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ABSTRACT 
User interface toolkit research has traditionally assumed 
that developers have full control of an interface. This 
assumption is challenged by the mashup nature of many 
modern interfaces, in which different portions of a single 
interface are implemented by multiple, potentially mutually 
distrusting developers (e.g., an Android application 
embedding a third-party advertisement). We propose 
considering security as a primary goal for user interface 
toolkits. We motivate the need for security at this level by 
examining today’s mashup scenarios, in which security and 
interface flexibility are not simultaneously achieved. We 
describe a security-aware user interface toolkit architecture 
that secures interface elements while providing developers 
with the flexibility and expressivity traditionally desired in 
a user interface toolkit. By challenging trust assumptions 
inherent in existing approaches, this architecture effectively 
addresses important interface-level security concerns. 
ACM Classification: H.5.2 [Information interfaces and 
presentation]: User Interfaces - Graphical user interfaces. 

General terms: Security; Human Factors; Design. 

Keywords: Security; user interface toolkits.  

INTRODUCTION AND MOTIVATION 
User interface toolkits help to reduce barriers to the design 
and development of modern graphical interfaces [24, 25]. 
In aiming to provide maximal flexibility and expressivity, 
existing toolkit research generally makes an implicit 
assumption that developers have full control of an interface 
(e.g., [6, 7, 8, 17, 24]). However, as applications move 
towards interfaces composed of elements from different 
sources, this assumption can pose significant security risks.  
Consider the mashup nature of many modern interfaces, 
wherein multiple elements of an interface are implemented 

by different developers with varying trust relationships. 
Such mashups arise both on the Web and within 
applications. In a common scenario, a mobile application 
imports a library to display advertisements in a designated 
portion of its interface. The application must trust that the 
advertising library will not abuse the application’s 
permissions without user consent (e.g., to access user 
information or to send a premium-rate SMS). Conversely, 
the advertising library must trust that the application will 
not programmatically click its advertisements in order to 
increase its advertising revenue. In both cases, this trust can 
be misplaced: Android ad libraries can and have abused the 
permissions of embedding applications [10, 13] and 
Android apps can programmatically click on embedded 
ads. Malicious programmers can also trick users into 
clicking a sensitive embedded element by manipulating its 
display, an attack known as clickjacking [14]. For example, 
a website can trick a user into clicking a Facebook “Like” 
button by making the element transparent or uncovering it 
just as the user clicks in a predictable location.  
Such risks traditionally go unaddressed or are mitigated in 
ways that come at the expense of interface flexibility and 
usability. For example, a conventional solution for 
preventing an ad library from illicitly accessing a user's 
location is to insert a system-controlled confirmation dialog 
when an application requests location information. 
Although this approach increases security, it can 
significantly impact the usability of legitimate applications. 
Consider also guidelines for security-critical interfaces, 
such as the Microsoft Windows User Account Control 
(UAC) guidelines specifying that a shield icon be displayed 
on buttons that result in actions requiring administrative 
privileges. In current tools, such guidelines cannot be 
programmatically enforced but must instead be verified 
through inspection and review (e.g., an app store process).  
Existing mitigations for interface-level security concerns 
are implemented at the system level, not in the user 
interface toolkit. We argue that this design is a principal 
reason that these solutions negatively impact interface 
usability and flexibility. For example, because traditional 
user interface toolkits do not support securely embedding a 
sensitive element into another developer's context, system 
developers are forced to resort to secure system prompts.  
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We therefore propose that such threats be addressed by 
rearchitecting the user interface toolkit. A well-designed 
security-aware user interface toolkit could enforce visual 
security indicators (such as the UAC shield), link a user’s 
actions in an interface to an application’s access to 
sensitive resources (such as location), and strike at the core 
of security threats that leverage interface manipulation 
(such as clickjacking). In addition, we believe that securing 
sensitive interface elements will enable future innovation in 
the design of interfaces for security-sensitive interactions.  
In this work, we consider security as a primary goal in the 
user interface toolkit. We explore the security assumptions 
of existing approaches and develop mechanisms that isolate 
mutually distrusting interface elements while retaining the 
flexibility that developers enjoy in existing toolkits. 
Specifically, this paper contributes: 
• Scenarios that motivate a security-aware user interface 

toolkit for interfaces with mutually distrusting elements. 
• A set of security properties needed for these scenarios. 
• A security-aware user interface toolkit architecture that 

achieves these system-level security properties while 
maintaining necessary flexibility for developers. 

• Prototype implementations in the context of mobile 
application (Android) and Web (browser) toolkits. 

SCENARIOS AND SECURITY PROPERTIES 
In this section, we introduce a set of scenarios motivating a 
need for security as a primary goal in user interface toolkits 
and explore the drawbacks of existing approaches to 
achieving security in these scenarios. We then consider our 
threat model and extract a set of desired security properties. 

Scenarios 
Resource Access. Modern systems (e.g., smartphones, 
browsers, and desktop operating systems) provide 
applications with access to a variety of system resources 
(e.g., a camera, user location, a contact list). Systems 
protect these resources by granting applications access to 
them only if permitted by the user, who agrees either to a 
prompt at the time of first access or to a list of permissions 
requested at the time of installation (known as a manifest). 
However, these approaches can pose security risks: after an 
application is granted access to a resource, most systems 
allow it to continue accessing the resource whenever and 
however it wishes, even if that access is invisible to the 
user and/or inappropriate [29]. For example, an app could 
take photos or send out location information without a 
user’s consent or knowledge.  
Existing work on user-driven access control [29] considers 
using a person’s interactions with an interface for resource 
access control decisions. For example, a person’s click on 
an embedded location button implies the intent to grant the 
application location access (see Figure 1). By capturing this 
intent, the system can ensure that the application accesses 
location only at the appropriate time, when access is 
expected by the user. However, this solution assumes that 
applications cannot trick people into clicking on such 

buttons and cannot manipulate a button’s display (e.g., to 
hide the location icon). Because existing user interface 
toolkits do not support security for embedded elements, 
system buttons cannot be embedded in today’s interfaces. 
Enforcing Interface Requirements. More generally, the 
system may wish to enforce interface restrictions on 
elements that can result in restricted operations when users 
interact with them. For example, Microsoft Windows UAC 
guidelines [21] state that buttons which will result in 
actions requiring administrator privileges should be 
adorned with a UAC shield icon (see Figure 2). As another 
example, browsers may choose to display visual indicators 
when users perform insecure actions (e.g., a crossed-out 
lock icon displayed when using a non-HTTPS connection). 
If a system wants to require such a visual indicator for all 
applications making network connections, current tools 
cannot help in enforcing the requirement. Instead, such a 
requirement can be enforced only with interface guidelines 
and application review (e.g., an app store process).  
Third-Party Libraries and Transactions. As described in the 
introduction, applications that embed third-party elements 
(such as advertising libraries) can present or expose 
themselves to security risks. Similar concerns arise when 
applications embed other third-party elements, such as 
payment elements (e.g., for PayPal), social widgets (e.g., 
the Facebook “Like” button), or federated login systems 
(e.g., using a Google account to login to another website). 
User interface toolkits currently do not support security in 
these scenarios. For example, Android applications can 
easily manipulate interface elements provided by 
third-party libraries. An application seeking to fraudulently 

 
Figure 1: This maps application includes an 
advertisement generated by an ad library (top) and a 
system-provided location button (circled). 

 
Figure 2: The User Account Control shield in Microsoft 
Windows (circled) signifies that the resulting action 
requires administrator privileges. 



 

 

increase its advertising revenue can, for instance, 
programmatically click on the ads that it embeds. We have 
implemented a proof-of-concept Android application 
demonstrating that three separate ad libraries are vulnerable 
to this type of attack. On the other hand, existing research 
[10, 13] indicates that some ad libraries inappropriately 
exploit the permissions of the embedding application 
(e.g., stealing contact information and tracking location). 
Current approaches to securing third-party interface 
elements embedded in an application restrict the flexibility 
of interface designers. Consider the popular Facebook 
“Like” button, which can be embedded by websites as an 
iframe to allow visitors to “Like” the embedding page and 
share it on their Facebook profile. Although the Web’s 
same-origin policy [33] prevents the embedding webpage 
from programmatically clicking on or manipulating the 
button’s iframe, pages can mount clickjacking attacks in 
which they trick users into clicking on the button (e.g., by 
uncovering the button just before the user clicks in a 
predictable location). When Facebook suspects that a 
particular button is victim to such an attack, it switches that 
button into a secure mode [11]. In this mode, clicking on 
the button opens a popup window in which the user must 
confirm the action. This is clearly a more cumbersome user 
experience not desired by Facebook’s developers. 
In these and other scenarios, there may be expected and 
mutually beneficial interaction between an embedded 
element and an application (e.g., informing the application 
when an ad fails to load or when a payment has been 
completed). It would thus be too restrictive to completely 
isolate interface elements from different sources.  

Threat Model 
In this work, we are concerned with protecting interface 
elements in one part of an application (e.g., the main 
application itself) from another part of the application 
(e.g., an included ad library), and vice versa. We consider 
developers of these different application components to be 
potentially mutually distrusting. We further consider any 
application developer to be a potential adversary or 
accidental adversary of the system. An intentional 
adversary might attempt to fool a user or attempt to access 
sensitive resources without legitimate permission; an 
accidental adversary might fail to adhere to interface 
guidelines intended to increase system security (e.g., failing 
to display the UAC shield) or might accidentally expose a 
user’s data to a third party. We make the standard 
assumption that the system itself is trustworthy and 
uncompromised (e.g., the operating system or the browser). 
In selected cases, where noted, we also rely on a trusted 
app store review process, though we design our toolkit 
architecture to minimize this reliance. Later sections also 
discuss additional limitations of our prototypes on two 
current platforms (i.e., Android and a Web browser). 

Desired Security Properties 
To refer to code belonging to different parts of an 
application or the system, we introduce the term trust 

group. We extract from the presented scenarios and threat 
model the following security properties needed to protect 
interface elements within mutually distrusting trust groups.  
1. Display Integrity: Code in one trust group should not be 

able to alter the content or appearance of an interface 
element in another trust group, except via APIs 
explicitly exposed by that element. 

2. Input Integrity: Code in one trust group should not be 
able to programmatically interact with interface elements 
in another trust group (e.g., calling a performClick() 
function), except when explicitly permitted. 

3. Intent Integrity: Code in one trust group should not be 
able to mount clickjacking attacks to force or trick users 
into interacting with an interface element in another 
trust group. Code should also not be able to prevent 
intended user interactions with interface elements in 
another trust group (i.e., a denial-of-service attack). 

4. Data Isolation: Code in one trust group should not be 
able to read or extract content displayed by an interface 
element in another trust group, except following an 
explicit user interaction within the element that permits 
this (e.g., pressing “Select” in a file picking menu 
would allow the application to access the file system 
and open the selected file). Code in one trust group 
should not be able to eavesdrop on input intended for a 
interface element in another trust group. 

5. UI-to-API Links: It should be possible for application or 
system APIs to be linked to interface elements. For 
example, a takePhoto() API might be accessible only 
from a camera button in the system’s trust group.  

In designing a security-aware user interface toolkit, we aim 
to support these security properties alongside the traditional 
goals of minimizing the difficulty of implementing typical 
interfaces (i.e., minimizing a toolkit’s threshold [24]) while 
still providing maximal expressiveness and flexibility 
(i.e., maximizing a toolkit’s ceiling [24]). 

ARCHITECTING A TOOLKIT FOR SECURITY 
In this section, we introduce a user interface toolkit 
architecture that achieves the above properties by 
(1) isolating interface elements into trust groups and 
(2) maintaining specific invariants with respect to the 
interface layout tree. The toolkit does so while retaining 
developer flexibility to (3) expose model-level APIs, 
(4) compose elements, and (5) display feedback across trust 
groups. We describe each of these design points in turn. 

Trust Groups and Permissions 
Our architecture separates mutually distrusting application 
components, both interface code and application code, into 
distinct trust groups. For example, system code belongs to 
one trust group (referred to as “system-trusted” throughout 
this paper), an application belongs to another trust group, 
and third-party elements belong to their own trust groups 
(e.g., an ad library, a PayPal payment button, or a Google 
login field). Figure 3 shows how parts of an application 



 

 

might map to trust groups, and we explain the details of 
this figure throughout this subsection. 
Trust Group Assignment. In order to isolate elements from 
different sources, our toolkit must associate all code and all 
interface elements with a trust group. We leave it up to 
applications, libraries, and the system to associate their own 
non-interface code with trust groups at any granularity, but 
we must consider the appropriate model for assigning 
interface elements to trust groups. In particular, our toolkit 
architecture must support two types of scenarios. In the 
first, an application embeds a sensitive element exposed by 
another trust group, such as a system-trusted camera button. 
In the second, an application simply uses a generic toolkit 
element (such as a standard button) which should become 
part of the application’s own trust group. 
To support these scenarios, we introduce two types of 
interface elements: fixed-trust-group elements and 
owner-bound elements. A fixed-trust-group element has a 
set trust group that does not depend upon which entity 
instantiates or embeds it (e.g., a camera button may belong 
to the “system” group). An owner-bound element, such as a 
standard button, adopts the trust group of the code that 
instantiates it. 
Restricting Application, System, and Library APIs. Our 
architecture can use trust groups to create the desired link 
between interface code and application, system, or library 
code (UI-to-API Links) by simply denying API access to 
callers with unauthorized trust groups.  
However, trust groups may sometimes not be sufficiently 
granular for an API’s access control policy. For instance, 
the system may wish to restrict the takePicture() API 
only to the system-provided camera button, not to all 
system interface elements. This policy embodies the 
standard security principle of “least privilege”, as arbitrary 
system components do not need access to the camera. Thus, 
even if other system elements could be manipulated into 
invoking the takePicture() API, those calls would fail. 

To allow such fine-grained access control policies, we 
associate each interface element with a set of permissions 
in addition to its trust group. Taken together, these allow 
the system or an application to restrict certain APIs 
(e.g., takePicture()) to code originating from interface 
elements of an appropriate trust group and with sufficient 
permissions (e.g., an element with trust group “system” and 
a permission list containing the “camera” permission). 
In this paper, we designate an interface element with trust 
group A and permissions B and C as Element{A, [B, C]}. 
Figure 3 shows an example of how elements map to trust 
groups and permissions, which in turn map to accessible 
APIs in application, system, or library code. In the common 
case (such as the AdWidget in Figure 3), an element’s 
permissions list will be empty, giving it access to only 
those APIs that do not require any additional permissions.  
Restricting Interface APIs. Interface elements may need to 
protect certain methods and expose others. For example, an 
ad element would not wish to allow performClick() to 
be called by another trust group, but it may wish to expose 
a method to set advertisement keywords. Similarly, an 
application should be able to attach a callback to a system 
camera element to receive a photo after it is taken. 
Interface elements are thus responsible for defining an 
access policy for their methods. By default, only code 
within the same trust group and the system’s trust group 
can access all of an element’s methods. We note that an 
alternate default would allow all access, relying on 
developers to selectively restrict sensitive methods. We opt 
for the stricter default, lowering the threshold to 
implementing secure interfaces under the assumption that 
most interfaces do not require crossing security boundaries. 
Restrictions on relevant methods provide the following 
protections, which are subsets of our security properties: 
• Code cannot manipulate the display of elements in other 

trust groups (Display Integrity). For example, the 
methods setBackground() or setTransparency() 
can be inaccessible to code from another trust group.  

 
Figure 3: An example of how an element’s trust group and permissions map to accessible APIs. An element with trust 
group A and permissions B and C is designated ElementName{A, [B, C]}. This screenshot is from the Android 
implementation of our architecture. 
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is trustworthy. Our architecture enforces the minimum 
requested size for system-trusted elements, even if the size 
allocated by the parent is smaller than this minimum. 
In the general case, we cannot make assumptions about 
whether the embedding or the embedded node is more 
trustworthy. We resolve the conflict as follows: if the child 
element requests a larger size than permitted by the parent 
element, we draw the child element with the smaller size, 
visually indicate to the user that the child could not be fully 
displayed, and allow the user to manually maximize it. This 
solution can be seen as a sort of generalization of the 
behavior of typical browser popup-blockers. 
Although isolating elements into trust groups and 
maintaining the described tree invariants supports our 
desired security properties, naïvely implementing these 
mechanisms introduces undesired restrictions on interface 
flexibility. To restore this necessary flexibility, the next 
sections extend this basic architecture to allow developers 
to expose model-level APIs, compose elements, and 
display feedback across trust groups. 

Model-Level Event Listeners 
In traditional user interface toolkits, interface elements 
allow applications to attach listeners for various events 
(e.g., click, key, touch). For sensitive elements, however, 
these generic listeners may present security risks. For 
example, an application can use an onKeyListener to 
eavesdrop as a user enters a password into a third-party 
federated login element. To prevent such attacks, elements 
in our architecture default to restricting such listener hooks 
to callers of the same trust group (or the system trust group).  
However, recall that elements may wish to expose certain 
events across trust groups (e.g., to inform an application 
when an ad has loaded, to provide a captured photo, to 
update detected GPS coordinates). Unlike generic event 
listeners, these events have model-level semantics (i.e., 
they are meaningful at the application level, not at the 
interface element level). We thus apply model-level event 
listeners, which can be used by a sensitive element to 
expose higher-level data or events to the trust group that 
embeds it. For example, a payment library might now allow 
applications to attach arbitrary listeners to a payment 
dialog, but could explicitly expose events for successful 
payment. Existing user interface toolkits use model-level 
events to provide meaningful notifications related to 

manipulation of an element (e.g., ItemListeners on 
menu items and ChangeListeners on sliders), but 
security-sensitive interface elements are likely to expose 
even higher-level events than current examples. 
In our architecture, both generic and model-level event 
listeners execute in the trust group of the defining code, not 
that of the element to which they are attached. Otherwise, 
an attacker could inject arbitrary code into another trust 
group (e.g., by attaching an onClickListener to an 
element in the trust group of the attacker’s choice). 

Composition Across Trust Groups 
We have thus far considered only the visual composition of 
elements belonging to different trust groups. However, 
interface designers require greater flexibility to logically 
compose elements. For example, consider the Windows 
UAC scenario in which an arbitrary developer-defined 
button that includes a UAC shield must be able to access 
privileged system APIs. To access these APIs, the button 
must be in the system’s trust group. However, its visual 
layout must be largely defined by the app developer. 
Conceptually, the developer would like to embed the 
system-trusted UAC shield element in a custom element 
and inherit the former’s trust group and permissions.  
We support composition of elements from multiple trust 
groups by introducing a system-defined ComposedElement. 
Any trust group may choose to expose composable 
sub-elements for inclusion in a ComposedElement (e.g., the 
system may expose a UAC shield icon with the 
“administrator” permission or a GPS icon with the 
“location” permission). Another developer can then mash 
up these sub-elements with custom elements in a 
ComposedElement. For instance, Figure 5 shows a 
composed button for taking a location-tagged photo. 
Our toolkit must ensure that allowing compositions does 
not violate the security properties achieved in previous 
sections. In particular, a ComposedElement must not allow 
code to manipulate or observe elements in another trust 
group or to inappropriately access restricted APIs.  
In order to retain the benefits of the layout tree invariants 
previously described, we assign ComposedElements to the 
“system” trust group. ComposedElements are thereby 
allowed to contain sub-elements of other trust groups. Our 
invariants continue to hold within the ComposedElement. 
This ensures, for example, that an application cannot use a 
composition to eavesdrop on a third-party login field. 
Recall the goal of a composition is for the resulting element 
to inherit the permissions of its constituent elements. 
However, we do not wish to allow applications to inject 
arbitrary code into a ComposedElement, as this code will 
run in the system’s trust group. To achieve these goals 
simultaneously, the ComposedElement allows the trust 
group that embeds it to attach event listeners. Unlike other 
event listeners (which run in the attacher’s trust group), 
listeners of a ComposedElement run in a temporary trust 
group derived from the ComposedElement’s sub-elements; 

 
Figure 5: In this example, the application has 
composed the system-trusted camera and location 
icons with its own label to create a custom button that 
has both camera and location permissions. 



 

 

its set of permissions is the union of their permissions. For 
example, the ComposedElement in Figure 5 includes 
location and camera sub-elements, resulting in an 
onComposedClickListener with trust group and 
permissions defined as {System-Application-Composed, 
[Location, Camera]}. The attached listener can thus access 
the necessary system APIs (but not other system APIs).  
Without an additional timeout mechanism, such 
ComposedElement listeners cannot be prevented from 
running and taking advantage of these permissions 
indefinitely. Thus, if a trust group wishes to prevent this 
risk for certain permissions, it should not expose them via 
composable sub-elements. For example, if the system 
wishes to grant camera access only via photos returned 
directly from a system-trusted camera button, it should not 
(and does not need to) expose a composable camera icon. 

Flexibility of Feedback 
Isolating interface elements from different trust groups as 
described thus far will restrict developer flexibility in 
displaying feedback that requires access to elements and 
data across trust groups. We examine drag-and-drop and 
lenses as canonical examples of such flexible feedback, and 
we describe how our toolkit architecture preserves 
developer flexibility for these types of scenarios. 
During a drag-and-drop operation, dragging an object over 
a potential drop target often yields feedback indicating 
whether it can accept the drop and possibly what effect the 
drop will have. This feedback may require access to the 
contents of the drag object (not just its type). For example, 
a text editor may wish to show what dropped text will look 
like in the current font before the user completes the drop.  
However, the drop target may be in a different trust group 
than the drag object. Until a user drops the object, it is not 
clear that the potential drop target is the intended recipient, 
so it should not receive full access to the drag object. 
Providing such access would allow a malicious non-target 
application to steal potentially sensitive information. A 
challenge for our toolkit architecture is therefore to allow 
the potential drop target to display feedback that relies 
upon the content of the drag object. 
Similarly, lenses [2] are overlaid on an interface to display 
flexible feedback about the underlying elements. For 
example, a lens over a set of map tiles might magnify the 
underlying map features or highlight certain cities. 
However, the elements from which a lens requires 
information in order to paint itself may not all belong to the 
lens’s trust group. System-trusted lenses can have full 
access, but supporting arbitrary lenses requires allowing the 
lens element to show feedback based on elements in other 
trust groups. As with drag and drop, we wish to support 
feedback in the lens without granting the lens’s trust group 
full access to the underlying interface elements. 
Supporting Flexible Feedback. When an element wishes to 
display this type of cross-trust-group feedback, the system 
launches a new sandbox that can run and isolate arbitrary 

code, preventing it from communicating over the network 
or with other applications (note that our toolkit design is 
independent of the implementation of this sandbox). 
Isolated in this way, the system executes feedback 
generation code provided by the element in question.  This 
code generates feedback by accessing and manipulating a 
copy of the layout tree and any other restricted data needed 
to generate appropriate feedback (e.g., the drag object). 
However, the feedback code cannot break Data Isolation 
because it cannot communicate outside of the sandbox. 
It also cannot violate Display Integrity, as it manipulates 
only a copy of the restricted data  
The feedback code produces a temporary version of the 
relevant portion of the layout tree. The system displays this 
feedback in a system-trusted overlay element, thus never 
granting the original element access to the sensitive data. 
Note that it is possible for malicious feedback code to show 
inaccurate feedback (e.g., a lens that displays cities not on 
the underlying map). Thus, while users may interact with 
the feedback element (e.g., clicking on the map inside the 
lens), this feedback is not automatically propagated to the 
underlying elements. If desired, these elements can expose 
methods allowing for feedback event propagation.  

ANDROID IMPLEMENTATION 
We prototyped our user interface toolkit architecture with 
an implementation for Android. Android currently shows 
only one application interface at a time, with all elements in 
that interface run in the same process. This can include 
elements defined by Android’s toolkit, by the application 
itself, by an embedded library, and in a limited way by 
another application (via RemoteView). The embedding 
application is thus trusted with and trusts any element it 
embeds, an assumption that we challenge with this work. 
We implemented our approach in Android 4.0.3 (Ice Cream 
Sandwich) by modifying its user interface toolkit (Java 
packages android.view and android.widget). 

API Restrictions 
The base class of all Android interface elements is the 
View class, which is extended by Android’s built-in 
elements and can be arbitrarily extended by developers. We 
modified all methods in this class to take an additional 
parameter that specifies the trust group of the caller.  This 
additional parameter is a reference to the calling object 
(we describe below how we ensure the validity of this 
parameter and how we extract the correct trust group and 
permissions list from it). The View class and its subclasses 
can thus use this information to restrict or expose methods 
based on the appropriate policy. By default, we allow calls 
only from callers of the same trust group as the View itself, 
as well as from system-trusted objects. 
For backwards compatibility with existing Android 
applications, we did not replace all View methods but 
instead duplicated them and added the additional trust 
group parameter. An app store review process could ensure 
new applications use only the new methods (via static 
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The system-trusted location button is a new element that 
we added to the Android toolkit. It has a fixed “system” 
trust group and the “location” permission, and it restricts all 
methods to system-trusted callers, with one exception. It 
allows any trust group to set a new model-level event 
listener for location data via setOnLocationListener(). 
Applications can thus embed this button and attach a 
listener for location data. That data is returned to the 
application when the user clicks the button. The button also 
protects itself from clickjacking attacks by responding to 
input events only while it is completely visible to the user.  
The advertisement comes from an ad library embedded by 
the application. We created a secure ad library by wrapping 
the existing AdMob library for Android [12]. Our library 
wraps AdMob’s AdView in a SecureAdView, which sets 
the SecureAdView’s fixed trust group to be the ad 
library’s trust group, thereby restricting all methods to 
callers in that trust group (or the system group). As a result, 
our proof-of-concept clickfraud attack for the original 
AdMob library, in which the embedding application 
programmatically clicks on the ad, is no longer possible. 

WEB IMPLEMENTATION 
To further evaluate our approach, we created a prototype 
implementation for the Firefox Web browser, implemented 
using iframes and a Firefox add-on.  
The Web has long required support for complex 
embeddings among content from different sources. Web 
browsers isolate pages and iframes from different origins 
(based on the same-origin policy [33]). A website 
containing an iframe has complete control of that iframe’s 
size and the surrounding layout. This control allows the 
embedding page to, for instance, cover important context 
and trick the user into clicking on something. Browsers 
support one-off mechanisms for handling such attacks 
(e.g., websites can prevent their pages from being framed 
by another site [30]), but our layout tree invariants ensure 
that even nested iframes from different origins can securely 
control their own display properties. 

Trust Groups 
In our browser implementation, trust groups are defined by 
standard Web origins (i.e., scheme, domain, and port), 
which cannot be faked. Interface elements from different 
trust groups are thus contained within iframes. For 
example, a webpage in one trust group may embed an 
advertisement within an iframe from another trust group. 
As before, an element can have a fixed trust group 
(defined by its URL) or an owner-bound trust group 
(defined by the URL of its embedder). These elements use 
the HTML5 postMessage API [15] to expose model-level 
APIs via cross-origin messages. For example, an 
advertisement in an iframe from the advertiser’s domain 
might expose a method to set advertising keywords. 

Layout Tree Invariants 
For simplicity, our current implementation controls the root 
of all webpages using a browser-within-a-browser (i.e., a 
trusted webpage that acts as a nested browser, with all 
navigation done within the nested browser). This 
simplification allows us to control the root frame of every 
page (thus satisfying our first layout tree invariant) with 
minimal changes to the browser itself (see Figure 7). 
Our add-on then enforces the second layout tree invariant 
by modifying pages as they load. In particular, any iframe 
nested within an iframe of a different origin is removed by 
the add-on and nested instead within a system-trusted 
proxy. To preserve the visual effects of the intended 
nesting, the add-on must move and clip iframes 
appropriately as their original parent frames are scrolled. 
As in the Android implementation, we must retain parent 
and child pointers expected by the original nodes so that 
they can continue to communicate with each other via 
postMessage. We thus replace the moved iframe with a 
dummy iframe. This dummy, defined by the system but in 
its embedder’s trust group (i.e., owner-bound), relays any 
postMessages it receives to the moved iframe. This allows 
the original parent to continue to hold a reference to its 
visual child, making these modifications transparent to the 
webpage. Figure 7 shows the sequence of messages sent in 
the relaying process. Similarly, the browser maintains a 
mapping of moved iframes to their original parents. If an 
iframe that has been moved attempts to send a postMessage 
to its visual parent, the system-trusted actual parent relays 
this message to the original parent. 

DISCUSSION AND RELATED WORK 
Considering security as a primary goal in a user interface 
toolkit presents a unique opportunity to address 
interface-level security vulnerabilities without sacrificing 
developer flexibility or expressivity. This approach is a 
departure from classic security solutions, which operate at a 
system level or require application review, as well as from 
conventional user interface toolkits, which have not 
focused on securing the interaction between multiple 
mutually-distrusting elements. With the mechanisms that 
we propose, a security-aware toolkit can ensure that 
sensitive elements are correctly displayed, that a user’s 

 
Figure 7: After removing the iframe containing Ad.html 
from the Index.html page and replacing it with the 
Dummy, the browser must relay any intended 
postMessages from Index.html to Ad.html. 



 

 

intended interactions are accurately captured, and that 
private data is not leaked through interface elements. The 
remainder of this section examines some related work. 

User Interfaces 
User interface toolkit research generally focuses on 
reducing the effort needed to develop new interfaces. 
Because the assumptions embedded in a framework can 
limit interface designers and hinder the development or 
adoption of new techniques, research often focuses on 
achieving maximal expressivity and flexibility for interface 
developers [6, 7, 8, 17, 24]. For example, prior work has 
proposed tools to aid in the creation of mashup interfaces 
on the Web [16, 19, 36]. However, these toolkits are not 
aimed at addressing security concerns and their implicit 
trust assumptions can pose challenges to security. 
Work by Arthur and Olsen [1] examined protecting user 
data by separating interface elements based on trust. They 
provide a methodology that splits an interface across a 
trusted private device and an untrusted public device 
(e.g., a connected screen or keyboard) by surfacing a user’s 
trust choices to applications. Although focused on security, 
the model is more restricted; we consider a broad set of 
threats and complex trust relationships within an interface. 
Other researchers have focused on designing and 
evaluating interfaces for security-critical interactions, 
including phishing protection [9], user account control [22], 
Web SSL certificate warnings [32], and social network 
privacy policies [20]. Our work focuses on securing 
interface-level threats, and we believe that advances here 
can be leveraged to help enable research in how to best 
design security-related interfaces. 

Security 
This work naturally draws upon existing security concepts, 
such as permissions and capabilities used in operating 
systems [18]. However, the issue of securing interfaces has 
not been explored in the security community from the user 
interface toolkit perspective. Instead, prior security work 
has focused on isolating applications and content from 
different sources using system-level techniques (e.g., 
[4, 28, 34]). These approaches do not consider or are not 
able to address all of the interface-level threats that we 
consider (e.g., the authors of [34] do not address a parent 
element’s ability to manipulate the layout of its children). 
Our work in this paper draws on user-driven access control 
[29], which uses system-controlled interface elements 
called access control gadgets (ACGs) to extract a user’s 
intent to grant system-level permissions to an application 
(e.g., to access the camera). ACGs, which support only 
limited composition and customization, represent the most 
restrictive type of interface elements that we consider in 
this work. By considering security at the level of the user 
interface toolkit rather than the system, our proposed 
architecture subsumes ACGs and supports security 
properties for a broader and more flexible range of 
interface elements and scenarios. 

It is possible to implement trust groups in ways other than 
those used in our prototypes. For example, Quire [5] fully 
separates mutually distrusting code components into 
different Android applications. To approximate the 
embedding of interface elements from one app within 
another (not supported by Android), Quire overlays an 
application with a transparent background (e.g., the main 
app) over a second application (e.g., the ad), requiring the 
top layer to delegate user input events to the bottom layer. 
To prevent clickfraud, Quire authenticates messages 
legitimately generated by user input events. In this paper, 
we explore how a user interface toolkit can leverage trust 
groups of any implementation to support a wide range of 
security properties and scenarios. 
Although a security-aware user interface toolkit can 
mitigate a large number of concerns, there remain threats 
that benefit from alternate mitigation techniques. For 
example, even with a security-aware toolkit, adversaries 
can still create fake interface elements to mimic legitimate 
elements. Fake embedded elements taking user input may 
be used in phishing attacks (e.g., to steal a password). 
Sensitive elements can apply existing anti-phishing 
techniques (e.g., Sitekeys). Although not infallible [31], 
these techniques can make such attacks more difficult. 
Additionally, our toolkit can assure that a click on a 
sensitive element was legitimately intended by the user 
(e.g., an ad click), but it cannot prevent forged requests to 
backend servers (e.g., direct requests to the advertising 
server that mimic the requests made when a user clicks an 
ad). The Web currently protects against this type of attack 
(via techniques to prevent cross-site request forgery), but 
Android does not. Other researchers focus on addressing 
this type of problem with code attestation [27] or by 
bringing the Web model to mobile operating systems [35]. 

CONCLUSION 
We have presented a user interface toolkit architecture that 
maintains developer flexibility while achieving a set of 
security properties: display integrity, input integrity, intent 
integrity, data isolation, and UI-to-API links. The 
mechanisms we propose enable scenarios in which 
interface elements from different trust groups are 
embedded in a single interface. In today’s interfaces, these 
scenarios are either insecure (e.g., allowing an application 
to trick a user into clicking on another trust group’s button) 
or inflexible (e.g., forcing security-related interfaces to be 
displayed as invasive system prompts).  
By isolating code and interface elements into trust groups 
and by enforcing certain layout tree invariants, our toolkit 
architecture secures sensitive elements and APIs while still 
providing developers the necessary flexibility for element 
composition and for communication and feedback across 
trust groups. Important questions for future work include 
the ease with which developers can adopt these 
mechanisms, as well as support for testing and debugging 
secure interfaces. In both cases, we note that a security-
aware toolkit seems to provide advantages over current ad-



 

 

hoc approaches. Our prototype implementations 
demonstrate that this toolkit architecture is feasible and that 
important security properties can be enforced with maximal 
transparency and flexibility for developers. 
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