parameters create a high 
branching factor that makes it computationally expensive to 
fit prototypes from examples. The effort to implement and 
optimize complex models can be justified when they 
characterize a wide variety of widgets, but this model still 
does not characterize some common scrollbars. For 
example, Figure 4d shows a scrollbar from Mac OS X’s 
Cocoa toolkit painted with both scroll buttons together.  

The solution to these modeling challenges comes from the 
insight that complex widgets are typically defined by a 
hierarchy of simpler widgets. We introduce hierarchical 
models of widget layout, as illustrated with a scrollbar 
model in Figure 4e. This extends Prefab’s original notion of 
delegating regions to procedural code (e.g., a gradient or a 
repeating pattern) by allowing delegation to another model. 
Portions of a hierarchy can be re-used in implementing 
multiple models. A model can account for portions of the 
hierarchy appearing in different arrangements or being 
optionally absent. The hierarchy can also be used when 
fitting prototypes from examples, with annotations of 
simpler components (e.g., the scrollbar thumb) constraining 
a search of the overall hierarchy. At runtime, hierarchical 
prototypes are identified by locating simpler components 
and then testing constraints and regions in the hierarchy. 

 

 
4a: Prefab’s original methods support a five-part model of sliders. 

 
 

4b: Scrollbars vary their thumb size, so cannot be modeled with five parts.

 
4c: This model accounts for the presence of scroll buttons and the  

varying size of the scroll thumb, but is too complex for practical use. 

 
4d: Other types of scrollbars arrange buttons differently,  

which would require still greater complexity in the above model. 

 
4e: Hierarchical models simplify the implementation,  

example-based parameterization, and recognition of complex widgets. 

Figure 4: This paper introduces hierarchical models of 
widget layout, improving Prefab’s support for complex 
widgets defined by hierarchies of simpler components. 



 

 

Content Regions 
Prefab’s pixel-based methods are built on the insight that 
the pixels of a widget are procedurally defined. This is 
critical to Prefab’s real-time performance, as it allows exact 
feature matching as a basis for prototype detection. But 
some interface content varies dramatically and cannot 
easily be identified through exact matching. For example, 
modern toolkits often employ sub-pixel rendering and 
anti-aliasing techniques in text rendering. This improves 
readability, but also modifies text’s pixel-level appearance 
in unpredictable ways. The same characters can be rendered 
as many different combinations of pixels. Prefab’s original 
methods therefore could not address the recovery of widget 
content (e.g., Figure 3’s prototype can identify Microsoft 
Windows 7 Steel buttons, but cannot recover their label). 

We address this challenge by building upon several insights. 
First, toolkits construct interfaces as trees. Second, content 
appears at the leaves of a tree (i.e., labels and icons do not 
contain other widgets). Every piece of content is therefore 
contained within a parent. Third, the parents of these leaf 
nodes paint simple backgrounds (often a single color, 
sometimes a simple gradient). This is critical to interface 
usability, as a person must be able to easily see the content 
painted over that background. Instead of directly modeling 
unpredictable content, we introduce content regions that 
model the much simpler background of a parent and 
efficiently identify content using runtime differencing. 

Figure 5 illustrates a nine-part model of a border with an 
interior content region (i.e., it is identical to the eight-part 
model from Figure 3 except for the addition of the interior 
content region). The model’s constraints require that the 
content region describe every pixel not accounted for by the 
corner features or the edge regions. In this case, a prototype 
of the Microsoft Windows 7 Steel Button parameterizes the 
content region with a single repeating column. At runtime, 
content is obtained by differencing the repeating column 
against pixels inside the button’s content area. Figure 5 
illustrates this differencing with red pixels in an example 
button. A character recognition algorithm is then applied to 
recover the text “Close”. Because such character 

recognition is relatively expensive, it is important to note 
that our content region method identifies a small portion of 
an interface to which more expensive methods are applied. 
Its computation can also be cached, as there is no need to 
re-execute an interpretation of identical content pixels. 

Parameterizing Content Regions by Example 
Recall that Prefab supports the use of examples to create 
prototypes. Parts are assigned by a search minimizing the 
number of pixels needed to describe those examples in a 
manner consistent with the model. Like other regions, 
content regions are modeled as procedural methods for 
pixel generation (e.g., painting a single color, repeating a 
pattern, painting a gradient). Prefab’s original methods 
cannot be applied to content regions because each example 
contains unpredictable content. A simple part cannot 
characterize this content, and so the search fails to fit a 
good prototype that generalizes from the example. 

We address this problem by defining the cost of a potential 
prototype as the sum of two components: model cost and 
content cost. As before, the model cost is the number of 
pixels used to define the parts of a prototype. The content 
cost is the number of pixels in an example that do not match 
the prototype specified by a content region. The intuition 
behind this approach is that minimizing the sum requires 
the search to both describe the background and identify the 
foreground. Because we lack a meaningful method for 
generating that unpredictable foreground, we pay full cost 
for the pixels it occupies. Note that this is a generalization 
of Prefab’s original method, as content cost is always zero 
in models without content regions. 

As an example, Figure 5’s prototype sets the width and 
height of each corner feature to three, top and bottom edge 
depths to one, and left and right edge depths to two. The 
content region is a repeating column of pixels. With these 
settings (selected by the branch-and-bound search), the 

 
 

Figure 5: This prototype for Microsoft Windows 7 Steel 
buttons is an example of a nine-part model. Our nine-part 
model is identical to the eight-part model in Figure 3 
except for the addition of an interior content region. This 
prototype’s content region has been parameterized as a 
single repeating column. At runtime, content within a 
button is obtained by differencing the repeating column 
against the pixels inside the button’s content area.  

 
 

Model Cost = 43 pixels Content Cost = 1132 pixels 

 
Model Cost = 55 pixels Content Cost = 215 pixels

Figure 6: These are both valid nine-part prototypes for a 
single example of a Microsoft Windows Vista Steel button. 
They incur total costs of 1175 and 270 pixels. Prefab thus 
prefers the nine-part prototype shown in Figure 5, which 
costs only 246 pixels and is also more general. Note that 
Figure 5’s prototype also identifies the correct content. 



 

 

prototype has a model cost of 57 (9 for each corner, 6 for 
the edges, and 15 for the content region). The text results in 
a content cost of 189 (the red pixels shown on the right side 
of Figure 5), yielding a total cost of 246 pixels. 

In contrast, Figure 6 shows two other prototypes the search 
might consider for the same example. The first has the same 
corners and edges but attempts to fit a single color to the 
background of the content region. This improves its model 
cost to 43, but the poor match results in a content cost of 
1142 and a total cost of 1175 pixels. The second example 
has the correct content region with the corner and edge 
configuration from Figure 3 (which was fit to an eight-part 
model that does not consider content). Specifically, notice 
its left and right edges are 1 pixel wide. This results in a 
model cost of 55 (9 for each corner, 4 for the edges, and 15 
for the content region), but the content cost is increased to 
215 by two 13-pixel columns at either end of the content 
region. Its total cost is 270 pixels. These and other 
prototypes are rejected, with the search ultimately selecting 
the configuration from Figure 5 as the best fit. 

Note that the content region in Figure 5 has actually 
resulted in a better characterization of the prototype’s other 
parts. Without a content region, there is no reason for 
Prefab to determine that the left and right edges of this 
example are two pixels wide (and so it finds the prototype 
form Figure 3). The inclusion of a content region has in this 
case lead Prefab to produce a prototype that describes 
every pixel in the example. Our validating applications 
present implications of this more complete interpretation.  

Interpreting Content and Hierarchy in an Entire Interface 
The intuition behind our methods for individual widgets can 
be extended to support pixel-based interpretation of content 
and hierarchy in an entire interface. Instead of considering 
content only in terms of text within a button, the necessary 
insight is that every widget is content relative to its parent. 
Our challenge is to recover the content and hierarchy of the 
entire interface while retaining Prefab’s performance. We 
implement this in four steps, as illustrated in Figure 7. 

We first apply Prefab’s library of prototypes to locate 
widgets. This uses feature-based detection to identify a set 
of widget occurrences. We then organize the detected 
occurrences into a tree. The root is the image itself 
(typically a top-level window in Prefab’s current input and 
output framework). The tree is constructed using constraints 
provided by each occurrence’s model. These typically 
enforce spatial containment within a content region of the 
occurrence. The primary exception is for widgets that float 
above an interface (e.g., tooltips, popup menus, drop-down 
boxes). Tagging prototypes of these widgets allows our tree 
construction algorithm to link them directly to the root. 

This organizes occurrences that were detected using our 
feature-based methods, but we still need to apply our 
differencing method to locate unpredictable content from 
content regions. It is important this differencing respect the 

existing hierarchy (i.e., nested widgets must consider the 
proper background and must not generate spurious content 
in areas owned by children). Our current implementation 
uses a post-order traversal. We generate a composite 
background image when traversing down the tree, then test 
and mark pixels when traversing back up the tree. Widgets 
only test pixels within their content regions that were not 
marked by children. Identified content is interpreted and 
added as a child of the widget that detected it. 

The resulting tree includes all detected widgets arranged by 
their containment. Additional organization can be added by 
considering that siblings in this visual tree may suggest an 
additional component in a logical tree. For example, several 
pieces of text might be grouped together and then related to 
an adjacent checkbox. Prior research has developed 
methods for semantic grouping of widgets [7]. Given our 
focus on pixel-based detection of the visual tree, we 
perform logical grouping using a set of heuristics.  

VALIDATION THROUGH APPLICATIONS 
This paper presents new methods for real-time pixel-based 
interpretation of widget content and hierarchy. Because this 
is a new capability, there is no reasonable comparison to 
other approaches for obtaining the same effect. We instead 
validate and provide insight into our work through a set of 
demonstrations. We select these with the goal of illustrating 
a range of complexity in applying our methods. 

All of our applications are implemented in Microsoft’s C# 
running on Microsoft Windows 7 and using redirection 
provided by Prefab. We use remote desktop software to 
demonstrate enhancements running on Mac OS X 
interfaces. Prefab thus continues to run on the Microsoft 
Windows 7 machine, adding its enhancements based 
entirely on the pixels delivered through the remote desktop 
connection. We apply enhancements to a variety of 
well-known applications to highlight that our methods are 
independent of the underlying implementation. 

 
Figure 7: We interpret interface content and hierarchy by 
detecting widget occurrences, applying containment to 
construct a tree, finding content within widgets, and 
logically grouping nodes within the tree. 



 

 

Stencils-Based Tutorials 
Kelleher and Pausch’s Stencils-based tutorials provide help 
directly within applications using translucent stencils with 
holes to direct a person’s attention to the correct interface 
component [16]. Such an enhancement is difficult to 
broadly deploy because of the rigidity and fragmentation of 
existing applications and toolkits. It is beyond the 
capabilities of previous pixel-based systems because 
authoring such a tutorial requires support for referencing 
specific interface elements. For example, there may be 
several buttons of identical appearance within an interface, 
but only one of them is the appropriate next action. 

Figure 1 and our associated video show our Prefab 
implementation of Stencils-based tutorials. The tutorial 
instructs a person on how to download résumé design 
templates in Microsoft Word 2010. Our video highlights the 
real-time responsiveness enabled by our new methods.  

Stencils-based tutorials are a straightforward application of 
widget hierarchy. Knowledge of the full hierarchy allows us 
to reference widgets using simple path descriptors on the 
tree.  We implemented this demonstration by building 
prototypes to identify the majority of widgets in Microsoft 
Office 2010. For example, we used nine-part models to 
characterize many of the containers and buttons. We also 
used one-part models to identify less structured content 
(e.g., the icons used to represent different types of 
templates). These one-part models are typically easy to 
construct (i.e., a model of the background of their parent 
makes it trivial to segment the one-part example). We 
converted Prefab’s hierarchical interpretations into an XML 
format, allowing the use of XPath descriptors to reference 
widgets within the hierarchy. Tutorials are thus authored as 
a list of XPath descriptors paired with textual instructions 
for each step. Additional capabilities could be developed, 
and we have not yet explored the best approach to an 
authoring tool, but this demonstration highlights our use of 
the pixel-based hierarchy to reference specific widgets. 

Ephemeral Adaptation 
Findlater et al. developed Ephemeral Adaptation, an 
adaptive technique that improves performance by reducing 
visual search time and maintaining spatial consistency [5]. 
Ephemeral Adaptation helps draw visual attention to likely 
targets in an interface. Specifically, likely targets appear as 
normal within an interface, but unlikely targets are initially 
missing and then slowly fade in. Despite the promise of this 
technique, it has been difficult to evaluate in realistic use or 
to widely deploy in everyday software. A pixel-based 
implementation is beyond prior systems for two reasons. As 
before, it requires the ability to reference specific widgets 
(e.g., to monitor how frequently they are clicked in order to 
model which are likely targets). In addition, this application 
requires the ability to remove unlikely targets from the 
interface and then render their gradual onset.  

Figure 8 and our associated video show our implementation 
of Ephemeral Adaptation using Prefab within a Skype 

settings dialog box running in Mac OS X. Upon moving 
between tabs, likely targets in each tab are initially visible. 
Unlikely targets then fade in over time. This enhancement 
uses a nine-part prototype of the tab pane and various 
prototypes for each of the interior widgets. We use our 
XPath descriptors to tally the frequency of interaction with 
each widget and use a simple model of likely targets 
(the most commonly-used widgets in each tab). 

We render the gradual onset animation using the content 
region from the tab’s nine-part model. Specifically, we 
render tab background (i.e., the pixel-level appearance of its 
content region) as an overlay at the location of each 
unlikely widget. We then gradually fade this overlay from 
opaque to transparent. This creates the illusion that the 
widget is gradually fading into view. Note this technique 
requires identifying all of the content throughout the 
interface in order to appropriately animate its onset, a 
capability not supported by prior pixel-based methods. 

Language Translation 
In addition to pixel-based identification of interface content, 
our methods can help enable real-time interpretation of 
interface content. To demonstrate this, we implemented a 
pixel-based enhancement that automatically translates the 
language of an interface and then presents the translated 
content in the same look and feel as the original interface. 
Because of the rigidity and fragmentation of current tools, 
interfaces usually must be translated by their original 
developer (or somebody else with the application source). 
Our methods allow anybody to translate an interface and 
could thus form a basis for community-driven translation 
(similar to advances in social accessibility [28]). To the best 
of our knowledge, ours is the first method for real-time 
translation of interfaces independent of their underlying 
implementations. Although translation is not the same as 
complete localization, it is an important step. 

Figure 1 and our associated video show our translation 
enhancement applied to a Google Chrome Options dialog 
running on Microsoft Windows 7. The left image illustrates 
a portion of the original dialog in English. The right image 
shows that same portion of the dialog with the text 
translated into French. Our associated video also includes a 
Spanish translation of the same dialog. We implemented 

 

                
Figure 8:  Findlater et al.’s Ephemeral Adaptation 
technique uses the gradual onset of unlikely targets to 
facilitate easier targetting of likely targets [5]. This image 
shows Findlater et al.’s original implementation of a menu 
testbed together with our pixel-based implementation 
within a Skype dialog running on Mac OS X. 



 

 

this by interpreting textual content identified by our 
methods, translating that text, and then rendering the new 
text in the original interface. Our associated video shows 
this enhancement running in real-time. This requires 
identification and interpretation of content occur quickly 
enough to handle the appearance and movement of content 
within a scroll pane. 

There are several potential approaches to interpreting 
screen-rendered text [30]. Our current implementation uses 
an ad hoc template matching method, leaving integration of 
more advanced methods as an opportunity for future work. 
Importantly, our methods separate the identification of text 
from interpretation of that text. The interpretation of a 
region of pixels can thus be cached to eliminate potentially 
expensive re-interpretation of those same pixels (e.g., using 
a hash of the pixels). In our video, each piece of text is 
interpreted only the first time it appears. We then translate 
it using a machine translation service. As the text moves 
within the scroll pane, our content detection recovers the 
same pixels and retrieves the text from cache. 

To maintain the application look and feel, we paint the 
translation into the original interface. This is implemented 
by using each widget’s content region to render an overlay 
masking its content (i.e., its English text). The translated 
text is then rendered within the bounds of the original 
content region. For example, Figure 9 shows a button 
before its translated text is rendered. Because English text is 
typically shorter than translated text, we adjust the font size 
of the translated text to fit in the available region. Our next 
demonstration explores a more sophisticated modification 
of the interface to accommodate new content.  

Interface Customization  
Our pixel-based interpretation of interface hierarchy also 
provides a framework for modeling some common forms of 
occlusion in interfaces. Occlusion is at the very core of the 
desktop metaphor, as it allows interfaces to limit the 
complexity of presented interfaces via the illusion that 
additional portions of the interface continue to exist even 

when they are not visible. For example, tab controls use 
occlusion to limit attention to related subsets of complex 
interfaces. Existing pixel-based methods are strictly limited 
to interpreting visible portions of an interface. The need to 
observe an interface is inherent to pixel-based methods, but 
we can use our knowledge of interface hierarchy to help 
manage common forms of occlusion.  

Figure 1 and our associated video present a demonstration 
of this in the context of interface customization. Instead of 
automatically adapting an interface according to widgets 
that are likely to be used, this example allows people to 
manually flag widgets as “favorites” for quick access. 
Figure 1 shows this applied to the same Skype dialog box 
from our Ephemeral Adaptation example. A small star is 
added to each widget in the interface. Clicking this star 
adds the widget to a “favorites” tab we added to the 
interface. Viewing that tab presents all starred widgets and 
allows interaction with each of them. As with all of our 
demonstrations, this is implemented using pixel-based 
interpretation with input and output redirection. 

The management of occlusion is inherent to this example. 
We enhance the hierarchy to store the most recently 
observed version of each tab (using our XPath descriptors 
to reference each tab and its contents). We annotate these 
nodes in the hierarchy as stale to capture the fact they are 
occluded. Figure 10 depicts a simplified snapshot of the 
interpreted hierarchy with occluded nodes. If a “favorite” 
widget is currently occluded in the source window, it is 
painted using its stale version from the hierarchy. When a 
person moves to interact with a widget, synthetic input 
events are generated to bring that tab of the source window 
into view (i.e., to ensure that portion of the hierarchy is 
responsive to interaction via standard redirection 
mechanisms). Synthetic events could also be generated to 
regularly poll stale portions of the hierarchy, but this was 
not needed in our demonstration.  

This example also demonstrates the use of our pixel-based 
methods to add new elements to the interface. Nine-part 
models of the window, the tab button container, and the tab 
pane are used to create a larger version of the window, 

 
Figure 10: We use our knowledge of hierarchy to manage 
widget occlusion in a tab pane.  We store the most recently 
observed image of each widget, annotating occluded 
widgets to indicate those images are currently stale. 
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Figure 9: We use our knowledge of interface content and 
hierarchy to implement a translation enhancement that 
preserves the look and feel of the original application. A 
translated widget is rendered by compositing the 
translated text with its prototype’s content region. 



 

 

insert the new “favorites” tab button, and to render the 
blank tab area into which “favorite” widgets are added. 
Figure 1 and our associated video show the added tab 
button and the extended window. We view this as an initial 
peek into opportunities to fundamentally transform the 
rigidity and fragmentation of existing interfaces. 

DISCUSSION AND LIMITATIONS 
This paper advances state-of-the-art pixel-based systems by 
presenting the first methods for real-time interpretation of 
interface content and hierarchy. We now briefly discuss 
some important aspects of our pixel-based interpretation 
and identify some opportunities for future work. 

For the sake of clarity, this paper presents the simplest 
description of our pixel-based methods for interpreting 
interface content and hierarchy. A variety of optimizations 
could improve performance. For example, the entire 
interpretation process can be implemented using 
lightweight incremental evaluation to compute exactly the 
sub-tree of the hierarchy that could possibly have changed 
between successive frames [11]. Many stages in the process 
can allow a multi-core approach (e.g., siblings can detect 
content simultaneously). Given these and other potential 
optimizations, we generally do not expect performance to 
be problematic in most applications. Our implementation 
currently computes frame differences to efficiently detect 
features and uses parallelization when interpreting content. 
We currently re-compute the entire hierarchy whenever 
Prefab identifies new features. Our associated video shows 
multiple demonstrations that interpret content and hierarchy 
in real interfaces of existing applications with computations 
between frames typically under 100msec. We believe this is 
sufficient for the applications we explore. 

The preparation of our demonstrations highlighted another 
advantage of our approach to interpreting interface content 
and hierarchy. If our methods are applied to an interface 
that contains widgets that are not already in Prefab’s 
prototype library, the parents of those currently unknown 
widgets identify their pixels as content. We used this fact to 
quickly extract the examples used to create prototypes for 
our demonstrations, and we believe it could provide a basis 
for an improved prototype authoring tool.  

Our translation demonstration currently uses an ad hoc 
approach to text interpretation (exact matching against a 
library of labeled character snippets). Off-the-shelf OCR 
technologies are generally ineffective because of the 
extreme low resolution of typical interface text. We 
previously noted the availability of recognition methods for 
screen-rendered text [30], but these are not optimized for 
Prefab’s scenario. A deeper investigation of robust text 
interpretation methods is an opportunity for future work.  

We have noted the existence of prior work examining 
logical grouping of interface elements [7]. It is unclear 
whether these methods are compatible with the real-time 
requirements of pixel-based interpretation. The tree-based 

organization of interfaces and our ability to interpret visual 
containment provides an important advantage: we can 
likely consider only logical groupings of siblings. Based on 
the hierarchies we have encountered in our work, there are 
typically a small number of siblings in any given node 
(i.e., most interface elements are intentionally designed to 
contain a small number of content items). Our current 
implementation uses simple heuristics to perform logical 
grouping. For example, checkboxes are matched to their 
corresponding content using a threshold on the proximity of 
the nearest text. Future work can explore more advanced 
approaches to creating logical groupings by matching 
elements of an interface. Errors in an automated process 
could be also corrected by storing annotations that record 
the need for a specialized grouping (e.g., using our XPath 
descriptors to override the default behavior). 

This paper focuses on core methods for interpreting content 
and hierarchy together with demonstrations of their value in 
example applications. There is a significant opportunity for 
future work that more thoroughly characterizes these and 
other pixel-based methods. Such work might examine the 
variety of widgets encountered in applications in the field, 
how well pixel-based methods can characterize those 
widgets, how many types of models and parts are 
necessary, and which of those models and parts are most 
broadly effective. Our pixel-based methods are the first to 
rival the accessibility API in terms of completeness, so 
comparisons between our methods and the accessibility API 
may be appropriate. Such a comparison should preferably 
go beyond simple frequency of failure to also probe the 
nature of failure (e.g., its impact in applications, the 
difficulty of correcting a failure). As in Hurst et al. [15], 
there are likely significant opportunities for hybrid 
approaches that combine the strengths of the accessibility 
API with the strengths of pixel-based methods. The 
contributions of this paper are a necessary step toward 
future characterizations of pixel-based methods, and our 
current validations are appropriate for this ongoing work. 

Our interface customization demonstration dynamically 
re-renders a dialog box at a different size to create room for 
the “favorites” tab. This is possible because the nine-part 
prototype that detects the dialog box describes all of the 
pixels needed to generate it. To the best of our knowledge, 
we are the first to demonstrate pixel-based methods to 
create new widgets matching an existing interface. But not 
all Prefab prototypes necessarily have this property. The 
ability to seamlessly add new widgets to the interfaces of 
existing applications would dramatically extend pixel-based 
methods, and further examination of pixel-based methods is 
an additional opportunity for future work.  

Our customization demonstration illustrates one approach 
to managing occlusion (using the hierarchy to maintain a 
memory of occluded components). Tab controls are perhaps 
the simplest case and this method may not immediately 
generalize to other forms of occlusion. For example, popup 



 

 

menus create less predictable occlusions that can span 
multiple nodes in a hierarchy (because they float above the 
hierarchy). Occlusion within a scrollpane also presents 
different challenges. We have shown that interface content 
and hierarchy provide a useful framework for reasoning 
about occlusion, and future work could examine more 
advanced methods building upon these initial insights. 

CONCLUSION 
This paper advances pixel-based systems by contributing 
new methods for hierarchical models of complex widgets, 
new methods for real-time interpretation of interface content, 
and new methods for real-time interpretation of the content 
and hierarchy of an entire interface. We validated our 
pixel-based methods in implementations of four applications: 
Stencils-based tutorials, Ephemeral Adaptation, interface 
translation, and the addition of customization support to an 
existing interface. Working only from pixels, we 
demonstrated these enhancements in complex existing 
applications created in different user interface toolkits 
running on different operating systems. 

ACKNOWLEDGEMENTS 
We thank Dan Grossman, Rick LeFaivre, Scott Saponas, and Dan 
Weld for discussions related to this work. This work was 
supported in part by a gift from Intel, by the UW CoE Osberg 
Fellowship, by the UW CSE Microsoft Endowed Fellowship, and 
by a fellowship from the Seattle Chapter of the ARCS Foundation. 

REFERENCES 
[1] Baudisch, P., Tan, D.S., Collomb, M., Robbins, D., 

Hinckley, K., Agrawala, M., Zhao, S. and Ramos, G. 
Phosphor: Explaining Transitions in the User Interface 
using Afterglow Effects. UIST 2006. 169-178. 

[2] Bolin, M., Webber, M., Rha, P., Wilson, T. and Miller, 
R.C. Automation and Customization of Rendered Web 
Pages. UIST 2005. 163-172. 

[3] Chang, T.-H., Yeh, T. and Miller, R.C. GUI Testing User 
Computer Vision. CHI 2010. 1535-1544. 

[4] Dixon, M. and Fogarty, J. Prefab: Implementing 
Advanced Behaviors Using Pixel-Based Reverse 
Engineering of Interface Structure. CHI 2010. 1525-1534. 

[5] Findlater, L., Moffatt, K., McGrenere, J. and Dawson, J. 
Ephemeral Adaptation: The Use of Gradual Onset to Improve 
Menu Selection Performance. CHI 2009. 1655-1664. 

[6] Fujima, J., Lunzer, A., Hornbæk, K. and Tanaka, Y. 
Clip, Connect, Clone: Combining Applications Elements 
to Build Custom Interfaces for Information Access.  
UIST 2004. 175-184. 

[7] Gaeremynck, Y., Bergman, L.D. and Lau, T.A. MORE 
for Less: Model Recovery from Visual Interfaces for 
Multi-Device Application Design. IUI 2003. 69-76. 

[8] Greenberg, S. and Buxton, B. Usability Evaluation Considered 
Harmful (Some of the Time). CHI 2008. 111-120. 

[9] Grossman, T. and Balakrishnan, R. The Bubble Cursor: 
Enhancing Target Acquisition by Dynamic Resizing of 
the Cursor's Activation Area. CHI 2005. 281-290. 

[10] Hartmann, B., Wu, L., Collins, K. and Klemmer, S.R. 
Programming by a Sample: Rapidly Creating Web 
Applications with d.Mix. UIST 2007. 241-250. 

[11] Hudson, S.E. Incremental Attribute Evaluation: A Flexible 
Algorithm for Lazy Update. TOPLAS, 13(3). 315-341. 

[12] Hudson, S.E., Mankoff, J. and Smith, I. Extensible Input 
Handling in the subArctic Toolkit. CHI 2005. 381-390. 

[13] Hudson, S.E. and Smith, I. Supporting Dynamic 
Downloadable Appearances in an Extensible User 
Interface Toolkit. UIST 1997. 159-168. 

[14] Hudson, S.E. and Tanaka, K. Providing Visually Rich 
Resizable Images for User Interface Components.  
UIST 2000. 227-235. 

[15] Hurst, A., Hudson, S.E. and Mankoff, J. Automatically 
Identifying Targets Users Interact with During Real 
World Tasks. IUI 2010. 11-20. 

[16] Kelleher, C. and Pausch, R. Stencils-Based Tutorials: 
Design and Evaluation. CHI 2005. 541-550. 

[17] Lin, J., Wong, J., Nichols, J., Cypher, A. and Lau, T.A. 
End-User Programming of Mashups with Vegemite.  
IUI 2009. 97-106. 

[18] Little, G., Lau, T.A., Cypher, A., Lin, J., Haber, E.M. and 
Kandogan, E. Koala: Capture, Share, Automate, Personalize 
Business Processes on the Web. CHI 2007. 943-946. 

[19] Myers, B.A., Hudson, S.E. and Pausch, R. Past, Present, and 
Future of User Interface Software Tools. TOCHI, 7(1). 3-28. 

[20] Nichols, J. and Lau, T.A. Mobilizing by Demonstration: 
Using Traces to Re-Author Existing Web Sites. IUI 2008. 
149-158. 

[21] Olsen, D.R. Evaluating User Interface Systems Research. 
UIST 2007. 251-258. 

[22] Olsen, D.R., Taufer, T. and Fails, J.A. ScreenCrayons: 
Annotating Anything. UIST 2004. 165-174. 

[23] Potter, R. (1993). Triggers: Guiding Automaton with Pixel 
to Achieve Data Access. A. Cypher, eds. MIT Press.  

[24] Rissanen, J. Modeling by Shortest Data Description. 
Automatica, 14(5). 465-471. 

[25] St. Amant, R., Lieberman, H., Potter, R. and 
Zettlemoyer, L.S. Visual Generalization in Programming 
by Example. 43(3). 107-114. 

[26] St. Amant, R., Riedl, M.O., Ritter, F.E. and Reifers, A. 
Image Processing in Cognitive Models with SegMan. 
HCII 2005.  

[27] Stuerzlinger, W., Chapuis, O., Phillips, D. and Roussel, 
N. User Interface Façades: Towards Fully Adaptable 
User Interfaces. UIST 2006. 309-318. 

[28] Takagi, H., Kawanaka, S., Kobayashi, M., Itoh, T. and 
Asakawa, C. Social Accessibility: Achieving 
Accessibility through Collaborative Metadata Authoring. 
ASSETS 2008. 193-200. 

[29] Tan, D.S., Meyers, B.R. and Czerwinski, M. WinCuts: 
Manipulating Arbitrary Window Regions for More 
Effective Use of Screen Space. CHI 2004. 1525-1528. 

[30] Wachenfeld, S., Klein, H.-U. and Jiang, X. Recognition 
of Screen-Rendered Text. ICPR 2006. 1086-1089. 

[31] Yeh, T., Chang, T.-H. and Miller, R.C. Sikuli: Using GUI 
Screenshots for Search and Automation. UIST 2009. 183-192. 

[32] Zettlemoyer, L.S. and St. Amant, R. A Visual Medium 
for Programmatic Control of Interactive Applications. 
CHI 1999. 199-206. 

[33] Zettlemoyer, L.S., St. Amant, R. and Dulberg, M.S. IBOTS: 
Agent Control Through the User Interface. IUI 1998. 31-37. 

 


