

GADGET: A Toolkit for Optimization-Based
Approaches to Interface and Display Generation

James Fogarty and Scott E. Hudson
Human Computer Interaction Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{ jfogarty, scott.hudson }@cs.cmu.edu

ABSTRACT
Recent work is beginning to reveal the potential of
numerical optimization as an approach to generating
interfaces and displays. Optimization-based approaches can
often allow a mix of independent goals and constraints to be
blended in ways that would be difficult to describe
algorithmically. While optimization-based techniques
appear to offer several potential advantages, further
research in this area is hampered by the lack of appropriate
tools. This paper presents GADGET, an experimental
toolkit to support optimization for interface and display
generation. GADGET provides convenient abstractions of
many optimization concepts. GADGET also provides
mechanisms to help programmers quickly create
optimizations, including an efficient lazy evaluation
framework, a powerful and configurable optimization
structure, and a library of reusable components. Together
these facilities provide an appropriate tool to enable
exploration of a new class of interface and display
generation techniques.

Keywords
Toolkits, numerical optimization, display generation, layout
algorithms, perceptually optimized displays.

INTRODUCTION
The exponential improvement of computing speed
described by Moore’s Law has enabled fundamental
changes in user interfaces. Early graphical interface
displays were monochrome, dynamic effects were very
limited, and carefully tuned assembly code was employed
to provide acceptable response times in the user interface.
Yet these systems taxed computers of the day to their limits.
In contrast, today’s computers easily display dynamic color
and spend most of their processor cycles idle. User
interfaces now make common use of animation and other
techniques that were once computationally infeasible. In
the future, we can expect to see other new opportunities
move from being infeasible to being commonplace.

Recent work, including the Kandinsky system [9] and the
LineDrive system [2], is beginning to show the potential for
one such technique – the use of numerical optimization in
interface and display generation. Numerical optimization is
the minimization or maximization of a function subject to
constraints on its variables [22]. The Kandinsky system
generates aesthetic information collages, which enhance the
aesthetics of a space and also convey information. Because
aesthetics are difficult to define algorithmically, the
Kandinsky system uses aesthetic templates to define a
matching problem, which it then solves with optimization.
Similarly, the LineDrive system uses optimization to solve
the variety of problems that arise in the design and
rendering of perceptually simplified route maps. By using
distortion, simplification, and abstraction, the LineDrive
system generates route maps that resemble hand-drawn
maps. These maps aid navigation and prevent the clutter
created by information that is irrelevant to a route. The
many constraints on how this information can be arranged
would be difficult to manage algorithmically, but the
problem is nicely described as an optimization.

While computationally expensive, optimization has several
advantages as a general approach to interface and display
generation. First, optimization seems to fit the way people
think about elements of an interface or display. For
example, it is common to want two elements of an
information display to be near each other, aligned with each
other, the same color, or non-overlapping. Similarly, we do
not want distortions of a route map to create false
intersections between roads that do not actually intersect.
Programmers can identify such good and bad features of an
interface or display and create an optimization by simply
combining these independent criteria. This seems to be
more intuitive than trying to construct an algorithm that
simultaneously satisfies a variety of conditions. Second,
optimization can work well with existing algorithms. As we
will illustrate in our demonstrations, programmers can use
an algorithm or heuristic to get a reasonable solution and
then use optimization to explore similar solutions.
Alternatively, programmers can have algorithms produce a
variety of solutions, using optimization to improve upon
and eventually choose between them. Finally, optimization
offers a level of flexibility that is a sharp contrast to the
fragile nature of algorithms. Adding a new goal or

constraint to an algorithm will commonly require a
reevaluation of every part of the algorithm, and may break
it entirely. In contrast, new goals and constraints can
normally be added to an optimization and balanced with the
existing requirements without starting over.

Optimization can be a difficult approach to pursue in
current programming environments. Many programmers
may be intimidated by or uncomfortable with the math
required for programming an optimization. While
optimization toolkits are available [7], they typically still
require substantial specialized knowledge because they
have mostly been designed for physics simulations and
other traditional optimization problems. Further work on
optimization as an approach to interface and display
generation is hampered by the lack of an approachable
toolkit designed specifically for these problems.

This paper presents GADGET, an experimental toolkit
designed to support the exploration of optimization as an
approach to interface and display generation. In the next
section, we offer a simple example of an optimization
created with GADGET. This is followed by a discussion of
the major architectural features of GADGET, including a
standard framework to abstract much of the mathematics
behind optimization, generic property support integrated
with an efficient lazy evaluation framework, a powerful and
configurable optimization structure, and a library of
reusable components. Afterward, we show three examples
of larger systems: iterative improvement of Bubblemap
layouts, generation of route maps like those created by
LineDrive, and automated dialog layout. Finally, we
discuss some related work and present some short
conclusions.

A SIMPLE EXAMPLE: TEXT ON A POLYGON
In order to explain how programmers create GADGET
optimizations, we will now present a thorough explanation
of a simple optimization. The problem we present is
arranging text in the shape of an arbitrary polygon. Posing
this problem as an optimization, each character in the text
should be on an edge of the polygon, characters should be
displayed in the correct order, and the characters should be
spread out across the length of the polygon. The examples
included later in this paper demonstrate the application of
these same techniques to larger, more interesting problems.

A programmer creating an optimization using the GADGET
toolkit needs to supply three components: an initializer,
iterations, and evaluations. An initializer creates an initial
solution to be optimized. This might be based on an
existing or simplified algorithm, or done randomly.
Iterations are responsible for transforming one potential
solution into another, typically using methods that are at
least partially random. Finally, evaluations are used for
judging the different notions of goodness in a solution.

We will first define the evaluations used by our
optimization. Derived from a base class provided by the

toolkit, each evaluation examines some part of the current
state of the problem. As we will discuss in a later section,
GADGET provides a reusable library of evaluations. For
the purpose of this introduction, however, we will assume
that the programmer implements the necessary evaluations.

The first evaluation ensures that characters are placed on an
edge of the polygon. To do so, the evaluation checks each
character to determine how close it is to the nearest edge of
the polygon. It creates an array of double values from these
distances and returns this array to GADGET. It also
indicates to the toolkit that the sum of the squares of the
values in this array should be minimized. This component,
therefore, is very simple and can be created without
knowledge of complex optimization techniques.

Our second and third evaluations are equally simple. Our
second evaluation ensures that characters are displayed in
the correct order. It builds an array of double values by
checking that each pair of characters is displayed in the
correct order. If a pair is in the correct order, the evaluator
adds a zero to the array of double values. Otherwise, it
adds the distance between the pair of characters along the
polygon to the array of double values. It returns this array

Figure 1 – Simple Arrangements of Text on a Polygon

of doubles to GADGET and indicates that the toolkit
should minimize the sum of the squares of the values in the
array. Our third evaluation spreads characters across the
length of the polygon. It creates an array of doubles by
adding an entry to the array for the distance along the
polygon between each pair of characters. Unlike our first
two evaluators, this array is not minimized. The evaluation
returns the array to GADGET with an indication that the
toolkit should maximize the value of the smallest entry in
the array. This will push the characters apart.

With these evaluations complete, the programmer next
provides a set of weights to indicate the relative importance
of each evaluation. By giving the evaluations weights of
1000, 100, and 10, respectively, each evaluation is an order
of magnitude more important than the next.

After defining how GADGET should evaluate a possible
solution, we need to provide iterations that indicate how
GADGET should generate different possible solutions.
Iterations can vary in complexity according to the
optimization. For optimizations in which it is possible to
identify that certain actions should be taken when certain
conditions are met, an iteration might look to see if a
condition is satisfied and then make an appropriate change.
For optimizations in which it is less clear what steps will
lead to a better solution, iterations can make random
changes, relying on the evaluations to select appropriate
changes. For this example, we will use a very simple
iteration that selects a random character and nudges it a
random distance in a random direction. Combined with our
evaluations, this iteration yields the results in Figure 1.

At this point, it is worth noting that the solution we have
presented does not require an optimization-based approach,
as a very simple algorithm can achieve this result (and does
so much faster). Picking an arbitrary starting point on the
polygon, characters can simply be spaced at intervals equal
to the total length of the polygon divided by the number of
characters. However, this algorithm and our presented
solution share a common problem illustrated by the overlap
of characters in the corner of the triangle. To address this
problem, Figure 2 shows the result of modifying our
optimization by adding an evaluation that minimizes the
overlap of the bounding rectangles of each character.
Given a smaller weight than the other three evaluations, this
additional criteria shifts characters around corners to avoid
the overlap found in Figure 1. Adding this additional
requirement to the algorithmic approach would be very
difficult, but adding it to our optimization is very simple.

GADGET ARCHITECTURE
The GADGET architecture has several features designed to
support the exploration of optimization-based approaches to
interface and display generation. A standard framework
abstracts the concepts and constructs behind evaluations.
Our base class, the GadgetObject, provides generic property
support integrated with an efficient lazy evaluation
framework. Our default optimization structure provides a

variety of useful features, and our configurable optimization
structure allows changes in the optimization structure to
meet specific needs. Finally, GADGET supports a reusable
library of iterations and evaluations.

Evaluation Standardization Framework
As illustrated in our previous example, GADGET allows
programmers to focus on creating evaluations to measure
criteria that are important to a problem. GADGET then
combines these evaluations and uses them to choose
between possible solutions to a problem. This process of
combining evaluations and choosing between possible
solutions has five stages. First, the framework presents
each evaluation with the current possible solution, which
we will call the prior solution. Each evaluation returns an
array of double values representing its interpretation of the
prior solution. We will call this collection of arrays of
double values the prior result. Second, the framework uses
an iteration object to modify the prior solution, creating a
new possible solution that we will call the post solution.
Third, the framework presents the post solution to each of
the evaluations, and the individual evaluations return
interpretations that are then combined to create a post
result. Fourth, the framework uses a method described in
the next paragraph to compare the prior result and the post
result. Finally, the result of this comparison indicates
whether the framework should accept the post solution or
revert to the prior solution.

Up until this point, we have not imposed any particular
structure on the arrays of double values that individual
evaluations create to represent interpretations of possible
solutions. Providing this flexibility to the programmer
allows evaluations to use any appropriate representation.
However, determining which solution is better requires a
standard form for comparing results. We achieve this
standard form by requiring each evaluation to be capable of
comparing two arrays of double values that it has created
and providing a double value in the range -1 to 1, where a
-1 indicates the evaluation has a strong preference for the

Figure 2 – After Adding Overlap Minimization

prior solution, a 0 indicates the evaluation is indifferent,
and a 1 indicates the evaluation has a strong preference for
the post solution. To choose between a prior and post
result, these values between -1 and 1 are multiplied by the
weight associated with each evaluation and these multiplied
values are summed. If this sum is greater than 0, the
framework prefers the post solution.

While evaluations can use any method to create a value
between -1 and 1 from the post and prior arrays of double
values, they will most often use one of the methods we have
built into the framework. These methods are “Minimize
Sum of Squares”, “Maximize Sum of Squares”, “Maximize
Minimum Value”, “Maximize Maximum Value”,
“Minimize Minimum Value”, and “Minimize Maximum
Value”. Each of these methods uses a formula resembling
that in Figure 3 to create a value based on both the sign and
magnitude of a difference.

Generic Properties and Lazy Evaluation Framework
GADGET classes inherit from a base GadgetObject class that
provides support for generic properties. Objects can create
named properties to store a value on any object. Other
objects can then use the stored value. As we will discuss in
our section on a reusable library of iterations and
evaluations, this support for storing and referencing
property values helps programmers create general solutions.
For example, the overlap minimization evaluation that we
used in our earlier example is created from a list of objects
and the property name for a bounding rectangle that is
stored on each object. The evaluation uses the property to
get the rectangles from the objects and compute their
overlap. Therefore, the evaluation can be used to minimize
the overlap of any set of rectangles, not just the rectangles
associated with the characters in our earlier example.

Generic property support in GADGET is tightly integrated
with an efficient framework for lazy evaluation. Based on
the lazy evaluation algorithm presented in [13], the
framework uses local flags and local dependency pointers
to avoid unnecessary computations. This lazy evaluation
framework is integrated with our generic properties by the
GadgetComputedProperty class. Computed properties are
declared just like any other property, by creating a named
property and using it to store the computation on an object.
Instead of storing a value, the property stores a
computation. The first time the value of this property is
requested, the computation is executed to compute the
value. Each subsequent time the value is requested, the
computation is executed only if the value might have
changed since it was last computed.

Although the lazy evaluation framework requires careful
bookkeeping to ensure that cached values are always
correct and computations are not unnecessarily executed,
the GADGET framework is responsible for all of this
bookkeeping. Programmers define a computation by
overriding two functions of a base computation class. The
first function, computeValue, simply performs the desired

computation and returns the computed value. The second
function, declareDependentOn, is called by the framework
immediately before the first call to computeValue. In this
function, the programmer declares what objects this
computation is dependent on. The framework then handles
caching a computed value and monitoring the
computation’s dependencies.

As an example of the combined power of generic properties
and the lazy evaluation framework, consider the evaluation
from our earlier example that minimized the distance from
each character to the nearest edge on the polygon. This
evaluation is constructed from a list of objects, a named
property for a location stored on each object, and the
polygon that these locations should be resolved against. A
naïve implementation of this evaluation would simply go
through each object, extract the location of that object,
compute the distance from the object location to each edge
on the polygon, select the minimum distance, and build an
array of minimum distances. Note, however, that our
iteration only moves one character between evaluations.
Therefore, the computation to determine what edge each
point is closest to is wasted for all but one of the characters.
Using the generic property and lazy evaluation framework,
this same evaluation can be programmed much more
efficiently. The evaluation declares a computed property
that is the distance from a point to a polygon. It then
instantiates this computed property on each object in the
list. Each of these individual computations is dependent
only on the location of the polygon and the location of that
character. Therefore, each computation will be executed
only if that character has moved or the polygon has changed
since the computation was last executed. The cached value
will be used for all of the other characters. When arranging
twenty characters on a polygon, this change can represent
as much as a twenty-fold improvement in the execution
time of an evaluation. Because optimization can be a
computationally expensive process, the ability to easily
make these sorts of improvements without specifically
burdening the programmer is important to this toolkit.

Powerful Default Optimization Structure
By default, GADGET uses a simulated annealing approach
to optimization [17]. Simulated annealing is a general
approach that is characterized by a temperature variable.
This temperature variable is initially high, indicating a
“hot” system, and decreases over time, representing the
system gradually “cooling” into an optimal state. This

 priorSum = sumOfSquares(priorResult)

 postSum = sumOfSquares(postResult)

 if(postSum = priorSum) then result = 0

 else result = sign(priorSum – postSum) *

 (1 – (min(postSum, priorSum) /

 max(postSum, priorSum)))

Figure 3 – Standardization Formula for the
Minimize Sum of Squares Method

temperature variable is used to probabilistically accept
changes that do not appear to represent an improvement.
By randomly accepting these changes, an optimization is
less likely to become trapped in local maxima.

This temperature variable can also be used by evaluations
and iterations to guide their decisions in an optimization.
Iterations, for example, can make large changes to a
solution when the temperature is high and smaller changes
when the temperature is low. Similarly, evaluations can use
the temperature variable as an indicator of whether to use
estimation techniques instead of computing a full
evaluation. For example, an evaluation that performs an
expensive computation on objects in a list might use the
temperature variable to randomly sample only a percentage
of the objects in the list. Such estimates allow an
optimization to approximate a desired solution while the
temperature is high and settle into a more precise solution
as the temperature cools.

Our default optimization structure also includes several
other features that are helpful for creating optimizations.
Because the weights associated with evaluations represent
the maximum value that a particular evaluation can
contribute to the decision on whether to accept the iteration,
GADGET automatically avoids executing evaluations that
cannot affect the outcome of the decision. We also provide
event notifications intended to allow the programmer to
visualize an optimization that is in progress. Finally, the
default optimization structure uses knowledge about
whether changes are accepted or rejected to maintain a
cached version of the prior evaluation result, thus
preventing unnecessary execution of evaluations.

Configurable Optimization Structure
In order to support the future development of GADGET
and to allow optimizations to make changes according to
their specific needs, GADGET uses a configurable
optimization structure. An optimization structure is
represented as a finite-state machine. Each state in the
machine represents an action in the optimization, such as
sending an event notification, executing an evaluation, or
decaying the temperature variable. Each state has some
number of exit conditions, and the optimization structure
associates each exit condition with a transition to another
state. This design allows changes to be made to an
optimization structure by adding new states and changing
the transitions associated with exit conditions. It also
allows actions to be reused in entirely new optimization
structures.

Because most optimizations will only need to use a standard
optimization structure, GADGET uses Builder objects to
abstract the configuration process. For example, our
default optimization structure is created by a single function
call to a Builder object that creates a simulated annealing
optimization based on a handful of parameters, including a
list of the evaluations to execute, a list of the iterations to
use, and the rate at which the temperature should decay.

Programmers that create custom optimization structures
could extend this Builder to create an optimization structure
that resembles our default structure, such as a simulated
annealing structure that added support for logging all of the
possible solutions that were considered. Programmers
could also create entirely new Builder objects for structures
much different from our default structure, such as an
optimization based on a genetic algorithm. Builder objects
then allow programmers to easily use the custom
optimization structures.

Reusable Library of Iterations and Evaluations
GADGET supports a library of reusable evaluations and
iterations intended to help programmers quickly create
optimizations. Although our library is still relatively small,
we have developed several promising approaches to
creating an effective library.

One approach we are pursuing is a standard approach to
reusable libraries. As discussed in our section on generic
properties, the overlap minimization evaluation used in our
text layout example can be easily implemented to minimize
the overlap of any set of rectangles. Similarly, the iteration
used to randomly nudge characters can be easily
implemented to randomly nudge any objects with a property
that defines their locations. The use of named properties on
objects makes this type of reuse easy to include. This
approach to a reusable library also results in reusable
components that clearly implement a particular evaluation
or iteration. Programmers who are new to GADGET can
then create optimizations by combining these clearly named
evaluations and iterations, treating them as black boxes.

Although the above approach works well for many
components, coverage can be problematic. Given this
problem, we are pursuing an approach that makes extensive
use of computed properties. To understand how this
approach is structured, consider the evaluation that ensures
characters are displayed in the correct order in our text
layout example. It penalizes each pair of characters that
appears on the polygon in an order that is different from the
order they appear in the string. If this evaluation is
programmed to use a list of characters, a named property
for the location of each character, and the polygon that the
characters are being arranged on, the evaluation will have
relatively little reuse potential. The reuse potential of the
evaluation is improved substantially if it is instead
programmed to use a list of objects, a named property for
the desired order of each object, and a named property for
the current order of each object. In this case, the desired
order is the index of that character in the string being
arranged. The current order is a computed property that
determines how far that character is located along the edge
of the polygon. The evaluation uses the desired order and
current order properties to penalize each pair of objects that
is not in the desired order. Structured this way, the
evaluation can be used to maintain an arbitrary desired
order for any list of objects. For example, our partial

implementation of the LineDrive system, presented in a
later section, uses this evaluation to prevent short roads
from appearing longer than long roads. In that case, the
desired order is the undistorted length of each road and the
current order is the length of each road after distortion.

The two approaches just presented help create reusable
individual GADGET components. A third approach,
intended for use with both of these approaches, allows
groups of components to prevent unnecessary duplication
of a computation. If several components require an
expensive intermediate computation, any one of them can
create a computed property, store it on a shared object, and
expose the property name. The other components can then
reuse this computed property. The framework will
automatically ensure that the value is up to date prior to
every use, but will never be recomputed unnecessarily. For
example, several evaluations might share a computation to
compute the convex hull of a list of objects, with one using
the convex hull computation to efficiently find the two most
distant objects and a second evaluation using the convex
hull computation to compute the total area covered by the
objects. An iteration could also reuse this convex hull
computation to move objects on the hull towards the middle
of the hull. The ability to transparently share these sorts of
computations among components seems to be important for
helping to create efficient optimizations.

EXAMPLE: BUBBLEMAPS
In this section, we will shift from discussing GADGET as a
general toolkit to illustrating how GADGET can solve a
particular problem. The problem we discuss arises in the
context of the Bubblemap layout algorithm created for
PhotoMesa, a zoomable image browser that groups images
according to a shared attribute [4]. The problem addressed
by Bubblemap is the arrangement of semantically clustered
rectangles into approximately rectangular regions without
wasting space. In other words, the rectangles must fit into
the smallest possible total area, but related clusters should
be arranged in that area so that they approximate
rectangular shapes. The method used by Bubblemap is a
greedy pixel-based bucket fill algorithm. As can be seen in
Figure 4, the algorithm yields fairly good results. Related
rectangles, represented here by color, are kept together and
the edges between clusters generally form clean boundaries.

Although Bubblemap produces solutions that are usually
acceptable, it sometimes suffers from the fact that it is a
greedy algorithm. As can be seen in the bottom of Figure 4,
the last cluster of rectangles to be put into the solution must
settle for whatever space is left. The border of this space is
sometimes jagged and detracts from the overall quality of
the solution. To address this sort of problem, we have
created an approach that combines Bubblemap with an
optimization. After using Bubblemap to create a reasonable
solution, we explore other nearby possible solutions to see
if they are better. This combination of algorithms and
optimization seems to be a promising overall approach.

Figure 5 shows the result of applying an optimization to the
result created by Bubblemap that is shown in Figure 4. The
optimization we applied uses a handful of evaluations. The
most heavily-weighted evaluation ensures that all the
rectangles of a particular cluster are connected. We then
use evaluations that minimize the area of the bounding
rectangle around each cluster and minimize the area of the
convex hull around each cluster. Finally, an evaluation
minimizes the number of times the clustered value changes
in each row and column of layout.

The iteration used in this optimization demonstrates one
approach to creating iterations for difficult problems. We
use a swapping approach, selecting pairs of rectangles and
swapping their values. While there may be a way to find
pairs of rectangles that should be swapped, we have not
found any simple criteria for selecting pairs of rectangles
with a high success rate. While randomly selecting any two
to swap could work, substantial efficiency is gained by
instead using random selection from a list of rectangles that
meet certain criteria. In this case, we only consider
swapping rectangles that border two rectangles of a
different color (counting edges of the layout as rectangles
of a different color). This limits swapping to the corners of

Figure 4 – A Bubblemap Layout of Six Groups

Figure 5 – The Same Layout After Optimization

clusters, which limits swapping to pairs that are more likely
to result in improvements when swapped. Further, the
computation to determine which rectangles should be
considered for swapping is very inexpensive, based on a
Boolean computed property on each rectangle and a list that
stores only the rectangles for which this property is true. In
the general case, problems for which random selection is
used as the iteration method can benefit from simple filters
that increase the efficiency of the random selections.

EXAMPLE: LINEDRIVE
The LineDrive system is used to generate route maps at
http://www.mapblast.com [2]. These maps simplify and
distort the information in a typical road map to more clearly
convey the information critical to navigating the route.
Figure 6 shows two views of a route from Carnegie Mellon
University to a nearby major shopping center [19]. This
route is particularly interesting because it includes a loop at
Monongahela Avenue that can easily confuse a first-time
driver of this route. This loop is imperceptible in a typical
road map because only a very short section of Monongahela
Avenue is included in the route. In the map generated by
our partial implementation of the LineDrive system, the size
of this route segment has been distorted to ensure that it is
visible. The resulting map makes it clear to a first first-time
driver of this route that they will not be able to go directly
from South Braddock Avenue to US-22.

As a deployed real-world example of an optimization-based
approach to interface and display generation, it is important
that the techniques used by the LineDrive system are
supported by GADGET. We can also use the LineDrive
system to provide ideas about effectively designing

optimization-based approaches to interface and display
generation. In this section, we present a partial
implementation of the LineDrive system and comment on
how some approaches taken by the LineDrive system might
generalize to other optimizations.

One interesting facet of the LineDrive system is the
decision to split the optimization into multiple distinct
stages, each of which optimizes a different set of
conditions. The LineDrive system uses three such
optimization stages: an optimization stage that distorts road
length and direction to ensure all roads in a route are visible
without creating false or missing intersections, an
optimization stage that places labels on each road in the
route, and an optimization stage that includes contextual
features (such as cross-streets or landmarks). These
optimization stages are complimented by algorithmic stages
to simplify geographic data into road segments before the
first optimization stage and to add decorative graphics to
the route map after the last optimization stage. By dividing
the many different parts of the optimization into stages, the
LineDrive system significantly reduces the size of the
problem that is solved by the optimization.

As a general approach, the division of a large optimization
into smaller optimizations seems to have helpful properties.
Because each optimization searches a much smaller space,
each optimization can be executed much more quickly.
Smaller optimizations might also make it clearer what
evaluations and iterations will quickly lead to a solution.
These helpful properties, however, need to be balanced
against the possibility that an early optimization might
create a problem that a later optimization cannot remove.

Figure 6 – Undistorted and distorted versions of a route map.

Note that the loop at Monongahela Avenue is imperceptible without distortion.

For example, with the road location fixed prior to the label
placement optimization, it might be impossible to place
labels without creating overlaps. If the label placement
optimization were able to modify road placement, it could
handle this problem. Given this possibility, the decision of
whether it is appropriate to conduct an optimization in
stages is problem dependent.

It is also worth noting that the LineDrive system uses very
specific evaluation criteria designed to detect and prevent
very specific problems. For example, false intersections are
prevented with an evaluation that minimizes the distance
from a false intersection to either end of the route. This
pulls the false intersection until it eventually passes the
endpoint, thus removing the false intersection. Another
evaluation pulls together the roads from a missing
intersection. Because these evaluations can conflict, a third
evaluation identifies missing intersections contained in the
loop created by a false intersection. This third evaluation
very rarely applies, but it helps the optimization recover
from situations where the first two evaluations conflict.

As a general approach, creating evaluations that identify
and resolve very specific problems in an optimization
seems to be beneficial. If a broad and general evaluation is
effective for all but a very specific case, creating an
evaluation for that specific situation seems preferable to
trying to find a different broad evaluation that is effective in
every case. As discussed earlier, this is one of the benefits
of optimization as an approach to display and interface
generation. Instead of trying to construct a single algorithm
or evaluation to handle every condition, independent goals
and constraints can be mixed to achieve the desired affect.

We have created a partial implementation of the LineDrive
system to evaluate the compatibility of GADGET with the
techniques used by the LineDrive system. Our
implementation includes a full implementation of the road
layout stage, which distorts road length and direction to
ensure all roads are visible without creating false or missing
intersections, and a partial implementation of the labeling
optimization stage. In our implementation, we have
focused on the portions of the problem that relate to
optimization, rather than the portions related to geographic
databases, rendering, and related graphics details. These
optimizations were straightforward in the GADGET
architecture. Figure 6 shows an undistorted route map and
a distorted map generated by our implementation.

EXAMPLE: AUTOMATED DIALOG LAYOUT
Automated dialog layout is a problem that has been
investigated by a variety of systems [5, 16, 21]. One
approach to this problem is the right/bottom strategy, which
places each component either to the right of or below the
previous component, according to a set of rules. An
important difficulty with this strategy is the development of
an effective set of rules. Other rule-based approaches can
have similar problems.

Figure 7 shows an automatically generated dialog layout
that was created using a combination of optimization and
the right/bottom strategy. The desired order, text, and size
of these components are taken from a previous discussion
of automated layout [5]. Our layout was created using an
optimization to determine whether to place each component
to the right of or below the previous component. All of the
components are initially placed into one long column. An
iteration toggles a Boolean property on each component to
indicate whether that component should be placed to the
right of the previous component, and the layout that results
from applying the right/bottom strategy with these Boolean
properties is judged by a set of evaluations.

The evaluations used in this optimization are relatively
simple. One evaluation tries to keep labels associated with
a component (as indicated by a flag in the input
specification) on the same row as that component. Another
evaluation minimizes the size of the dialog and the size of
each group box. A third evaluation minimizes the amount
of unused space in the dialog and in each group box. The
final evaluation penalizes layouts in which a vertically large
component appears to the right of a much smaller
component, a situation which has previously been identified
as visually unpleasant [5]. While additional evaluations
could improve the robustness of this approach, these four
evaluations are sufficient for creating the layout shown in
Figure 7. The rules used in our right/bottom strategy
implementation are also very simple. Components are
placed a uniform distance from each other, and similar
components in two or more adjacent rows are left-justified.
Additional rules could right-justify the OK and Cancel
buttons and handle similar highly specific layout issues.

Figure 7 – An automatically generated dialog layout.

This hybrid strategy of using an algorithm inside an
optimization demonstrates an interesting point. The
algorithmic portion efficiently handles the well understood
portions of the problem, such as spacing and aligning
components. The optimization handles the less well
understood portion of the problem, deciding on an overall
arrangement of the components. The resulting system is
both efficient, generating the layout in Figure 7 in just over
one second, and flexible, appropriately arranging the groups
of radio buttons even though it has no specific knowledge
of radio buttons. This seems like a promising strategy for
structuring optimization-based approaches.

DISCUSSION AND RELATED WORK
The pursuit of optimization as a general approach to
interface and display generation relates to previous work on
constraints [3, 11, 12, 18, 25] and constraints in user
interface toolkits [10, 26]. Some systems, such as
Cassowary [3], explicitly use numerical optimization to
maintain constraints. It is also common to associate
weights with constraints, indicating that conflicts between
constraints should be resolved in a manner that is consistent
with the more heavily weighted constraint.

Many constraint-based approaches can be difficult to use
when it is not clear how to express the desired constraint in
the appropriate limited form, such as a linear equation or
inequality. Recent work has demonstrated a technique for
using sets of linear constraints to approximate nonlinear
constraints [14], but the general problem still exists.
Instead of requiring programmers to represent their
evaluations as equations, GADGET allows programmers to
use arbitrary code in an evaluation and provides a
standardization framework that allows these arbitrary
criteria to be combined. This flexibility is important to
providing general support for the types of problems for
which GADGET has been designed. There is clearly a
tradeoff between this flexibility and efficiency, though we
believe that the techniques illustrated in our examples, such
as using algorithms to approximate a good solution and
dividing large optimizations into multiple stages, provide
some insight into how to manage this tradeoff. As a part of
future work, we intend to explore additional methods to
provide toolkit support for strategies to manage efficiency.

GADGET also relates to previous work on metric-based
design [20, 23, 24], automated usability analysis [15], and
automated dialog layout generation [5, 16, 21]. In order to
emphasize the flexibility of GADGET, this paper includes
examples outside of traditional dialog layout problems.
Some metrics previously presented in the context of dialog
layout, such as symmetry and balance, are likely to be
useful as general aesthetic qualities in a large variety of
problems. By supporting a library of reusable evaluations,
GADGET can make it easy for programmers and designers
to include these types of generally useful evaluations in
their systems. Other metrics specific to dialog layout, such
as Layout Appropriateness [24], suggest approaches to

including task knowledge in evaluations. Layout
Appropriateness evaluates the positions of components
according to how often a user will move from one
component to another, attempting to minimize the distance
a mouse must be moved during common sequences. The
flexible nature of GADGET evaluations supports the use of
this type of task knowledge in a dialog layout problem.
Stated more generally, GADGET supports not only
evaluations based on the arrangement of visual elements,
but also evaluations based on automated usability analysis,
knowledge of human perception, and the amount of
information conveyed by parts of an information display.

Optimization has also been used extensively as an approach
to problems in graph visualization and VLSI layout [6, 8].
Many problems in these areas are NP-Complete, making
optimization-based approximation techniques important.
This work, appropriately, is often conducted at a level of
mathematical complexity that is well beyond the comfort
level of a typical programmer. GADGET works to make
the benefits of optimization that have been demonstrated in
these fields more approachable to typical programmers.
We expect that making optimization easier to use will result
in it being used for additional problems.

In our experiences with GADGET, we have found that our
abstractions and reusable components make it easier to
develop optimizations. A new evaluation can be quickly
combined with an existing set to determine if the additional
evaluation yields a better result. The lazy evaluation
framework also seems to be very effective, allowing
optimizations to consider many different small changes
without the computational overhead of re-evaluating large
parts of the problem that are unaffected by the changes.

The primary difficulties that we have encountered in using
GADGET are those that we might expect in any approach
to optimization. As the number of variables that can be
manipulated in an optimization grows, it becomes difficult
to ensure that an appropriate solution can be quickly found.
This is partially because the there are many more points in
the space to be considered, but is also due to the increasing
difficulty of understanding the optimization space and
deducing what new evaluations might improve results.

In discussing our examples and the functionality provided
by GADGET, we have shown techniques for managing
these problems. We are particularly interested in hybrid
approaches that use a combination of an algorithm and an
optimization to solve a problem. We are also interested in
additional toolkit-level support for these hybrid approaches
and other strategies to help people understand and improve
upon non-trivial optimizations.

CONCLUSIONS
Optimization-based approaches to interface and display
generation seem to be a promising area of research, but
important advances still need to be made. Carefully
constructed optimizations can run quickly enough for use

with current systems, as illustrated by the LineDrive system,
but other optimizations remain too computationally
expensive for current systems. While part of the solution to
this problem will come from the exponential improvement
of computing speed described by Moore’s Law, it is also
important to develop strategies for managing efficiency and
approachable abstractions of more efficient optimizations.

We have presented GADGET, a toolkit designed to support
optimization-based approaches to interface and display
generation. This toolkit provides several features designed
to support the easy creation of efficient optimizations.
These include a standard framework to abstract much of the
mechanics behind evaluations, generic property support
integrated with an efficient lazy evaluation framework, a
powerful and configurable optimization structure, and a
library of reusable iterations and evaluations. We have
presented strategies for developing reusable and efficient
components and have demonstrated the use of GADGET in
three interesting optimization problems. As an appropriate
tool for this new class of interface and display generation
techniques, GADGET provides important support for the
further exploration of these techniques.

ACKNOWLEDGMENTS
This work was funded in part by the National Science Foundation
under Grant IIS-01215603 and the first author’s NSF Graduate
Research Fellowship. We would like to thank Jodi Forlizzi and
Joonhwan Lee for identifying the interesting route used in our
LineDrive example and providing the undistorted image used in
that example. We would also like to thank Jeffrey Nichols for his
comments on automated dialog layout and versions of this toolkit.

REFERENCES
1. Abbot, E.A. (1884) Flatland: A Romance of Many

Dimensions.
2. Agrawala, M. and Stolte, C. (2001) Rendering Effective

Route Maps: Improving Usability Through Generalization.
In Proceedings of the Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 2001), 241-249.

3. Badros, G.J., Borning, A. and Stuckey, P.J. (2001) The
Cassowary Linear Arithmetic Constraint Solving Algorithm.
ACM Transactions on Computer-Human Interaction
(TOCHI), 8 (4). 267-306.

4. Bederson, B.B. (2001) PhotoMesa: A Zoomable Image
Browser Using Quantum Treemaps and Bubblemaps. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2001), 71-80.

5. Bodart, F., Hennebert, A.-M., Leheureux, J.-M. and
Vanderdonckt, J. (1994) Towards a Dynamic Strategy for
Computer-Aided Visual Placement. In Proceedings of the
Workshop on Advanced Visual Interfaces, 78-87.

6. Cong, J., He, L., Koh, C.-K. and Madden, P.H. (1996)
Performance Optimization of VLSI Interconnect Layout.
Integration, the VLSI Journal, 21 (1). 1-94.

7. Decision Tree for Optimization Software.
http://plato.la.asu.edu/guide.html

8. Di Battista, G., Eades, P., Tamassia, R. and Tollis, I.G.
(1999) Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall.

9. Fogarty, J., Forlizzi, J. and Hudson, S.E. (2001) Aesthetic
Information Collages: Generating Decorative Displays that

Contain Information. In Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST 2001),
141-150.

10. Gleicher, M. (1993) A Graphics Toolkit Based on
Differential Constraints. In Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST 1993), 109-120.

11. Hentenryck, P.V. and Saraswat, V. (1996) Strategic
Directions in Constraint Programming. ACM Computing
Surveys (CSUR), 28 (4). 701-726.

12. Hosobe, H. (2001) A Modular Geometric Constraint Solver
for User Interface Applications. In Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST 2001), 91-100.

13. Hudson, S.E. (1991) Incremental Attribute Evaluation: A
Flexible Algorithm for Lazy Update. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13 (3).
315-341.

14. Hurst, N., Marriott, K. and Moulder, P. (2002) Dynamic
Approximation of Complex Graphical Constraints by Linear
Constraints. In Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2002), 191-200.

15. Ivory, M.Y. and Hearst, M.A. (2001) The State of the Art in
Automating Usability Evaluation of User Interfaces. ACM
Computing Surveys (CSUR), 33 (4). 470-516.

16. Kim, W.C. and Foley, J.D. (1993) Providing High-Level
Control and Expert Assistance in the User Interface
Presentation Design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI 1993), 430-437.

17. Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. Optimization
by Simulated Annealing Science, 1983, 671-680.

18. Marriott, K. and Stuckey, P. (1998) Programming with
Constraints: An Introduction. MIT Press, Cambridge, MA.

19. Microsoft Streets and Trips 2002.
http://www.microsoft.com/streets/

20. Ngo, D.C.L., Samsudin, A. and Abdullah, R. (2000)
Aesthetic Measures for Assessing Graphic Scenes. Journal of
Information Science and Engineering, 16 (1). 97-116.

21. Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris,
T.K., Rosenfeld, R. and Pignol, M. (2002) Generating
Remote Control Interfaces for Complex Appliances. In
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2002), 161-170.

22. Nocedal, J., and Wright, S.J. (1999) Numerical Optimization.
Springer, New York.

23. Sears, A. (1995) AIDE: A Step Toward Metric-Based
Interface Development Tools. In Proceedings of the ACM
Symposium on User Interface and Software Technology
(UIST 1995), 101-110.

24. Sears, A. (1993) Layout Appropriateness: A Metric for
Evaluating User Interface Widget Layout. IEEE
Transactions of Software Engineering, 19 (7). 707-719.

25. Vander Zanden, B. (1996) An Incremental Algorithm for
Satisfying Hierarchies of Multiway Dataflow Constraints.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 18 (1). 30-72.

26. Vander Zanden, B., Halterman, R., Myers, B.A., McDaniel,
R., Miller, R., Szekely, P., Giuse, D.A. and Kosbie, D.
(2001) Lessons Learned About One-Way, Dataflow
Constraints in the Garnet and Amulet Graphical Toolkits.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 23 (6). 776-796.

