

Cascaded Treemaps:
Examining the Visibility and Stability of Structure in Treemaps

Hao Lü and James Fogarty

Computer Science & Engineering
DUB Group

University of Washington

{ hlv, jfogarty }@cs.washington.edu

ABSTRACT
Treemaps are an important and commonly-used approach to
hierarchy visualization, but an important limitation of treemaps is
the difficulty of discerning the structure of a hierarchy. This paper
presents cascaded treemaps, a new approach to treemap
presentation that is based in cascaded rectangles instead of the
traditional nested rectangles. Cascading uses less space to present
the same containment relationship, and the space savings enable a
depth effect and natural padding between siblings in complex
hierarchies. In addition, we discuss two general limitations of
existing treemap layout algorithms: disparities between node
weight and relative node size that are introduced by layout
algorithms ignoring the space dedicated to presenting internal
nodes, and a lack of stability when generating views of different
levels of treemaps as a part of supporting interactive zooming. We
finally present a two-stage layout process that addresses both
concerns, computing a stable structure for the treemap and then
using that structure to consider the presentation of internal nodes
when arranging the treemap. All of this work is presented in the
context of two large real-world hierarchies, the Java package
hierarchy and the eBay auction hierarchy.

KEYWORDS: Cascaded treemaps, hierarchy visualization.

INDEX TERMS: H5.2. [Information Interfaces and Presentation]:
User Interfaces – Interaction Styles.

1 INTRODUCTION AND MOTIVATION
Hierarchal structure is one of the most common approaches to
organizing information, and so the effective visualization of
hierarchical data has been the focus of significant research.
Examples of previous work on hierarchy visualization include
treemaps [16, 24], cone trees [23], hyperbolic trees [18],
beamtrees [32], and radial visualizations [29].

Treemaps are a commonly-used approach based in dividing a
display into nested rectangles, each with an area that corresponds
to a weight associated with the node. In the original treemap
work, for example, the contents of a hard disk were illustrated in a
treemap with leaf nodes having areas corresponding to file sizes
[16, 24]. Treemaps have since been widely adopted and applied to
a variety of problems. For example, treemaps have been applied in
Wattenberg’s visualization of stock market data in the
SmartMoney Map of the Market [35, 36], in Orso et al.’s
visualization of program execution data [21], to present groups of
related pictures in photo-browsing applications [3], to visualize
Usenet activity [13, 26, 27], and in a visualization of currently
popular items on the social bookmarking site del.icio.us [9].

Given the many approaches to hierarchy visualization, the
widespread application of treemap techniques can be attributed to
a combination of their effectiveness, their scalability, their
aesthetic qualities, and the simplicity of their implementation.

A significant limitation of treemaps is the difficulty of
discerning the structure of a hierarchy. Our review of related
work discusses this limitation in greater detail, but it becomes
most apparent when considering a large balanced tree. As noted
by Van Wijk and Van de Wetering [33], such a case results in the
original treemap degenerating to a regular grid, making it near
impossible to determine the relative size of different portions of a
hierarchy or to trace a path from a given node up to the root of a
hierarchy. Because of this limitation, several common approaches
are employed to better illustrate the internal nodes of a hierarchy
and thus the structure of a treemap. Nested treemaps place a
border around each internal node. Labels for internal nodes are
typically placed either at the center of the internal node or at a
location selected to minimize overlap with other labels. This
approach minimizes the portion of a visualization that is dedicated
to internal nodes, but can lead to overlapping or ambiguous label
placement that makes it difficult to discern how a label relates to
the treemap. Labeled treemaps therefore extend nested treemaps
by both placing a border around internal nodes and further
dedicating space to the consistent placement of labels, generally at
the top of each node.

This paper discusses cascaded treemaps, an approach that
illustrates the structure of hierarchies using a combination of
layering and offsets. Cascaded presentations have appeared in
prior work on browsing the National Science Foundation’s
funding hierarchy [19, 20] (under the name 2.5D treemaps, though
we now use the term cascaded to avoid confusion with work by
Turo and Johnson [30]). This paper goes beyond prior work by
further contributing a detailed discussion of cascaded treemaps, a
detailed discussion of node size distortion and interactive zooming
in labeled treemaps, and an efficient two stage layout process that
addresses both the distortion of leaf node sizes and support for
stable interactive zooming.

We first discuss the relationship between cascaded treemaps
and nested treemaps. Because cascading uses less space to present
the same hierarchy information traditionally presented via nesting,
cascaded treemaps create a depth effect and provide natural visual
separation between siblings in a hierarchy. We next discuss
distortions of leaf node size proportionality that are introduced by
common approaches to treemap layout. Because existing layout
algorithms generally do not explicitly consider the space that is
dedicated to presenting internal nodes, large disparities can arise
in the presentation of equally-weighted nodes. We then discuss
the stability of treemap visualizations when supporting interactive
zooming to examine portions of a hierarchy. Prior work has
generally focused on generating a single view of a hierarchy, but
large hierarchies inevitably introduce a need to support zooming
to examine portions of the hierarchy that are rendered too small to

be useful. Finally, we present a two-stage layout process that
addresses both the distortion of leaf node sizes and support for
stable interactive zooming. Our approach is based in computing a
layout for a hierarchy, then storing the structure of that layout
together with the information necessary to efficiently and
consistently present portions of the treemap.

2 RELATED WORK
The initial treemap work used a slice-and-dice layout algorithm,
alternating between horizontal and vertical arrangements of each
level in a tree [16, 24]. Though trivial to implement, this often
leads to nodes with very high aspect ratios, and the resulting long
and skinny rectangles complicate labeling, comparisons, and
interaction [30]. Cluster treemaps [36] and squarified treemaps [8]
both minimize the occurrence of such high aspect ratio nodes by
employing different strategies for choosing between horizontal or
vertical arrangements within each node of a tree. Ordered
treemaps add the additional constraint that nodes that are near
each other in a provided ordering should be spatially near each
other in the resulting treemap [5, 25]. This can prove useful, for
example, in applying an alphabetical ordering to the nodes in a
treemap for the benefit of a person searching for a node or to
provide consistency in treemaps based on dynamically updating
data, such as stock information. Quantum treemaps guarantee that
every rectangle in a treemap will be a multiple of a given
rectangle size, a property that is valuable when presenting images
or other objects of indivisible size [3, 5]. While these variations
on layout algorithms address important concerns, none of them
are focused on the visibility of the structure of a hierarchy. Our
discussion of cascaded treemaps is based in the squarified treemap
layout algorithm, but our contributions are independent of the
particular choice of layout algorithm.

Figure 1 presents an example of the need to illustrate the
structure of a hierarchy. Originally presented by Van Wijk and
Van de Wetering, this treemap illustrates a large balanced tree
corresponding to an organizational chart. It is near impossible to
compare the size of different units within the organization or to
determine to which division a specific employee belongs.
Van Wijk and Van de Wetering thus motivate cushion treemaps, a
presentation based in shading a treemap as if it were a 3D surface
illuminated from above [33]. Cushion treemaps do not require any
additional pixels be dedicated to illustrating internal nodes, but
they been found difficult to reliably interpret [32]. Nested
treemaps are much more common, and Figure 2 gives an example
of a nested treemap from Demian and Fruchter’s work on
Corporate Memory [10]. The hierarchy is presented using a
combination of varying line thickness and padding between
nodes. Although labels are given different colors at each level in
the hierarchy and label placement is alternated in adjacent
rectangles, this example illustrates a common difficulty of labels
on one level of the hierarchy interfering with the visibility of
labels on another level. Labeled treemaps therefore dedicate
additional space to the consistent placement of labels. A common
label placement is at the top of each internal node, as in Figure 3’s
illustration of the Java package structure [15] created using the
University of Maryland reference Treemap implementation [24].
While this provides consistent label placement, we discuss several
problems introduced by treemap layout algorithms that fail to
consider the implications of dedicating large groups of pixels to
presenting labels at many locations throughout a tree.

A number of other hierarchy visualization techniques have been
developed [18, 23, 29, 32], including space-filling visualizations
like step trees [6], Voronoi treemaps [2] and generalized treemaps
[34]. Although relevant to hierarchy visualization, we pursue
contributions that are sufficiently distinct from such work that we
do not dwell on extensive comparisons.

Figure 1. Van Wijk and Van de Wetering’s example of treemaps
degenerating to a uniform grid for a large balanced tree [33]. It is

near impossible to compare the size of non-leaf nodes or to
trace a path from a given node up to the root of the hierarchy.

Figure 2. A nested treemap from Demian and Fruchter’s

exploration of effective nested treemap presentation in the
Corporate Memory system [10]. Labels are given different
colors at each level in the hierarchy and label placement is

alternated in adjacent rectangles, but label overlap is a problem.

Figure 3. A labeled treemap generated by the University of
Maryland’s reference Treemap implementation [31], illustrating the
Java package structure. Labels are consistently placed at the top of

internal nodes, and shading is used to illustrate relative depth.

3 CASCADED TREEMAPS
Figure 4 presents an example cascaded treemap, implemented
within the prefuse toolkit [14], illustrating the same Java package
structure that was visualized in Figure 3. In contrast to the nesting
strategy developed in the original treemap work [16, 24], our
fundamental operation is a cascade, as illustrated in Figure 5. By
shifting children down and to the right relative to their parent,
cascading creates a depth effect resembling a stack of cards. As
with nesting, this effect can be applied with or without the
dedication of additional space for a label. In Figure 4, for
example, the first three levels of the hierarchy are labeled. Below
this, our cascade effect is applied but nodes are not labeled.
Cascading therefore provides for the visibility of structure even in
levels of the hierarchy below those that are labeled.

Cascading and nesting are different approaches to treemap
presentation, while the related work discussed in the previous
section has often focused on new approaches to treemap layout. A
nested treemap created using any of the layout algorithms
discussed in the previous section can be converted to a cascaded
treemap via a straightforward bottom-up process given in
Figure 6. Starting from the leaf nodes of the tree, each node is
scaled down to the size of the bounding box of its children, then
shifted to create the cascade effect. Depending on the relative
sizes of the cascade offset and a node’s children, it may then be

Figure 4. A cascaded treemap illustrating the Java package structure. As in Figure 3, labels are consistently placed and
shading is used to illustrate relative depth. Our cascading effect uses less space to convey the same information typically

conveyed via nesting, and the result is a clearer visualization that provides greater visual separation between siblings.

Figure 5. In contrast to nesting, our fundamental operation

is a cascade to illustrate the structure of a hierarchy.

Converting a Nested Treemap to a Cascaded Treemap

NestedToCascaded(Rectangle R)
1. Apply NestedToCascaded to each child of R
2. If R has children then apply Cascade to R

Cascade(Rectangle R)
1. Calculate the bounding box of all children of R
2. Shrink R to the size of the bounding box
3. Shift R up and left by the cascading offsets
4. If needed, enlarge R to cover the center points of its children

Figure 6. A bottom-up procedure for converting a
nested treemap presentation to a cascaded presentation.

necessary to grow the rectangle to cover the center points of the
node’s children. This final step ensures that a cascaded treemap
has a unique interpretation, as every rectangle must overlap its
parent. Even given this last step, it can be shown that this
transformation process can only decrease the size of each
rectangle in a nested treemap. A cascaded treemap can therefore
always fit in the same amount of space used by a nested treemap.

In fact, it can be noted in Figure 5 that our cascading
presentation uses less space to convey the same containment
relationship typically conveyed by nesting. If we consider an
offset of p pixels with a rectangle of size (w, h), using a nesting
presentation yields an illustration of size (w + 2p, h + 2p) but a
cascading presentation uses only size (w + p, h + p). Figure 7
takes the next step, illustrating the space savings obtained when
using cascading to display multiple levels of containment.

Prior work has illustrated the structure of nested treemaps by
using thicker line widths for rectangles nearer the root of a
hierarchy or by adding additional padding between rectangles
nearer the root of a hierarchy [13, 16, 24, 30]. This approach is
effective, but necessarily reduces the amount of space available
for illustrating a hierarchy’s leaf nodes [10]. In contrast, the
smaller presentation of containment in a cascaded treemap
implicitly provides free padding between siblings in a hierarchy.
Figure 8 illustrates the origin of this free padding. When two
nested siblings are placed side-by-side, any desired padding must
be explicitly added. But when two cascaded siblings are placed
side-by-side in the same amount of space that would be occupied
by a nested presentation, the cascading within the left sibling
provides free padding between the siblings. It is this free padding
that makes the structure of a cascaded treemap visible.

Furthermore, the free padding created by a cascaded
presentation naturally accumulates to create a depth effect and to
provide larger gaps between siblings nearer the root of a
hierarchy. Figure 9 presents an example hierarchy constructed by
Bruls et al. to illustrate the difficulty of understanding hierarchy
structure in a nested treemap [8]. When using a nested
presentation, identifying the relationships among nodes requires
visually tracing maze-like lines. In contrast, all of the leaf nodes
in the cascaded presentation are in the same locations as those in
the nested presentation, but the cascaded effect naturally creates
additional padding between the siblings closer to the root. This is,
of course, the same space occupied by maze-like lines in the
nested presentation, but the cascaded presentation seem to provide
a less cluttered and more easily interpreted visualization.

Finally, although existing work on nested presentations links
the visibility of a treemap’s structure to larger nesting offsets and
thicker borders closer to the root of a hierarchy, our informal
experimentation suggests that cascaded treemaps are relatively
effective even with thin borders and small offsets. Figure 10, for
example, presents side-by-side illustrations of the same treemap
using nested and cascaded presentations (intentionally omitting
the coloring used in most of this paper). Both treemaps are drawn
using one pixel borders and two pixel offsets. It informally
appears easier to use the cascaded presentation to determine that
there are two separate high-level nodes on the extreme left of
these treemaps. It also informally seems easier to see that there is
a group of nodes in the bottom right that have only the root as a
common parent (as opposed to a false interpretation, which seems
easier to make with the nested treemap, that this hierarchy first
branches into two subtrees corresponding to two columns in the
treemap). Further evidence cascading is effective with small
offsets can be seen in Figure 4’s illustration of the Java package
hierarchy and Figure 14’s illustration of the eBay auction
hierarchy. This effectiveness would seem to be due to cascading’s
natural creation of a depth effect and additional padding between
siblings closers to the root of complex hierarchies.

Nested
Presentation

Cascaded
Presentation

Figure 7. A cascaded presentation uses less space to
show the same containment relationship conveyed by nesting.

Nested
Presentation

Cascaded
Presentation

Figure 8. Although any desired padding must be explicitly
added to a nested presentation, a cascaded presentation

implicitly provides padding between siblings. This free
padding is created by the cascading within the left sibling.

Nested Presentation

Cascaded Presentation

Figure 9. Bruls et al. construct this example to illustrate the
difficulty of understanding structure in a nested presentation [8].
In contrast to the maze-like lines in the nested presentation, our

cascaded presentation naturally creates additional padding
between siblings closer to the root of complex hierarchies.

Nested
Presentation

Cascaded
Presentation

Figure 10. Cascaded presentation works well even when using
small offsets. Note the relative ease of seeing the two separate

high-level nodes on the extreme left of these treemaps, as well as
the lack of a common parent for the nodes in the bottom right.

4 DISTORTIONS OF NODE SIZE AND MISSING NODES
DUE TO THE VISUALIZATION OF STRUCTURE IN TREEMAPS

An intended advantage of treemaps is the ability to compare the
area of leaf nodes across different portions of a treemap. This
property should allow, for example, a person who is using a
treemap visualization of the stock market to compare market
capitalization of two companies in different sectors [35, 36].
Similarly, it should allow a person using a treemap visualization
of Usenet to compare the level of activity in different areas of the
Usenet hierarchy [13, 26, 27]. The original treemap presentation,
without any visualization of the structure of internal nodes, does
indeed provide this property [16, 24]. However, visualizations of
structure (including even the use of single-pixel borders in nested
treemaps) invalidate this property.

Figure 11 presents an example of a nested treemap where the
size of leaf nodes cannot be reliably compared. This labeled
treemap was generated using the University of Maryland’s
reference Treemap implementation [16], and it presents a portion
of the package structure for a well-known Java toolkit. Node 1 has
a weight of 151 units and occupies 286 pixels in the treemap.
Node 2 is a similar size, occupying 210 pixels (73% of Node 1),
but has a weight of only 18 units (12% of the weight of Node 1).
In contrast, Node 3 has a weight of 17 units (94% of Node 2) but
occupies only 36 pixels (17% of the space occupied by Node 2).
Distortion of treemap node sizes is briefly mentioned by Demian
and Fruchter [10], but they mention it only as a drawback that
should be balanced against the benefits of increasing the nesting
offset in a nested treemap. Demian and Fruchter neither probe the
general cause nor offer a solution.

A more extreme version of the same problem can be found in
Node 4. When presenting large hierarchies, it is often the case that
not all of a hierarchy is visible. The most fundamentally
unavoidable example is when a treemap layout algorithm reaches
a point in the layout process where a subtree must be drawn
within a single pixel. Given our interest in supporting such large
hierarchies, the next section discusses issues of treemap stability
during interactive zooming. In Figure 11, however, the problem is
not simply that portions of the hierarchy are too small to be
drawn. Instead, the problem is that Node 4 is not visible without
first zooming into Node 1, but Node 4 has a weight almost twice
that of Node 2 or Node 3. We refer to such a node as missing, as
the node should be visible in a fair division of space and nodes
smaller than it are actually visible. Missing nodes are not
uncommon, and we later discuss treemaps for a real-world dataset
that have hundreds of missing nodes. Despite this, missing nodes
are not addressed in the existing treemap literature.

The general problem that causes both these distortions of node
size and the problem of missing nodes is that existing treemap
layout algorithms pay no attention to how much space within the
treemap is dedicated to conveying structure. Consider, for
example, the recursive layout algorithm used by squarified
treemaps [8]. The layout function is given a set of weighted nodes
and a rectangle in which to arrange them. Examining the node
weights and the rectangle, the algorithm makes a horizontal or
vertical division of the rectangle, divides the nodes amongst the
resulting sub-rectangles, and recurses upon each.

What is missing from this process is a consideration of how
much of each sub-rectangle will be dedicated to labels and borders
within the subtree. If the current node is not a leaf, space will be
needed for borders (exactly how much space will depend both on
the presentation and the offset size) as well as for labels.
Knowledge of the space required for labels is complicated by the
fact that the decision to make a vertical or a horizontal division of
the rectangle affects how much space is needed. This is because a
vertical division means that labels can be placed in a row across
the top of the resulting sub-rectangles, requiring only the height of
a single label, while a horizontal division means that labels will be
placed in a column at the top of each sub-rectangle, requiring
space corresponding to the number of sub-rectangles times the
height of a label. Attempting to fully resolve the implications of a
horizontal or vertical division quickly leads to an exponential
explosion in computation time [8], so existing layout algorithms
ignore the dedication of space to labels. But this gives divisions
based in over-estimating how much space is available for the
display of a subtree, so labels push aside space intended to display
a subtree and problems with distorted node sizes and missing
nodes result. Section 6 will therefore present a two-stage layout
algorithm that first decides whether to split rectangles horizontally
or vertically, and then considers the need to dedicate space to
structure while deciding how to size each sub-rectangle.

5 STABILITY AND INTERACTIVE ZOOMING IN TREEMAPS
A related concern is the stability of treemap layouts when used
with interactive zooming. Zooming is a fundamental interaction
[1, 4, 22], especially as large hierarchies inevitably result in
portions of the hierarchy being rendered too small to be useful.
Recent work by Blanch and Lecolinet has begun to address the
shortage of work examining interaction and zooming within
treemaps [7], but they do not address layout stability.

Simple pixel-level zooming is obviously inappropriate, as it
results in a magnification not only of a treemap’s content but also
of the offsets between nodes and the space dedicated to labels.

Figure 11. Existing treemap layout algorithms ignore the space dedicated to presenting structure. This

leads to a distortion of node sizes and the notable complete absence of nodes. In this example, generated
by the University of Maryland’s reference Treemap implementation [31], there are gross disparities between
the weights and the space allocated to Node 1, Node 2, and Node 3. Even worse, Node 4 has almost twice

the weight of Node 2 or Node 3, but is not visible in the treemap with first zooming into Node 1.

The most straightforward approach to zooming within a treemap
is therefore to draw a new treemap rooted at the node into which a
person zooms. The problem with this is illustrated in Figure 12 by
considering a zoom into the node labeled “bayes.” In the leftmost
image, much of the structure of the hierarchy under the “bayes”
node is already visible. Generating a new treemap after zooming
yields the middle image, in which the relative placement of
several nodes has been re-arranged. This change in structure may
be jarring, and it cannot be easily animated. We are therefore
interested in a zoom that preserves the relative placement of nodes
within a hierarchy, and so we refer to this as a stable zoom.

The difficulty with stable zooming is in many ways similar to
difficulties with node size distortion and missing nodes. A zoom
may change both the size and the aspect ratio at which a node
should be rendered, as well as the level of detail at which each
level in the hierarchy below it should be rendered. A label that
once occupied half of the height dedicated to a node may now
only occupy one quarter of the node (see “local” in Figure 12).
Conversely, a node that previously displayed only a border may
now also need to display a label (see “ci” and “fix” in Figure 12).
Depending on the layout algorithm, such changes may result in
different choices regarding whether to horizontally or vertically
divide a rectangle within the treemap.

Our same two-stage layout process addresses the need for stable
interactive zooming. Our process holds constant the decision to
split rectangles horizontally or vertically, then sizes each
sub-rectangle according to the current view of the hierarchy. This
approach is able to account for changes in the size and aspect ratio
at which a node should be rendered, as well as changes in how
children are shown. This yields the zoom seen in the right image
of Figure 12. Nodes are in the same relative locations as can be
seen in the structure of the hierarchy before zooming, and so the
resulting zoom can easily be smoothly animated.

6 TWO-STAGE TREEMAP LAYOUT
We developed a two-stage treemap layout algorithm to address
the concerns we have raised regarding treemap layout. As noted
earlier, existing recursive algorithms simultaneously decide along
what orientation and at what points to split the rectangle
corresponding to each node in a hierarchy, recursing upon the
resulting sub-rectangles. Our two-stage approach separates the
decision regarding orientation and number of splits in each
rectangle from the decision regarding where to place those splits.
The orientation and number of splits in each node are computed
once, and the placement of those splits is adjusted each time the

treemap is arranged. The resulting process is analogous to initially
placing a set of bars dividing the space allocated to the treemap,
then sliding those bars around to create different presentations.

In more detail, we first apply the squarified treemap algorithm,
parameterized by the size of the display area and using temporary
cascading offsets and label sizes of zero [8]. This gives us the
structure of the tree upon which we base our layouts. For each
node in the tree, we save the orientation of the split and how the
children of the node were partitioned by the split (which children
go to the left and right or the top and bottom, depending on the
orientation of the split). As in most treemap implementations,
internal nodes also store the sum of the weights of their children.

Because the split orientations and the partitioning of children
are now known, a recursive layout can appropriately account for
the space needed to illustrate structure at each internal node. To
arrange a node, the layout function first checks the stored split
orientation. We suppose the split is horizontal, noting that vertical
is similar. The function next computes how much vertical space is
needed for offsets and labels above the split. Our prototype
computes this by walking the subtree, but necessary information
about the subtree could be cached based on the labeling policy for
the treemap. The function then computes how much vertical space
is needed for offsets and labels below the split. The remaining
space is for the content of the treemap, and so the layout function
gives each side of the split the space computed as necessary for
labels and offsets as well as a portion of the remaining content
space based on the relative weights of nodes on each side of the
split. The layout procedure is then ready to recurse on both sides
of the split, as it knows how much space will be used by labels
and offsets and has ensured that the remaining space is
appropriately divided by node weight. This knowledge of how
space will be used ensures that no missing nodes will be created.

The only exception to this is when the labels and offsets needed
by a treemap consume more space than is available. Note that the
layout procedure already knows whether this is true before it
recurses on a split. Missing nodes will be created if the sum of the
space needed for labels and offsets above the split plus the space
needed below the split exceeds the space available for a node.
Computing this at the root of the hierarchy lets appropriate
adjustments be made before layout begins. For example, the
layout algorithm could change the labeling policy to reduce how
many layers of the hierarchy are labeled. Similar insight could be
used to automatically vary the level of labeling within a hierarchy
to control how much of the treemap is dedicated to labels versus
the illustration of leaf nodes.

The original treemap. Due in part to our
cascaded presentation, much of the

structure of the hierarchy under the node
named “bayes” is already clearly visible.

Upon zooming to “bayes”, generating a new
treemap re-arranges several nodes. This

change in the structure may be jarring to a
person and it cannot be easily animated.

By holding the structure of the tree constant,
we provide a stable zoom into “bayes”.

Nodes are in the same relative locations, and
changes in size can be smoothly animated.

Figure 12. Our two-stage layout process also provides for stable interactive zooming in a treemap.

7 DISCUSSION AND CONCLUSION
As a final example, Figure 14 presents a cascaded treemap
illustrating the entire eBay auction hierarchy [11]. This hierarchy
contains 30,380 nodes, including 25,964 leaf nodes. Only the first
level of the hierarchy is labeled, and the remainder of the
hierarchy is illustrated via cascading. Each leaf node corresponds
to an auction category, and the weight of each leaf node is the
number of active auctions in the category. Despite the large
number of nodes and the small offsets used, much of the structure
of this hierarchy is easily visible. For example, one can easily see
several categories, including “Music” and “Books”, where the
bulk of auctions are grouped in just a few categories that are very
shallow within the hierarchy. In other portions of the hierarchy,
such as “Collectibles” and “Business & Industrial”, auctions are
relatively evenly divided across a deep hierarchy. Although nodes
in the treemap are much too small for labels, the visibility of the
structure of the hierarchy gives appropriate insight into what will
be found by zooming into a portion of the hierarchy.

As an informal experiment, we separately generated treemaps
for the subtrees corresponding to the twenty largest top-level
categories in this dataset. We labeled the top three levels in each
treemap, and the treemaps were arranged to be shown in an area
of size 1280 x 1024. We compared the number of missing nodes
introduced by a standard layout algorithm versus our two-stage
layout, as well as the correlation between node weight and node
area in the resulting treemaps. Using a standard layout algorithm,
we found an average of 91.7 (σ = 124.4) missing nodes (recall that
missing nodes are not simply too small to be seen, rather they
have been explicitly pushed out of the space allocated to them by
offsets and space for labels not considered by the layout
algorithm), representing 12.0% (σ = 18.1%) of the nodes in the
hierarchy and 0.8% (σ = 0.7%) of the total weight of the

hierarchy. As expected, our two-stage layout process did not
create any missing nodes. While correcting the problem of
missing nodes is an important contribution, examining the
correlation between node weight and node area in the resulting
treemap yielded more ambiguous results. Overall our two-stage
layout process had no consistent positive or negative impact on
node size distortion, but it did appear to have a consistently
positive impact on the correlation for relatively small nodes in the
hierarchy. This may be due to a ceiling effect if larger nodes
already have good correlations that cannot be significantly
improved, due to a relationship between label or offset size and
the level in a treemap at which our two-stage process significantly
affects node size, or because our combination of offsets, labeling
depth, and layout size limited the improvement that could be
obtained by explicitly considering the space dedicated to
presenting the structure of the treemap. This suggests future work
to carefully probe the different variables that affect a treemap
layout to determine which lead to the greatest distortions and how
those distortions can be corrected. Our current informal
expectation, consistent with Figure 11, is that node size distortion
is especially problematic for deep paths within relatively small
hierarchies. One would not expect such deep paths to occur within
the eBay hierarchy, which has been manually designed to support
effective Web-based browsing and will therefore favor broad trees
that allow people to quickly scan lists of auction categories.

Several avenues of future work are suggested by this paper. Our
two-stage layout has addressed the problem of missing nodes, but
we have noted that it would be interesting to further study what
types of trees lead to the largest distortions of node size. One
might then be able to modify our two-stage process to better
address such situations, perhaps by modifying the standard
squarified treemap layout algorithm that we currently use in our
first layout phase. After such issues have been more completely

Figure 14. A cascaded treemap visualizing the entire eBay auction hierarchy.
The weight of each leaf node corresponds to the number of active auctions.

addressed, it would be appropriate to conduct formal experiments
examining cascaded treemaps. Such experiments should build
upon methods applied in previous work [17, 28, 32], but should
also explicitly address stability and zooming in the interactive
exploration of treemaps. We note however that it seems
inappropriate to overly emphasize task performance measures, as
several other aspects of treemaps have been important to their
adoption, including their ease of implementation, their visual
simplicity, and their ability to scale to large datasets [12]. It is
therefore important that cascaded treemaps provide a natural
depth effect and padding between siblings in complex hierarchies
while preserving the aesthetic qualities, scalability, and ease of
implementation commonly associated with treemaps.

In summary, this paper discusses four aspects of cascaded
treemaps. We first discuss the cascaded presentation’s ability to
provide a depth effect and natural padding between siblings in
complex hierarchies while using less space to illustrate the same
containment relationship typically illustrated through nesting. We
then discuss general concerns regarding treemaps, the distortion
of node size, and the creation of missing nodes. We next discuss a
related issue, support for stable treemap layouts in support of
interactive zooming. Both concerns with existing treemap layout
algorithms are addressed in our efficient two-stage layout process.
We present all of this in the context of large real-world datasets,
the Java package hierarchy and the eBay auction hierarchy.

ACKNOWLEDGEMENTS
We thank Shi Xia Liu for her early contributions to this work. We also
thank anonymous reviewers and members of the Graphics Interface 2008
Program Committee for identifying key improvements to this paper. This
work was supported in part by SRI CALO grant 03-000225.

REFERENCES
[1] Ahlberg, C. and Shneiderman, B. (1994). Visual Information

Seeking: Tight Coupling of Dynamic Query Filters with Starfield
Displays. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1994), 313-317.

[2] Balzer, M., Deussen, O. and Lewerentz, C. (2005). Voronoi Treemaps
for the Visualization of Software Metrics. Proceedings of the ACM
Symposium on Software Visualization (SoftVis 2005), 165-172.

[3] Bederson, B.B. (2001). PhotoMesa: A Zoomable Image Browser Using
Quantum Treemaps and Bubblemaps. Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST 2001), 71-80.

[4] Bederson, B.B. and Hollan, J.D. (1994). Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Physics.
Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST 1994), 17-26.

[5] Bederson, B.B., Shneiderman, B. and Wattenberg, M. (2001).
Ordered and Quantum Treemaps: Making Effective use of 2D Space
to Display Hierarchies. ACM Transactions on Graphics (TOG),
21(4). 833-854.

[6] Bladh, T., Carr, D.A. and Scholl, J. (2004). Extending Tree-Maps to Three
Dimensions: A Comparative Study. Proceedings of the Asia Pacific
Conference on Computer-Human Interaction (APCHI 2004), 50-59.

[7] Blanch, R. and Lecolinet, E. (2007). Browsing Zoomable Treemaps:
Structure-Aware Multi-Scale Navigation Techniques. IEEE Transactions
on Visualization and Computer Graphics 14(6). 1248-1253.

[8] Bruls, M., Huizing, K. and Van Wijk, J.J. (2000). Squarified
Treemaps. Proceedings of the Joint Eurographics and IEEE TCVG
Symposium on Visualization (TCVG 2000), 33-42.

[9] del.icio.us Most Popular Treemap. (2007).
http://codecubed.com/map.html.

[10] Demian, P. and Fruchter, R. (2006). Finding and Understanding
Reusable Designs from Large Hierarchical Repositories. Information
Visualization 5(1). 28-46.

[11] eBay. (2007). http://listings.ebay.com/.
[12] Fekete, J.-D. and Plaisant, C. (2002). Interactive Information

Visualization of a Million Items. Proceedings of the IEEE
Symposium on Information Visualization (InfoVis 2002), 117-124.

[13] Fiore, A. and Smith, M. (2001). Treemap Visualizations of
Newsgroups. Technical Report, Microsoft Research, Microsoft
Corporation: Redmond, WA

[14] Heer, J., Card, S.K. and Landay, J.A. (2005). prefuse: A Toolkit for
Interactive Information Visualization. Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2005), 421-430.

[15] Java SE APIs & Documentation. (2007).
http://java.sun.com/javase/reference/api.jsp.

[16] Johnson, B. and Shneiderman, B. (1991). Tree-Maps: A Space-
Filling Approach to the Visualization of Hierarchical Information
Structures. Proceedings of IEEE Conference on Visualization (Vis
1991), 284-291.

[17] Kobsa, A. (2004). User Experiments with Tree Visualization
Systems. Proceedings of the IEEE Symposium on Information
Visualization (InfoVis 2004), 9-16.

[18] Lamping, J., Rao, R. and Pirolli, P. (1995). A Focus+Context
Technique Based on Hyperbolic Geometry for Visualizing Large
Hierarchies. Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI 1995), 401-408.

[19] Liu, S., Cao, N. and Lv, H. (2008). Interactive Visual Analysis of the
NSF Funding Information. Proceedings of the IEEE Pacific
Visualization Symposium (PacVis 2008), 151-158.

[20] Liu, S., Cao, N., Lv, H. and Su, H. (2006). The Visual Funding
Navigator: Analysis of the NSF Funding Information. Proceedings
of the ACM Conference on Information and Knowledge Management
(CIKM 2006), 882-883.

[21] Orso, A., Jones, J. and Harrold, M.J. (2003). Visualization of
Program-Execution Data for Deployed Software. Proceedings of the
ACM Symposium on Software Visualization (SoftVis 2003), 67-76.

[22] Perlin, K. and Fox, D. (1993). Pad: An Alternative Approach to the
Computer Interface. Proceedings of the ACM Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH 1993), 57-64.

[23] Robertson, G.G., Mackinlay, J.D. and Card, S.K. (1991). Cone
Trees: Animated 3D Visualizations of Hierarchical Information.
Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1991), 189-194.

[24] Shneiderman, B. (1992). Tree Visualization with Tree-Maps: 2-D
Space-Filling Approach. ACM Transactions on Graphics (TOG),
11(1). 92-99.

[25] Shneiderman, B. and Wattenberg, M. (2001). Ordered Treemap
Layouts. Proceedings of the IEEE Symposium on Information
Visualization (InfoVis 2001), 73-78.

[26] Smith, M. Netscan: Usenet Hierarchies - Treemap. (2001).
http://netscan.research.microsoft.com/treemap/.

[27] Smith, M. (2002). Tools for Navigating Large Social Cyberspaces.
Communications of the ACM 45(4). 51-55.

[28] Stasko, J., Catrambone, R., Guzdial, M. and McDonald, K. (2000).
An Evaluation of Space-Filling Information Visualizations for
Depicting Hierarchical Structures. International Journal of Human-
Computer Studies (IJHCS), 53(5). 663-694.

[29] Stasko, J. and Zhang, E. (2000). Focus+Context Display and
Navigation Techniques for Enhancing Radial, Space-Filling
Hierarchy Visualizations. Proceedings of the IEEE Symposium on
Information Visualization (InfoVis 2000), 57-65.

[30] Turo, D. and Johnson, B. (1992). Improving the Visualization of
Hierarchies with Treemaps: Design Issues and Experimentation.
Proceedings of IEEE Visualization Conference (Vis 1992), 124-131.

[31] University of Maryland. Treemap: Home Page. (2007).
http://www.cs.umd.edu/hcil/treemap/.

[32] Van Ham, F. and Van Wijk, J.J. (2003). Beamtrees: Compact Visualization
of Large Hierarchies. Information Visualization 2(1). 31-39.

[33] Van Wijk, J.J. and Van de Wetering, H. (1999). Cushion Treemaps:
Visualization of Hierarchical Information. Proceedings of the IEEE
Symposium on Information Visualization (InfoVis 1999), 73-78.

[34] Vliegen, R., Van Wijk, J.J. and Van der Linden, E.-J. (2006).
Visualizing Business Data with Generalized Treemaps. IEEE
Transactions on Visualization and Computer Graphics 12(5). 789-796.

[35] Wattenberg, M. Map of the Market. (1998).
http://www.smartmoney.com/marketmap/.

[36] Wattenberg, M. (1999). Visualizing the Stock Market. Extended
Abstracts of the ACM Conference on Human Factors in Computing
Systems (CHI 1999), 188-189.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

