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Abstract. Computing affects how scientific knowledge is constructed, verified, and validated. Rapid 
changes in hardware capability, and software flexibility, are coupled with a volatile tool and skill set, 
particularly in the interdisciplinary scientific contexts of oceanography. Existing research considers 
the role of scientists as both users and producers of code. We focus on how an intentional, 
individually-initiated but socially-situated, process of uptake influences code written by scientists. 
We present an 18-month interview and observation study of four oceanography teams, with a focus on 
ethnographic shadowing of individuals undertaking code work. Through qualitative analysis, we 
developed a framework of deliberate individual change, which builds upon prior work on 
programming practices in science through the lens of sociotechnical infrastructures. We use 
qualitative vignettes to illustrate how our theoretical framework helps to understand changing 
programming practices. Our findings suggest that scientists use and produce software in a way that 
deliberately mitigates the potential pitfalls of their programming practice. In particular, the object and 
method of visualization is subject to restraint intended to prevent accidental misuse.

Keywords: Scientific software, Programming practice, Data science, Oceanography, Qualitative 
analysis, Sociotechnical infrastructure, Software engineering

1. Introduction

Higher-resolution, greater-coverage data increasingly becomes available for scien-
tific research. Programming tools and skills enable scientists to make use of datasets
that exceed by orders of magnitude what had previously been available. Newly
available data, enabled by hardware improvements, is made useable and useful by a
corresponding shift in coding practices. Software is one of many activities that
scientists undertake driven by knowledge acquisition needs (Kelly 2015). Code is
co-produced with data, as a coupled articulation of scientific expectations and
assumptions (Paine and Lee 2014). Doing the work of making software a re-usable
resource is a secondary, socially-motivated concern (Trainer et al. 2015). Increased
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use of programming in ecology, where established practice involves laboratory or 
fieldwork, corresponds to vocational and identity shifts (Jackson and Barbrow 2013). 
We contribute a framework to understand the temporal, sociotechnical process of 
uptake at the level of small, daily choices of individual oceanographers who code. A 
simplifying framework is necessitated by the diversity of the object of our research, 
and arose from iterative qualitative analysis of interview and observational data.

Programming in science is in Bpermanent beta^ (Kelly 2015), and subject to 
internal and external temporal processes (Chen et al. 2016; Steinhardt 2016). The 
past is connected through data integration and compatibility with existing systems, or 
with collaborators’ infrastructures. The future is connected by way of promising new 
research group members, and new scientific areas to contend with. Scientists who 
code (cf., Figure 1) must constantly re-evaluate which of a growing set of available 
technologies is worth investigating. Then, they must determine which is worth the 
integration and collaboration costs involved in subsequent uptake. Scientific pro-
gramming may be relatively more Brisk-averse^ due to long lifetimes of code in 
science and the perceived Bcradle-to-grave^ responsibility of maintenance (Kelly 
2015). Carver et al. (2007) also describe risk-averse behavior among scientific 
programmers with respect to the use of external components, which may have a 
short expected lifespan. Although new technologies are not quickly or easily 
adopted, uptake and adaptation are commonplace processes over time in activities 
related to code. Such activities include collaborative software development, writing 
ephemeral scripts, and using complex software. All these activities demand, or at 
least benefit from, an increased familiarity with the machine. By uptake, we refer to 
the process of increasing familiarity through concept learning, skills development in 
existing technology, and active choice to adopt different tools over time.

Approaching programming in science through the sociotechnical infrastructure 
lens enables the study of a variety of coders doing a variety of code work. Suchman 
(2002) shifts from the divisions of Buser^ and Bdesigner^ roles instead toward Ban 
extended field of alliances.^ This supports the Bview of systems development as 
entry into the networks of working relations … that make technical systems 
possible^ (Suchman 2002). Pipek and Wulf (2009) highlight the flexibility of 
software, and the reflexive capacity of working environments to be re-constituted 
over time. This, in turn, allows for small and large software alike to constitute a 
technical element of a sociotechnical infrastructure (Pipek and Wulf 2009).

We focus on oceanography, which is affected in a particularly interesting way by 
hardware advances and corresponding methodological shifts in computational prac-
tice. The study of the ocean and its processes spans a variety of disciplines, 
approaches, questions, applications, geographic areas, and periods of time (Kunzig 
2000). It is also rich in both new and established programming practice applied to 
many research questions across many temporal and spatial scales (ibid.). In the study 
of the ocean, methods in general - not just those involving coding - are varied and 
Bradically unstandardized^ (Steinhardt and Jackson 2015). Modeling 
oceanographers draw on a long tradition of computational practice which poses



significant legacy and integration challenges (Edwards 2010). Observational ocean-
ographers, like ecologists, face a shifting vocational landscape, where daily work
moves from the field to the computer screen (Jackson and Barbrow 2013).

Shifting coding practices in oceanography contribute to bridging the historical
divide between the modeling and the observational oceanographers. This divide, in
turn, affects uptake of programming practices. Numerical and computer modelling of
the oceans has been a major part of knowledge production in the field for nearly half
a century. Scientists integrate fieldwork and observational data into the development
and parameterization of models as well as interpretation of their results (Edwards
2010). Data standardization and integration have long been a focus of study and
engineering, in service of scientific research and collaboration. In oceanography, internal
cultivation and application of programming skills is the norm (Kunzig 2000; Edwards
2010). Researchers adopt and adapt aspects of professionalized software engineering
terms of art, tools, and best practices (e.g.,Mislan et al. 2016;Wilson et al. 2014; Sletholt
et al. 2011; Hannay et al. 2009). The cultivation process includes debate, reflection,
piecewise adoption, and adaptation of ideas from the methods discipline. Uptake, the
object of our study, is an observable outcome of constructive internal critique.

The visual representation of data and concepts is central in oceanography (Gilbert
2005). An oceanography lecture typically features an array of diagrams,
photographs, and figures using familiar metaphors to express the context and
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Figure 1. Who does code work in science?. We focus primarily on scientists who code. Prior
work has focused on scientific developers (e.g., Kelly 2015; Heaton and Carver 2015) and
computer scientists working in collaboration with scientists (e.g., Ribes and Finholt 2009; Howe
et al. 2008). Recent increasing abundance of data, due to hardware improvement, has resulted in
scientists not formally trained to program, and not occupying a formal programming post, to
undertake code work (e.g., vocational shifts in oceanography - Jackson and Barbrow 2013).
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outcome of study. In their daily work, oceanographers create and contemplate many 
image representations, produced computationally as well as on whiteboards or with 
pencil and paper. Visualization also plays an interesting role in uptake and mediation 
of code work. Easterbrook and Johns (2009) describe ways in which climate 
scientists use visualization as a form of continuous integration. BContinuous 
integration^ refers, here, to a software engineering term applied by Easterbrook 
and Johns to actions of the oceanographers they studied. In particular, they found 
that the scientists routinely tested the entire experiment code as a whole (ibid.). In a 
literature survey of software engineering research claims about scientific program-
ming process, Heaton and Carver find that design, debugging, and testing are not 
distinguishable processes with respect to the code itself, which is may result in code 
more difficult to debug and maintain (Heaton and Carver 2015). The processing and 
transformation of data to make visual representation and comparison possible is 
a major, unsolved, research and design challenge (e.g., Howe et al. 2008; 
Young and Lutters 2015). An understanding of uptake and code work must 
account for the privileged role of visual artifacts. Can such an understanding 
also provide some predictions of how visual practice in oceanography might be 
expected to mediate uptake?

We conducted an empirical, descriptive study of programming practices in four 
oceanography teams over 18 months. We focused on scientists who code (see 
Figure 1), interviewing and observing individual undertaking many small uptake 
actions throughout daily work routines. The inclusion criterion was willingness to 
build familiarity with the machine, as a means to achieve scientific goals. A total of 
46 informants were involved in various social events studied. Of these, 21 individ-
uals were actively incorporating new mechanisms into their scientific practice. These 
individuals were post-doctoral researchers, PhD students, research scientists and 
scientific programmers (see Figure 1). The data were analyzed qualitatively using 
iterative memos (Miles et al. 2013), to answer the following:

Research question. How does the intentional, individually-initiated but socially-
situated, process of uptake influence code written by scientists?

This paper is structured as follows. The Background section provides a theoretical 
basis for the framework and reviews related work on research on software and 
programming in science. The Methods section describes the site and the informant 
population, and the qualitative data collection and analysis methods employed. In the 
Findings & Framework section, we present the components of the analytic frame-
work. The findings are reported using Bqualitative vignettes^ (Barter and Renold 
2000) which are listed in Table 1. The framework enables a comparable description 
of incremental change through many daily opportunities, influenced by subjective 
evaluations of mechanisms in the working environment relative to a vision of a 
Bperfect world^. In the Discussion section, we apply the framework to understand 
restraint in visualization object and method as it impacts programming practice 
uptake. Both the Findings & Framework section and the Discussion section make



use of vignettes, but in different ways. The former set of vignettes were selected to
introduce the elements of the framework. The latter set, on the other hand, are
complex examples to which the framework was applied to understand visualization
during code work. While the Findings section presents and justifies the framework
and its components, the Discussion section explores these through additional vi-
gnettes. We outline our findings and offer some future directions in the Conclusions
and Future Work section.

2. Background

Programming practice is subject to individual and social assessments in relation to
time availability. Chen et al. (2016) identify differences in human and technical time
in a high-performance computing context, particularly in terms of human interven-
tion needs or costs. Button and Sharrock (1994) identify temporal influence as
constraint that results in Bpostponing^ better process. Although this would produce
better software, it is foregone Bin recognition of overriding organizational realities^
(ibid., p.221). Steinhardt and Jackson (2015) conducted an ethnographic study of a
large-scale cyberinfrastructure project involving oceanography. They identify
Banticipation work^ as Bthe mundane, local, and sometimes highly personal accom-
modations to the future" (ibid.). Programming in science is in Bpermanent beta^
(Kelly 2015) while being strongly situated in context-specific technical heritage.

Climatologists in the 1950s used many heterogeneous mechanisms to cope with
an Bexplosion of data^ (Edwards 2010). The computational approaches of decades-
old data practices affect contemporary attempts to build integrative analytic systems.
This subject is explored by Young and Lutters (2015) in the process of designing of a
tool that supports synthetizing datasets in Land Change Science. Steinhardt (2016)
further describes the Bcare work of breaking down,^ and identifies how interpersonal
relationships are built up during this breakdown process. In the wake of breakdown,
or Bfrustration^ of otherwise Bseamless^ work, human agents undertake subtle acts
of repair work (Jackson 2014). Lee et al. (2006) identify Bhuman infrastructure of

Table 1. Overview of vignettes in this paper. The framework introduced in this article is demonstrated,
applied, and used to derive insights in the following qualitative vignettes. Each can be found in the
indicated section in this paper.

Topic TSection

Vignette 1 Version control concepts Findings Mechanisms, Working Environment
Vignette 2 Switching between set-ups Evaluation of Mechanisms Relative

to the Perfect WorldVignette 3 The moving target
Vignette 4 Recovery from setbacks Applying the Framework
Vignette 5 BJust^ a visualization Discussion Object of Visualization
Vignette 6 BReal^ enough to look at
Vignette 7 Uptake without adoption Means of Visualization
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cyberinfrastructure^ as Bmultimorphous^ and Bdynamic,^ changing more rapidly 
than physical infrastructure.

We interpret code and code work through the sociotechnical infrastructures lens to 
capture both relative fluidity and interdependence of technical artifacts. Star and 
Ruhleder (1996) identify eight aspects of sociotechnical infrastructure. One of these 
aspects concerns having an installed base. In other words, dependence on existing 
technical and social structures, previous infrastructures, and systems of support, 
funding, training, and expertise. Pipek and Wulf (2009) build up the notion of 
infrastructuring and work environment that can be either collective or individual. 
This allows for infrastructure objects at different scales: "the concept of infrastructure 
remains useful regardless of the artifact’s sheer size" (ibid.). Suchman (2002) 
describes a Bdense and differentiated layering of people, activities and things, 
each operating within a limited sphere of knowing and acting that includes 
variously crude or sophisticated conceptualizations of the others.^ Orlikowski’s 
(2006) concept of scaffolding can help articulate how technological mecha-
nisms can act simultaneously as constraints and resources. Scaffolds are both 
dangerous (Bas temporary, emergent, and rapidly constructed assemblages, they 
are vulnerable to breakdown and failure^) and generative (Bserve as a basis of 
other (creative) work^), as well as emergent (Berected over time and changing 
in form and function^ (ibid.).

Pipek and Wulf (2009) identify actors Binvolved in these processes [of work 
infrastructure] to … perform deliberate, creative activity directed toward what 
they consider a lasting improvement.^ One friction that arises during the 
process of developing innovative cyberinfrastructure involves a mismatch in 
vision. Scientific users are unable to articulate realistic, yet still novel, needs 
(Ribes and Finholt 2009). Button and Sharrock (1994) distinguish Bhow things 
were^ from Bhow they were to be^ (p.225), in the context of evaluating (or 
strategically postponing) preferable, in favor of practical, programming pro-
cesses. This is consistent with Suchman’s argument for recognizing Breality of 
partial translation in place of claims for universality^ (2002).

Furthermore, Suchman (2002) challenges the Bthe vision of a single technology 
that subsumes all others^ with the idea of a Bcontinued existence of hybrid systems 
composed of heterogeneous devices.^ Deliberate, explicit adoption of practices from 
software engineering can be partial, patchwork hybrids. Sletholt et al. (2011) found  
partial adoption in a set of case studies evaluating the use of Agile programming 
practices as reported in scientific articles. Piecewise adoption is not unique to 
scientific code work. Truex et al. (2000) articulate two extreme narratives of 
Bamethodical^ and Bmethodical^ systems development, which are each present to 
an extent in real-world software engineering groups. Social mechanisms (Trainer 
et al. 2015) and personal taste and aesthetics (Leach et al. 2009) motivate production 
and inform prioritization.

Scientists who program have been characterized as professional end-user devel-
opers (Segal 2007). They do not self-identify as Breal^ programmers (Kelly 2015).



End-user development is defined as the Bset of methods, techniques, and tools that
allow users of software systems, who are acting as non-professional software
developers, at some point to create, modify or extend a software artefact^
(Lieberman et al. 2006). Because of the extent to which scientists Bcreate, modify,
or extend the software artefact,^ some studies have considered scientists as devel-
opers. Programming practices in scientific contexts recombine or partially adopt
software engineering practices (Heaton and Carver 2015). Some such adaptations
may inhibit effective production of high-quality code, because they diverse from
software engineering best practices (ibid.). Others have argued that scientific pro-
gramming is systematic, but in a way distinct from software engineering industry
contexts (Kelly 2015; Easterbrook and Johns 2009).

Orlikowski develops the notion of scaffolding to describe temporary sociomaterial
structuring in knowledge production (Orlikowski 2006). We relate the notion of
scaffolding to apply to temporary, or intermediate, visualizations. Code may be in the
process of being socially vetted through visual intermediaries. Visualizationmediates
code work in oceanography as a means for testing and validation (Easterbrook and
Johns 2009). Planning and visual artifacts make breakdowns in software visible.
Rönkkö et al. (2005) build on the concepts of articulation work and due process in
the study of software plans. They define a mediating role of Implementation Plans
in software production, which make breakdown visible (ibid.). De Souza et al.
(2005) develop a visual artifact to identify the social and socio-technical
dependencies in code, using a social-call graph. Based on interviews with
biologists, Yeh and Klemmer (2004) find patterns of using physical notebooks
that encode relationships to code comprehension: Bwhereas handwritten data is
unprocessed, needing to be transcribed for further analysis, printed data may
contain fully ‘debugged’ lab procedures that have been used with success.^
These notebooks contain, in addition to printouts, lists, and sketches blank
spaces Bpre-allocated for future work^ (ibid.).

In Kelly’s (2015) knowledge acquisition model, software production is driven by
scientific knowledge acquisition needs. Desire for more, not less visibility is reported
in in the Land Change Science data synthesis system (Young and Lutters 2015).
Chen et al. also found this preference toward transparency in their study of a high-
performance computing process management system (2016). Easterbrook and Johns
describe a Bcontinuous integration testing^ process (2009) neither uses an established
Agile method, nor is recognized as such by the scientists. Rather, it is Bpart of the
business of ‘doing science’ [to] continually experiment with the software itself to
improve their understanding^ (ibid.). Expertise and familiarity with the machine
arises in connections between moral judgments about better process and mate-
rial judgments about better outcome (Leach et al. 2009). On the other hand,
unfamiliarity results in under-utilization in absence of familiarity of
Bcapabilities and how to exploit them^ (Suchman 2002). Computational skills
among scientists are subject to change with respect to professional trends and
scientific utility (Steinhardt and Jackson 2015).

Deliberate Individual Change Framework



Group Label BioGeoChem CustomInstr. Omics RegionalNowcast

Model/Lab? Model Lab Lab Model
Number of Participants, esp. Scientists who code
Total 11 15 9 11
Focus
(of total)

7 4 4 6

Interest in Programming: Scientific Challenges to be Addressed through Code
Analysis Transformation,

comparison
Faster
analysis,
more data

Effective
automation

More features

Visualization Interactivity
in analysis

Real-time &
archive website

Sequencing
big data

Daily
forecast website

Big Data Access Storage Handling Access
Additional personnel influencing code work
Programmers 1 1 0 1
Collaborators 1 5 1 1

Kuksenok Kit et al.

3. Methods

Data collection was conducted over the course of 18 months from April 2014 to 
December 2015. Our study design accommodated many types of software adoption 
and adaptation, as well as individual and interpersonal narratives of code-related 
decisions. Initial interviews with Software Carpentry workshop participants in-
formed the recruitment and study of 4 specific oceanography teams, which are 
summarized in Table 2. Semi-structured interview protocols and observation ap-
proach were informed by prior research and data from a similar site. Multi-year 
interview data gathered by Charlotte P. Lee’s group regarding an oceanographic 
collaboration was used to create initial study materials.

Recruitment took place at a variety of events, including workshops, skill-shares, 
and group meetings. Initial observation also took place at some of these events. 
Access to two of the four oceanography teams occurred through some members of 
those groups participating in SWC events attended or observed. The key inclusion 
criterion for this study was a group’s interest in improving their coding skills for 
scientific work. This willingness was not tied to a specific research agenda or 
computational tool stack. Therefore, our findings concern tools of varied degree of 
complexity and abstraction. Groups’ interest did not necessarily stem from an 
appreciation of intrinsic qualities of computational approaches. Neither did it stem 
from a desire to pursue an expansion of capabilities. Instead, by Binterest^ and

Table 2. Summary of interest in code work among oceanography participant population, categorized 
by group. In addition to participant count (total and in the study-focus group), this table provides a 
summary of the scientific challenges that the teams have in mind as they explore various interests in 
programming. The name of each group highlights its distinguishing characteristic relative to the other 
groups. These distinctions may not reflect precisely the way the groups would position themselves in 
their scientific contexts.



Bwillingness^ we refer to a collective sense of a changing methodological landscape
in oceanography.

Not all informants were unequivocally enthusiastic about the increasing amount
of programming competence expected or required for professional success. Some
expressed enthusiasm about computing methods for their own sake, citing greater
computational capability. Some described experiencing a satisfaction with solving
the many mundane puzzles of programming, or with engaging with elegant code.
Even in the cases of great enthusiasm about programming for its own sake, science
was unequivocally the primary endeavor. The time spent programming, therefore,
was pulled in pieces out of busy schedules. Initial exploration, or prior experience,
was a prerequisite to forming a practical vision for the application of the tool. Both
exploration and the maintenance of experience demanded time, as do the immediate
needs of defects or experimental requirements. BWillingness^ refers also the pur-
poseful and sustained prioritization of non-urgent tasks in scientific programming
over the more urgent ones.

Our findings are based on observation of individual scientists doing code work,
and semi-structured and unstructured interviews. Observation of workshops and
meetings helped to situate individual work in its social and scientific context. All
data were recorded in the form of interview transcripts or typed notes, which were
then analyzed using iterative coding and memo-writing. The first author performed
data collection and preparation of anonymized vignettes. The other authors were
engaged in the discussion of these vignettes, their relationships, and connections to
literature, as part of analysis. In the following sections, we describe the research site
and groups, and the data collection and analysis methods.

3.1. Site description

Four different oceanography groups were studied. To protect the anonymity of these
groups, only a minimal relevant background is provided about their work. Each
group or lab was led by a Principal Investigator (PI), and included graduate students
and post-doctoral researchers. Some of the groups had additional positions. Both
modeling groups had a scientific programmer position, occupied by an experienced
programmer who had been with the group longer than most other members. The
groups with labs also had lab-specific positions, such as a lab manager, and research
scientists who worked on enabling computational methods.

The groups studied dynamics, processes, and small particles and micro-organisms
in the ocean. Ecology, genomics, biogeochemistry, physics, biology, and biochem-
istry research questions were represented across the four groups. Common aspects of
analysis involved changes of concentration of nutrients over time and the movement
of organisms and particles as affected by eddies and currents. Similarity in data
processing and presentation operations placed comparable demands on software
functionality and transparency. Many diverse projects could be characterized as
study of changing quantities over time while accounting for complex mobility
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processes. Temperature and salinity were common, and variations between night and 
day, or across seasons, were typically taken into account both in observational and 
modelling contexts.

All groups worked in different sets of offices, through two were situated on 
different floors of the same building. Despite not spending much time with water 
samples or the ocean, both modelling groups were personally connected to their 
surrounding environments. The physicists in our study expressed enthusiasm about 
and closeness to the outdoors in general. This contrasts the high-energy particle 
physicists whose research location was purposely at odds with its environment 
(Traweek 2009). Parts of this may have reflected the outdoors ethos of the Pacific 
Northwest at large. Both modelling groups had at least one member who had never 
been to sea, who was interested in the experience. The Omics-Lab, like 
CustomInstrument-Lab, had a laboratory space in addition to computer workstations, 
where members of each spent considerable uninterruptible time. During routine 
group meetings, certain members were occasionally justifiably absent and Bunder 
the hood^ (referring to a fume hood in a chemical lab). Computer work was done in 
shared offices or labs, and short interruptions to ask colleagues for ideas or help were 
commonplace. Two members of the CustomInstrument-Lab reflected on how their 
facilities reflected the changing role of computation. The space had been refurbished 
less than a decade ago. The preferred side of the building which had a good view was 
occupied by the laboratory space, to purposely accommodate the expected typical 
workspace. However, in practice, members this group faced data challenges that 
required extensive computer time. Therefore, the set of offices on the side opposite to 
the view received more use than expected.

3.2. Data collection and analysis

The data gathered spanned transcribed interviews and extensive notes from obser-
vation of group meetings, other social events, and, primarily, shadowing individuals 
doing routine code work. Of the 46 individuals in the four oceanography teams, 21 
had been shadowed and interviewed during some process of change. The others 
either did not use computational tools, did not undertake any related changes, or were 
too busy to participate in the study further. Most of the 300+ hours of observations 
involved shadowing each of the core informants. A shadowing session lasted 
between several hours and multiple days during negotiated times. This allowed 
access to moments throughout the day relevant to the research question. 
Shadowing was supplemented by unstructured and semi-structured interviews in 
order to build an understanding of daily work.

Unstructured and semi-structured interview tactics were embedded in a 
shadowing activity. The semi-structured approach relied on asking deeper follow-
up questions about meaning and process based on answers to more specific ques-
tions. Some formal interviews were used: scheduled, private, audio-recorded meet-
ings in order to get reflections on some particular event or dynamic. Most of the



reflection and quotes came from countless more unstructured interview opportuni-
ties. Interview probes followed particular moments of natural pause in code work.
For example, leaning back in the chair and sighing, or expressing a moment of
victory. These moments provided opportunity to ask about the challenge and the
solution, as well as the current scientific interpretation.

Toward the end of the study, the follow-up questions asked became purposely
more speculative. For example, during one brown-bag lunch break, a discussion of a
recently-encountered bug took place among two post-docs and the observer. The
observer asked the informants to critique an idea for interactive visualization for
debugging that built on prior observations. Such probes were able to broach in a
concrete way the broader topics of interest, like trust and code comprehension. As in
the prior approach of follow-up questions, the goal was to ask about salient topics
concretely first, and then abstractly. The probe regarding a visualization for
debugging led the informants to describe a prior attempt in the group to make
something similar. That attempt had been abandoned, because visual cues seemed
too precise, and created an impression of certainty which was dangerously mislead-
ing. The exchange revealed an attitude of reluctance which, upon further investiga-
tion, resulted in the synthesis presented in the Discussion section.

The analysis was carried out by all authors throughout the study, iterated and
pooled together by the first author. Subsets of the authors participated in discussions
of particular anonymized case study write-ups and preliminary theoretical framings
throughout the theory development process (Miles et al. 2013). Three of the authors,
including the first author, have a computer science and software engineering back-
ground. This enabled our technical focus and interpretation. The data collection and
analysis were carried out by the first author, who was able to ask technical follow-up
questions.

The outcome of the analysis was the framework, which is presented here. It was
developed to reflect a diversity in attitudes towards the introduction of new compu-
tational tools. The phrasing and framing remain close to the terms and meanings of
the informants. While our framework constitutes an etic form of knowledge, the
language and concepts are emic, derived from the world of the participants them-
selves. For example, the Bideal^ or Bperfect world^ as an explicit articulation of the
direction of desired progress. Evaluation, or normative framing arises in native
descriptions of standards or norms: the Bshoulds^ of their work. These descriptions
arise in internal discourse and rhetoric, as arguments or suggestions: Bwe should
really use version control.^

3.3. Limitations

Our study was limited to a particular set of individuals, pursuing specific research in
oceanography, and is not necessarily representative of other scientific contexts. Our
inclusion criterion necessitated an attitude of willingness toward uptake of new
technologies. Participant recruitment began at sites of expression of this willingness:
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local workshops and tutorials on code in science. As a result of the inclusion 
criterion, study spanned a wide range of programming background, motivations, 
interests, and tools adopted (and abandoned). Willingness did not necessarily imply 
enthusiasm, so reluctance and mistrust could also be captured. This diversity limited 
the extent to which we could compare software practices.

Furthermore, all Principal Investigators (PIs) in our study encouraged group 
members to invest time and energy in exploring new technologies. All the groups 
were successful constituents of high-profile departments. We did not include those 
oceanographers not holding the view that their scientific landscape of was undergo-
ing a significant computational methods shift. We cannot claim any generalization of 
our findings to groups more reluctant to changing methodologies. Likewise, these 
findings may be overshadowed by financial constraints in a less professionally secure 
or supportive environment. We only conducted the study for 18 months, which 
allowed us a detailed view on small-scale deliberate change but not on longer-scale 
changes and drift.

4. Findings & framework

In this section, we focus on defining the framework that emerged from this study. The 
terminology used in this framework is selected to mirror the terminology of the 
participants, as described in the Methods section. The structure of this framework 
builds on the related and background work. This section presents qualitative vi-
gnettes of increasing complexity using concepts form the framework, and addressing 
our question: how does the intentional, individually-initiated but socially-situated, 
process of uptake influence code written by scientists?

4.1. Mechanisms in the working environment

Thus far, we have described a study site characterized by heterogeneity of technology 
and its uses (Suchman 2002; Steinhardt and Jackson 2015). In this section, we build 
up the definition of a working environment comprised of mechanisms. Both concepts 
include not only the technological function of a mechanism, but also social and 
personal. The technical function of a mechanism is connected to Bgetting set up^ for 
new contributors to a joint scientific project that has a coding component. A 
mechanism can act as a social resource by supporting communication, decision-
making, goal-setting, and reflection with respect to a project. Lastly, the dimension of 
personal skill and knowledge can enable an unused resource to have influence. 
Consider Vignette 1, which provides an overview of different roles that GitHub, as 
a mechanism, can play from the perspective of an individual.

We consider GitHub a mechanism, despite the variety the roles it plays, capabil-
ities it entails, and interpretations it inspires. Scientist express their willingness to 
build familiarity with the machine to achieve scientific goals. One such means for 
expression is attending Software Carpentry (SWC), an international organization and



movement to teach basic computing skills to researchers. There are other
workshops of this type, but SWC workshops have been offered since 1998
and have been in increasing demand in recent years. GitHub is one of the
four components of the two-day curriculum, and the subject of lectures
advocating for better programming practices in science. These workshops
and lectures are delivered not only by external advocates but by members of
the domain discipline. In Vignette 1, we highlight also how miscommunica-
tion about the nature of GitHub impacts uptake.

Vignette 1: Version Control Concepts
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GitHub (GH) is a web-based service for hosting code version-controlled 
through git, a command-line tool that keeps track of changes to code over 

time to make recovery easier and more clearly show collaborative 
contributions. Version control with GitHub is a core part of the Software 

Carpentry (SWC) curriculum and other introductory resources.
How do scientists understand GitHub after participating in SWC?

Specific technical tools and operations: “merge,” “branch,” “clone.” The use 
of these terms suggest familiarity with the technology.

However, familiarity does not imply active use. Not using GitHub is not 
experienced as a problem, but as a context-specific decision.

An alternative to GH may be a shared directory on a common server, or in a 
file-sharing application like Dropbox. If an individual’s colleagues use the 
shared directory, the individual need not apply her familiarity with GH.

An individual need not be familiar with or use GH to benefit from it as a 
social resource: his other colleagues can set up helpful email notifications of 
updates.

GH is tied to a broader professional and scientific discourse: “accountability 
and transparency,” “open source software” “standards in my new lab,” 
“collaboration with other institutions,” “online professional portfolio.” These 
are not tied to the technical utility of GH in managing code. This association 
helps SWC motivate the inclusion of GH in its curriculum.

This can lead to confusion, however. Of 10 SWC attendees interviewed after 
participation regarding uptake, 3 reported that they did not want to use 
version control because they did not want their code to be public. This 
prevents the tool from being useful on the basis of a miscommunication. 
Version control tools, git hosted on GH included, do not necessitate public 
access.

Sometimes, GH – a hosting service – may be down, or git – a command line 
tool – may struggle with merging two colleagues’ work on the same file. In 
the event of a temporary technical breakdown, the individual can leverage 
their personal skill/knowledge and social resources (colleagues and 
StackExchange) to address the breakdown while potentially strengthening 
those resources by doing so.

Deliberate Individual Change Framework
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The landscape of technology occupies many different scales. A single 
software Btool^ might be seen as a collection of distinct programs, or as a 
component of a larger system. Our concept of the mechanism discretizes the 
technological landscape on the basis of emic narratives expressed by study 
informants. Despite the broad definition, GitHub is a mechanism and not a 
working environment. We define the working environment as a personal, 
contextualized collection of mechanisms and supports technical work activity 
in its entirety.

4.2. Evaluation of mechanisms relative to the perfect world

A working environment is subject to reflexive change (Pipek and Wulf 2009). This 
section provides the definition and justification for our model of how individuals 
enact change. The evaluation of a mechanism in the working environment is 
subjective, and roots the mechanism in the scientific use case. In the  Bperfect world,^ 
tools are (1) understandable, (2) perform the necessary task, and (3) persist over time. 
As Figure 2 illustrates, these properties interact with the limitations and bottlenecks 
in the personal, social, or technical resources of a mechanism. Even if no one 
particular mechanism taken alone is difficult to evaluate, understand, use, or improve, 
the combination of mechanisms over time exacerbates integration and compatibility 
challenges. Our framework enables a specificity and comparability in revealing these 
challenges.

The relevance of these three properties (functionality, understandability, sustain-
ability) is revealed through internal discourse and critique of technology. During 
almost every explanation of the current working environment, the primary scientific 
programmer in the BioGeoChem-Model group called it Bnot ideal^ while providing 
a historic or domain-specific reason for it being so. Another scientific programmer in 
the CustomInstrument-Lab team noted a shortcoming in the data collection: Bin a 
perfect world, there would be a satellite for data transfer during cruise, but this is not 
that world, so data is transferred once [on shore].^ Another member in the 
BioGeoChem-Model team described the difference between two major programs: 
both are large and have many constituent packages, but one is more Bconservative^ 
in terms of including new packages, which makes it generally more Breliable.^ 
Furthermore, neither is especially Buser-friendly^ because the Bprogrammers don’t 
want people to get too complacent.^ The barrier to the perfect world is described as 
not currently surmountable: historical constraints in a large codebase; procedural or 
technical constraints in cruises; and the potential complacency of users.

Our model of change centers prioritization, and one important embodiment 
of prioritization rests in the role of the software advisor. We identify this role 
in our data based on whether non-professional developer scientists consistently 
sought, and acted on, the advice of particular individuals. Formal positions 
enable individuals to undertake this role, but are not a pre-requisite. Table 2 
lists these for each group studied as Badditional personnel influencing code



work.^ The role of the software advisor is sustained by others’ actions toward
them. Colleagues’ requests are filtered through desire for sustainability in the
working environment.

After using script S1, authored by 
Bob, both Bob and Alice switch 

to using S2. How & why?

Key mechanism 
performs task

individual
understands mechanism 

individual
expects future function and
extensibility

Figure 2. Notation for the deliberate individual change framework, demonstrated in context of
a fictional narrative. Evaluations are not always aligned between the individuals, even when
they use the same mechanism. The combination of mechanism breakdown in part of the
working environment, and its evaluation, informs action. Individuals strive to recover from
breakdown in the direction of what they experience to be functional, understandable, and
sustainable mechanisms. The qualitative notation highlights tensions and work completed at
cross purposes by reducing complex variables 6 dimensions. The notation for evaluation
relative to the perfect world is binary (presence/absence) with respect to 3 properties. The
notation for how a mechanism fits into the working environment is ternary (presence/absence/
breakdown) with respect to 3 resources. These subjective properties are justified in the Findings
and Framework section.

Deliberate Individual Change Framework



Scientists chose which problems warranted the attention of the software advisor.
For one informant, the approach of having a specialized tool for every case is an
impractical ideal: Bwell, it would be wonderful to have the exact right custom
solution for every problem! But that is not the reality.^ This kind of customization
and maintenance would place overwhelming demands on the limited time on
Andrew, an in-house software advisor in the CustomInstrument-Lab group. Two
oceanography post-docs (including Mallory, cf. Vignette 4) were cognizant of
Andrew’s limited time and self-censored which problems to bring to him:
Bwe can’t [meaning, should not] be walking down the hall asking [Andrew]
to do things all the time,^ despite the sense that Bwell, he can just [solve any
problem] in the best way.^ Minor shortcomings and setbacks were routine, and
many more than could be addressed by the software advisor. Study participants
did most of their code work on the assumption of being personally responsible
for maintenance and communication.
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When does the evaluation of a mechanism deteriorate?

Erin was a post-doctoral fellow in the RegionalNowcast-Model 
group who worked with both observational data and models. She 
had two different “set-ups” for tasks in these historically distinct 
areas in oceanography.

The “set-ups” were distinct enough in her mind that, in one 
observation session, she accidentally re-implemented a small 
utility (New U.) because she forgot that it already existed in the 
other, inactive environment.
The diagram to the left highlights this new mechanism, which is 
evaluated to be overall acceptable.

When Erin began to explain to the observer what she had been 
working on, the similarity of this utility to an existing one 
(Existing U.) occur to her. Duplication of code, and lack of code 
reuse, was a violation of the "best practices" which she 
considered important.
The evaluation of New U. now excludes “sustainability,” which 
is undermined by duplication of the existing, shared functionality 
in Existing U.; meanwhile, Existing U. does not have the desired 
functionality “out of the box” and needs additional action, even 
though it is preferable overall.

Functional: the mechanism performs the task
Understandable: the individual understands it

Sustainable: the individual expects it to work in the future

         Kuksenok Kit et al. 
Vignette 2: The Set-Ups



The need to understand is a pre-requisite for using a software tool or code for a
scientific task. For example, the software advisor for the RegionalNowscast-Model
described the experience of providing technical explanation to the domain scientists he
works with: BI can see when their eyes glaze over. [The PI] is really good at pushing me
on it: ‘do I - as a scientist - really need to know this?’^ However, what a scientist might
Breally need to know^ varied widely depending on the scientific and social context. One
researcher in the CustomInstrument-Lab group expressed frustration over the efforts of a
programmer to make a tool too user-friendly. The effort backfired: the mechanism was
not clear to the users, as one post-doctoral fellow remarked: BWe are scientists! Looking
inside and figuring it out is what we do!^ A member of the BioGeoChem-Model team
also joked about how sometimes it was difficult to get the software advisor to explain his
actions: Bhe doesn't like talking, just fixes all our problems super-fast.^

Vignette 3: The Moving Target
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Evaluation from the perspective of a software advisor.

The part-time scientific programmer who was working with 
members of the RegionalNowcast-Model team had explained in 
the beginning of the study that many of the group’s Python 
scripts use a large model code with many constituent packages 
and many diverse users internationally.
The diagram to the left shows a combination of an ephemeral, 
unsustainable script used in combination with a shared model 
code.

Unsatisfied with this, he described a hypothetical program which 
would initiate a run with a single command (Run mngr). It would 
carry out many mechanical but essential processes, like creating 
symbolic links and adding jobs to the queue manager in the 
computing resource, behind the scenes. Several months later, he 
unveiled such an implementation to the four students and post-
docs who comprised its current users. His demo was filled with 
mentions of the many ways in which the command would be 
improved "ideally". These comments provided an equally 
specific but different vision of a technology that would support 
scientific work. Notably, the revised vision expanded no only to 
include more features, but also to account for a wider and more 
diverse audience. In the next iteration, it would also account for 
as-yet-unspecified but expected and desired new additions to the 
group. The diagram on the left is updated to reflect the better 
sustainability of the run manager script, but highlighting its 
limitation in supporting new group members.

Functional: the mechanism performs the task
Understandable: the individual understands it

Sustainable: the individual expects it to work in the future
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In Vignettes 2 and 3, we map an individual’s subjective experience. Over time, the 
individual’s evaluation of the working environment degrades. Greater awareness or 
self-initiated improvement highlights new shortcomings or limitations. These 
form a perceived demand for action, or opportunity. The action then serves to 
bring the mechanism closer to the Bperfect world,^ by recovering from the 
shortcoming. Vignette 2 illustrates how the evaluation of a mechanism adjusts 
on the basis of the broader working environment context. Vignette 3 describes 
the moving target of the Bperfect world^ that adjusts to new limitations when 
previous shortcomings are addressed. In both cases, the adjustment of evalua-
tion is internal in that it is initiated by the individual. It can also be seen as 
external, however, in that it is triggered by social interaction, either with the 
observer or with the colleagues. Furthermore, when the barriers are overcome 
in the pursuit of a vision, the vision changes.

An individual’s imagination is informed in successive acts of trial and error, 
and through interactions with the software advisor/advocate. The perfect world 
is unattainable as long as there are resource constraints, and while external 
resources and internal functionality changes over time. Action is targeted at the 
adoption of an identifiable mechanism. A localized attempt to enact that change 
can impact the arrangement and relationships of other components, even if the 
mechanism is not ultimately adopted. In this way, it is possible for partial 
adoption, or non-adoption, to nevertheless change working environment. Under 
this framework, all changes are deliberately oriented toward the vision of a 
perfect world.

Our framework identifies stages of change that include attitudinal stance rather 
than uptake or adoption directly. In this way the framework accounts for the 
connection between external influences and internal direction experienced by people. 
The preconditions for action with respect to a mechanism are: (1) awareness; (2) 
normative framing; and (3) opportunity. For example, a local free workshop on a 
technology that has been in the normative framing stage provides an opportunity. In 
the case of the Omics-Lab group, this is how they described their trigger to attend the 
workshop. The normative framing stage involves the recognition of shortcoming in 
the evaluation relative to the perfect world. Direct external influences can also help 
establish initial awareness, such as through talks contributing to awareness of useful 
mechanisms. Externally-triggered breakdowns can both contribute to evaluation 
adjustment and provide opportunity for action.

4.3. Applying the framework

We introduced a model of incremental change through many daily opportunities, 
influenced by subjective evaluations of mechanisms in the working environment 
relative to a vision of a perfect world. Figure 2 provides a fictional example that 
illustrates how the notation supports expressing a wide range of subjective evalua-
tions of mechanisms.



In Vignette 4, we consider a post-doc, Mallory, recovering from two technological
setbacks. We use the framework to formulate hypotheses explaining why her
experience of the two technologically-similar setbacks is so different.

Mechanisms Vignette 4: Recovery from Setback
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Two different setbacks, occurring to the same person, require 
outdated scripts to be fixed and re-run. The individual 

experiences both setbacks, and their respective recovery 
processes, differently. One is “devastating” and the other is a 

“time investment.” Why?

Mallory, a post-doc in the CustomInstrument-Lab, was using a 
database (DB) maintained as part of a collaborative project. As 
an experimental tool, working with it required close collaboration 
with computing experts. This at times left Mallory wanting a 
deeper understanding of the system.

A hard-write failure corrupted some of the data. The computing 
researchers involved in the collaboration wiped the database 
clean, without affecting the original data. From their perspective 
this was unfortunate, but unsurprising in an experimental context. 
Mallory commented that, “in a sense nothing is lost, but nothing 
is in a format I could do anything with.” She described the event 
as a “major set-back,” “devastating,” because she had “nothing to 
show” for her scientific work.

A prior colleague who was most knowledgeable about how to get 
the data into the system had recently left. Recovery from the 
breakdown involved also retracing past actions, at times under-
documented, with new personnel. Meanwhile, her MATLAB 
license had expired, forcing her to make a decision: pay for the 
license, or re-implement her visualization code in Python.

Regarding the visualizations, she decided in favor of 
reimplementation using open-source, free components, which 
would be more sustainable. This involved a concerted effort to go 
through tutorials and learn how to use a library that she had been 
"meaning to" learn. Mallory viewed this activity as a "time 
investment”. Regarding the database event, she continued to 
work with the new DB staff, improving communication with the 
possibility of future work. In the meantime, she was able to use 
familiar, local tools on her machine (Python and Jupyter 
Notebook) to run smaller-scale but still fruitful analyses.

Functional: the mechanism performs the task
Understandable: the individual understands it

Sustainable: the individual expects it to work in the future
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One explanation would cite only the scale of the setback: the data loss 
problem took longer to solve, at least in part because it was a bigger breakdown 
and involved more people. Another explanation would distinguish the former 
action as reinstating something previously-available and suddenly frustrated. 
The latter action, of reimplementation, was enabling something new to the 
working environment. Both variants distinguish the two situations through 
individuals’ relationship to time. Using the concepts of our framework, we 
can formulate more precise observations. In the case of the database, there were 
two breakdowns, in the social and technical aspects of the working environ-
ment. These exacerbated the already-imperfect evaluation. Recovery action 
required simultaneous maintenance of two alternative mechanisms, both with 
shortcomings. In the case of the visualization, the setback was localized to ne 
particular problem, and the recovery action addressed it well relative to all 
relevant dimensions.

5. Discussion

At the end of the Background section we noted the importance of visualization in 
supporting both code work and scientific work, and mediating code use in oceanog-
raphy (e.g., Easterbrook and Johns 2009). In this section, we provide one answer to 
the question, how does the intentional, individually-initiated but socially-situated, 
process of uptake influence code written by scientists? The process of answering this 
question is aided by the framework introduced previously, which is applied to more 
complex vignettes and related to existing scholarship. The answer that is produced is 
intended to shed light on the question, as well as to offer a discussion of how our 
framework can be used to gain insight. This answer returns to the centrality of 
visualization, specifically to restraint in scientific code work (cf., risk-averse pro-
gramming practice, Kelly 2015). We consider the object and means of visualization 
as targets of intentional restraint. This restraint is intended to prevent accidental 
misuse or complacent carelessness.

Creating and considering visual representations of data constitutes a set of com-
mon activities that cross-cut personal, social, and technical resources of each indi-
vidual’s working environment. The practice of interpreting visualization is both a 
personal and a social resource. The individual capacity to interpret data using 
consistent visual metaphors is cultivated socially. Technical steps that lead to a 
visual representation of data are triggered by intuiting something Bweird^ or 
Binteresting^ enough to investigate. The outcome arrives, through iterative 
subsequent visualization, at either an error or a finding. This discourse interro-
gates the visualization and its scientific implications. It supports the social 
construction of visualization literacy. It also structures, and is structured by, 
further technical exploration and uptake.

To contextualize the discussion of visualization, we briefly describe the role of 
visualization in daily oceanographic work. Printouts of charts can be physically



arranged; a robust working environment may provide rapid, interactive exploration
of data. The observations of Easterbrook and Johns (2009) with regards to
oceanographic visualizations used for testing in code align with our own.
Gathering around a monitor was the most common social practice observed.
An interactive environment allowed the generation of new images on demand
as part of a process of rapid social exploratory analysis. Solitary generation of a
wide array of exploratory figures in an interactive environment, notably
MATLAB or Jupyter Notebook, was the most common visual practice overall.
An individual typically continued to be the only one physically interacting with
the workstation as one or more colleagues joined to discuss. This imposed no
requirements on the specific technologies used to produce a picture. Printing
and laying out the charts, or projecting during a group meeting, was robust to
major differences between individuals’ working environments. Print-outs have
the added affordance of being rearranged into pairs or sets, which was an
important capability for one post-doc in the BioGeoChem-Model group. Even
without physical printouts, it was rare for a single chart to be the subject of
attention. Multiple charts were discussed, either in context of making a com-
parison or in triangulating a process/feature of interest across multiple slices
through space or time.

5.1. The object of visualization: restraint toward representation

Visualization is central in sense-making and relies upon a common visual language
specific to the scientific community. In the below Vignettes 5 and 6, we explore
restraint towards representation. In both instances, a less experienced contributor
encounters a situation where a quantitative measure ought not to be embedded
visually. One interpretation is that an insufficiently Breal^ (e.g., Vignette 6) repre-
sentation may undermine an individual’s personal meaning-making process. Which
measure to plot from a list of available options is a technologically arbitrary decision
becomes socially meaningful. Vignette 5 exemplifies a breakdown resulting from
unawareness of this meaning.

Both vignettes illustrate how the realness of data intersects with its interpretability.
In the examples, the relationship of the data to the phenomenon studied was that of
systematic measurement bias. The PI of the BioGeochem-Model group explains that
models represent Bdifferent worlds.^ The things that happen in models Bare real,^ but
how or whether they match the observed world remains to be articulated explicitly.
Ideally, they have an understandable relationship to the elements affecting the natural
phenomenon of interest.

The use of different bathymetry files in modelling research helps exemplify these
different, real worlds. The ocean, both in reality and in representation, is bounded by
both the surrounding land topography and underwater topography. Bathymetry is the
study of underwater topography. To run a model, the researcher needs - among other
things - a file that contains information about depths, or a Bbathymetry file.^ A post-
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Vignette 5. BJust^ a Visualization. Melissa is a computer science student who at one point had
been part of the CustomInstrument-Lab collaborative project. Her involvement with the group had
wound down, and she was describing some not-too-promising attempts to make connections with
other groups. She had recently reached out to some researchers working with Argo floats1. She
expressed difficulty finding physical oceanographers to collaborate with: BI just hoped they would
be more excited, but they were getting caught up on things that I didn’t think were important.^
She had sent them a plot based on the data, and received in response an explanation for how a
particular column ought not be used for analysis, but only for quality control.
The column names in the standardized format (NetCDF) were not self-explanatory, so the
common format did not save an enthusiastic student from violating unstated assumptions. This
was frustrating for her, because her intention to demonstrate a visualization process had backfired
in a way that she perceived as disproportionate to the technical issue itself: Bthis is a database, we
can filter that out later! I was just plotting something!^ Her working environment lacked the social
resources in the oceanographic domain, but she evaluated her visualization as understandable,
functional, and extensible. In particular, she understood how to extend the solution to include
other data to address functional needs. Those who received it, however, did not share this
interpretation.

Vignette 6: BReal^ Enough to Look at. The amount of matter in a biochemical context can be
measured in several ways. Counting discrete instances, such as organisms, is another measure of
amount. Alternative to counting, weigh of a substance in grams may be used. A mole is a unit for
measuring the amount of a substance relative to its chemical makeup. A femtomole (fmol) is 10-
15th of a mole. A mole is measure used in chemistry to reason about the quantities of molecules
as they react to form other molecules. In the equation 2H2 + O2 → 2H2O, measuring in weight
directly would require further calculation, since weight is related to reactive amount via molecular
weights.
Colleen is a post-doctoral fellow whose doctoral work is from a neighboring discipline. She used
fmoles in a weekly group presentation. The PI stopped her mid-presentation in a welcome,
teaching, but uncompromising manner: Bfmoles are not real.^ The PI explained that the
distinction between counting and weight produces Btotally different shapes^ for two outputs that
are both Babout amount^. The reference to Bshapes^ here refers to plots with the measure in
question on the Y-axis, and various substances along the X.

1 BPart of the integrated global observation strategy,^ a project that now offers 15 years of global floatdata. See
http://www.argo.ucsd.edu/
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doc in the RegionalNowcast-Model group compared several such files to determine 
which was Bbest.^ She looked for one that preserved the high-level patterns relevant 
to claiming a link between the model and the observed world. Of these Breal^ worlds, 
the most preferable one is not necessarily the most accurate in terms of depth. Rather, 
it is one that produces more realistic results in the model relative to the dynamic 
being studied. Visualization was the primary means for making this assessment.

http://www.argo.ucsd.edu


Measurements depend on their context of use and influence on interpre-
tation. In the above example, one common, relatively direct measure of
quantity is less Breal^. Realness refers less to representational capability than
to consistency of visual language in the scientific community. Other common
examples of the context of use affecting the interpretation of data include the
use of relative measures. Especially in the study of earth systems (Edwards
2010), model-laden data and data-laden models, dual interaction. In field data
collection, as the many discussions we observed revealed, many biases and
errors may influence an absolute measure. However, repeated measurement,
either in the model or the observational sense, may be used to produce
relative measures. For example, the count of the number of a certain kind of
organism is difficult to estimate. If the estimation is biased in the same way
at different time points, organism birth, death, or reproduction rates can
nevertheless be studied.

Restraint toward what is visually represented is of central importance to under-
standing code work in science. Visualizations are subject to a variety of social and
scientific requirements, with regard to consistency and to accurately representing a
wealth of heterogeneous data.

5.2. The Means of visualization: restraint toward affordance

The groups we studied shared an attitude of interest, or at least willingness, toward
adoption of new technologies and learning new technological concepts. However,
they were relatively reluctant when faced with specific tools or interventions.
Especially in the area of interactive visualization, which was a subject of potential
collaboration discussions for multiple groups. The perfect world involves improve-
ment, but not if it means sacrificing the flexibility and social precision of existing
practices.

Vignette 6 provides an example of scientists prioritizing measures prior to repre-
sentation, demonstrating care in the work of crafting what can be seen as inscription
devices (Latour andWoolgar 1979). The conversation from this vignette occurred in
a weekly meeting of the Omics-Lab group, in the context of exploring an interactive
exploratory visualization software. The story of uptake of this software is explored in
Vignette 7.

Viewing static images or animations side by side was one of the most common
activities throughout observation of individuals and groups. Common visual repre-
sentations are taught through instruction and practice to understand. They are crucial
in mitigating the many sources of error in such a wide-ranging discipline that
integrates may difficult sources of data. The uptake, pedagogy, rhetoric, and
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Vignette 7: Uptake without Adoption. Tableau is a desktop Graphical User Interface (rather than
a Command Line Interface) application for interactive visualization. Members of the Omics-Lab
group try it out. They do not adopt it, in the sense of reorganizing their working environments to
replace prior tooling (Excel) with the new tooling. However, the experience has an impact.
The PI was aware of Tableau through email announcements of trainings and collaboration
opportunities. She prioritized building awareness of available tools that may be useful in the
changing methodological landscape to prepare the lab members professionally. In this group, the
adoption of Tableau would impact parts of the working environment that were relying on Excel
and, in some cases, a Python script written by Lana, a graduate student. The opportunity to try out
Tableau was created inadvertently by the observer, who was asked whether she knew how to use
Tableau and responded in the affirmative. In the next shadowing observation session, Colleen, a
post-doc, commented that it was helpful to have a dedicated time to try it out, and someone to
provide some guidance. This interaction occurred prior to data analysis and theory development.
A great deal of initial excitement about Tableau dampened upon deeper contact: it was not the
solution to all problems, despite certain desirable features. Within a few weeks of the shadowing
session where Colleen tried out Tableau, an email thread preceded the weekly lab meeting,
demonstrating the excitement. The first email was sent by the PI asking if the meeting is necessary
and whether it should be rescheduled. Colleen replied with an excited message about having
Tableau charts to show, which roused the PI’s enthusiasm.
Several months after the Tableau meeting, a graduate student in the Omics-Lab group, Alice, used
Tableau to make some plots with an exciting set of data after a data-collection cruise. The
observer became aware of this having encountered the PI after a guest lecture, when the PI
expressed her excitement: Bask [Alice] about her beautiful chart! She made it in R!^ Showing her
results, Alice explained that she tried out Tableau (which has a Graphical User Interface, as
previously noted), but ultimately chose to switch to R (which has a Command Line Interface)
because Tableau did not offer enough control over formatting and other visual aspects of the chart
that would be necessary for it to be a publication-ready visual artifact. In the final R chart,
differently-sized and differently-colored disks were arranged to follow the path of the cruise on a
map of the region of interest. A complementary figure featured a series of pie-charts arranged in a
table varying by size and composition. Both used visual vocabulary native to Tableau but
uncommon in oceanography talks, so the observer asked the inspiration behind the choice of
visual mapping, and Alice confirmed that she had re-implemented the Tableau variant in R. In an
indirect way, it had an impact. However, even if it did not, it needed to be tried in order to be
rejected for offering insufficient control over output relative to professional needs.

An affordance of an object refers to the subjective interpretation of possible action
made possible by this object. Vignette 6 reports on a discussion about which measure
should or should not be plotted. This occurrence was in context of trying out an
interactive visualization software that made it very easy to make potentially mis-
leading charts. The technical object affords this action; the PI of the group can be said
to be concerned about the accidental misuse of the affordance. Restraint toward
affordance can also be seen in how Caleb, a post-doctoral fellow in the
BioGeoChem-Model team, described the difference between two major programs.
Both are large and have many constituent packages, but one is more Bconservative^
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in terms of including new packages, which makes it generally more Breliable.^
Neither is especially Buser-friendly^ because the Bprogrammers don’t want people
to get too complacent.^

We take Bcomplacency^ to refer to accidental or careless execution of actions that
a mechanism affords, but which are undesirable in the scientific context. This
interacts with the three qualities of the perfect world, especially sustainability.
Post-docs in the CustomInstrument-Lab and the RegionalNowcast-Model teams
would sometimes avoid external libraries. This anticipated of hypothetical future
colleagues working with the code and being unable to use or maintain it correctly.
Re-use of some code was replaced by re-implementation, or more localized re-use.
Lack of re-use is problematized in software engineering accounts of scientific
programming practice, as well as in internal critique that adapts software engineering
rhetoric. Our framework serves to provide a reason for this action that is not related to
lack of interest, willingness, or awareness. Instead, motivated scientists enthusiastic
about best practices choose to adapt them to safeguard the scientific usefulness of the
code they work on.

6. Conclusions and future work

We studied code work practices, building on existing work in CSCW and Software
Engineering research. The first contribution of this article is an analysis of an 18-
month qualitative study in the uniquely illustrative scientific code context of inter-
disciplinary oceanographic research.We asked the following question:How does the
intentional, individually-initiated but socially-situated, process of uptake influence
code written by scientists? We argued that restraint with respect to the object and
means of visualization is intended to reduce potential misuse and misunderstanding.
This argument made use of the deliberate individual change framework, which we
introduce as a second contribution.

Prior scholarship has considered scientific code through a sociotechnical lens
(Pipek and Wulf 2009) and as situated in time (Chen et al. 2016; Steinhardt 2016).
Risk-averse behavior among scientific programmers, regarding uptake, has also been
explored (Carver et al. 2007; Kelly 2015). Our framework allows for additional
technical detail in analyzing risk-averse uptake situated in time. This framework can
be used in future studies by structuring interview design and observation. Our
work, like many studies of computing in science, is motivated by an experience
of change. The current collective understanding is based on in-depth analyses
of groups or projects (e.g., Steinhardt 2016), or broad snapshots (e.g., our
study). Quantifying states and transitions in this process would help study
change in both breadth and depth.

The framework we presented (1) focuses on the individual, (2) highlights
sociotechnical mechanisms that have a discursive or rhetorical basis meaningful to
that individual, and (3) enables articulating subjective evaluations of those mecha-
nisms in the current working environment relative to an imagination of the perfect

Deliberate Individual Change Framework
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world. The working environment is the set of mechanisms available to an individual, 
composed of technical, social, and personal resources. Personal resources refer to 
skills, knowledge, and awareness, through which an individual can inform her 
current work by the experience gained from previous work.

Each mechanism (identifiable tool or protocol) is subject to evaluation and change 
relative to an imagination of the perfect world. Deliberate change, informed by this 
evaluation, is possible throughout many small daily opportunities for prioritization of 
one activity over another. In the scientific context, access to experts in both compu-
tational methods and domain-specific application is scarce. Scientists who code 
therefore prioritize not only their work, but the work with which they appeal to such 
experts, which we refer to as software advisors. For an individual to choose to pursue 
a change in the working environment, it is necessary to have awareness of a 
mechanism. Then, the individual evaluates the future possibility as being closer to 
the imagined perfect world. Finally, the individual can be moved to action through an 
opportunity affording a clear course of action. Triggers for change arise from the 
social and scientific context.

This framework was developed in a grounded, iterative manner from our quali-
tative data, and refined through discussion and connections to existing theory. In 
addition to providing examples from our data, we presented a qualitative notation 
(see Figure 2) that may help to condense complex accounts and compare subjective 
experiences over time.

We reviewed related work spanning CSCW and Software Engineering (SE) 
research on scientific programming practice. CSCW research focuses on human 
activity and human relationships around the code or mediated by the code. 
Meanwhile, SE research is chiefly concerned with applying a critical technical lens 
to induce improvement through the development of tools or advocacy of practices 
(e.g., Wilson et al. 2014; Heaton and Carver 2015). The goal of CSCW is aligned 
with the improvement mandate some of the time, but focuses more on the interper-
sonal or contextual barriers to uptake than on technological correctness or advocacy. 
Our aim has been to provide an initial understanding of the internal technical 
criticism undertaken within a scientific domain which impacts uptake. This has not 
been recently investigated in either, because it necessitates a critical technical lens, 
but without the improvement imperative.

Future work can extend the understanding of change in scientific programming 
practice. This framework can be applied in qualitative and quantitative study con-
texts. In a perfect world, future work would improve and condense this framework. 
Ideally, it would become an understandable, functional, and sustainable mechanism 
for a variety of scholars and engineers.
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