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ABSTRACT 
Accessibility issues in mobile apps make those apps difficult 
or impossible to access for many people. Examples include 
elements that fail to provide alternative text for a screen reader, 
navigation orders that are difficult, or custom widgets that 
leave key functionality inaccessible. Social annotation 
techniques have demonstrated compelling approaches to such 
accessibility concerns in the web, but have been difficult to 
apply in mobile apps because of the challenges of robustly 
annotating interfaces. This research develops methods for 
robust annotation of mobile app interface elements. Designed 
for use in runtime interface modification, our methods are 
based in screen identifiers, element identifiers, and screen 
equivalence heuristics. We implement initial developer tools 
for annotating mobile app accessibility metadata, evaluate 
our current screen equivalence heuristics in a dataset of 2038 
screens collected from 50 mobile apps, present three case 
studies implementing runtime repair of common accessibility 
issues, and examine repair of real-world accessibility issues 
in 26 apps. These contributions overall demonstrate strong 
opportunities for social annotation in mobile accessibility. 
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INTRODUCTION 
Mobile apps have become ubiquitous, used in accessing a 
wide variety of services online and in the physical world 
(e.g., financial services, transit information). However, many 
apps remain difficult or impossible to access for people with 
disabilities, an estimated 15% of the world population [30]. 
For example, recent research examined the prevalence of 
accessibility issues in a sample of 100 Android apps, finding 

that every app included at least one accessibility issue [33]. 
95% of the examined apps included touchable elements that 
were smaller than recommended by Android’s accessibility 
guidelines [17], making them difficult to access for many 
people (e.g., people with motor impairments). 94% included 
elements that lacked alternative text, making them difficult 
to access using a screen reader (e.g., for people with visual 
impairments). 85% included elements with low text contrast, 
another barrier for people with vision impairments. 

In addition to accessibility issues that can be objectively 
defined and detected by tools like Google Accessibility 
Scanner [14], considering the context of an interaction often 
reveals additional barriers. For example, a person using a 
screen reader may need to swipe 10 to 20 times before the 
focus moves to elements that should be readily available 
(e.g., the “Menu” button in the Dropbox app). As another 
example, a single inaccessible element can often undermine 
the overall functionality of an app (e.g., the 5-star rating 
element of the Yelp app lacks accessibility support, leaving 
this core functionality inaccessible to many people). 

Mobile platforms have begun to support interactive correction 
of accessibility failures. For example, Android’s TalkBack 
screen reader allows end-users to add custom labels to 
elements where an app developer has failed to provide a 
label. However, this functionality is limited to ImageButton 
or ImageView elements and requires an app developer has 
provided a ViewIDResourceName, an optional property that 
is often not specified. In an evaluation reported later in this 
paper, we examined 50 apps and found that TalkBack can 
apply custom labels to less than 13.6% of elements that it 
visits. TalkBack also does not support correcting an element 
that does have a label, even if that label is misleading. 

Prior research in the runtime repair of accessibility failures 
has often focused on the web, in part because a webpage’s 
underlying representation is available and can be modified 
prior to rendering by the browser.  Social annotation is one 
powerful approach to accessibility repair [24,40], in which 
people annotate interface elements with metadata that is then 
used to repair accessibility failures in future interactions 
(e.g., annotating images that lack alternative text with text 
that can then be presented to future people who encounter 
that image using a screen reader). Such approaches require 
a robust method for determining when an annotation is 
applied, typically addressed via the combination of a URL 
(i.e., indicating the context in which an annotation is applied) 
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and an XPath (i.e., within the context of the URL, indicating 
which element is annotated). Despite advances in runtime 
enhancement of mobile apps [31,48], social annotation 
remains difficult to apply in mobile apps because of a lack of 
methods for specifying an annotation context (i.e., the lack of 
a robust notion of a screen identifier, analogous to a URL). 

This paper addresses this underlying requirement for robust 
annotation of mobile app interface elements. We develop a 
template-based approach to a screen identifier, implemented 
for the Android platform. We then use this in demonstrating 
several types of runtime accessibility repair: 1) applying 
custom labels to interface elements, 2) correcting navigation 
order, and 3) authoring accessibility context for inaccessible 
customized elements (e.g., a 5-star rating element). 

The specific contributions of our work therefore include:  
• Development of methods for robust annotation of mobile 

app interface elements. Designed for use in runtime interface 
modification, our methods combine a novel approach to 
screen identifiers and screen equivalence heuristics with 
familiar techniques for Android element identification. 

• Implementation of initial developer tools for annotating 
mobile app accessibility metadata, including tools for 
authoring annotations and applying annotations at runtime. 

• Evaluation of our current screen equivalence heuristics in 
a dataset of 2038 screens collected from 50 mobile apps. 

• Three case studies demonstrating the implementation of 
runtime repair of common accessibility issues, each using 
the robust annotation methods developed in this research. 

• An examination of repairing real-world accessibility issues 
in 26 apps, including popular Android apps, apps with 
accessibility issues reported in online forums, and apps 
identified through an in-person interview with a person 
who regularly uses the Android TalkBack screen reader. 

RELATED WORK 
Our current research is informed by prior research in social 
annotation and web accessibility, in runtime interface 
modification, and in screen and element identifiers. 

Social Annotation and Web Accessibility 
The web’s representation has long encouraged enhancement 
of content through annotation, from annotation capabilities in 
Mosaic [43] to W3C efforts in interoperable annotations [44]. 
Prior research has developed robust web annotation to enable 
content customization and adaptation for end-users [4,5,28]. 
Extensive research in social accessibility has applied social 
annotation to web accessibility (e.g., [3,22,34,35,40,41]). 
Systems have explored various techniques, with a core that: 
1) a person observes an accessibility failure, 2) that person or 
another person annotates the interface with metadata used by 
a tool that can repair the failure, and 3) annotation data is 
shared so that future users of the interface benefit from the 
repair. Examples of research in social annotation for web 
accessibility include providing image alternative text and 
other metadata [35,40,41], repairing navigation order [34], 
sharing scripts for site-specific repairs [3], and designing 
infrastructure for crowdsourcing contributions [22]. 

Runtime Interface Modification 
Techniques for modifying the web benefit from the ability 
to directly modify a page prior to its rendering by a browser 
(e.g., modifying the HTML, CSS, or DOM). In contrast, 
non-web architectures generally lack an ability to access or 
modify internal representation, requiring different approaches 
to runtime modification. Prior research in desktop interfaces 
has replaced of an application’s toolkit [12,13,29] or used 
window manager redirection of input and output [8,39,42]. 
A meaningful modification requires understanding the 
content and state of that interface, generally obtained through 
a combination of accessibility API data (e.g., [6,39]) and 
pixel-based analysis of interface content (e.g., [8,9,10,20,46]). 

Less research has explored runtime interface modification 
in mobile platforms, in part due to their security architectures 
and greater concern for performance (e.g., a challenge for 
pixel-based techniques developed in the desktop context). 
Notable examples of runtime accessibility enhancements have 
included macro support [31] and pointing enhancement [48].  
The SWAT framework requires rooting a device for an 
accessibility service to obtain system-level instrumentation 
of content and events [32], but rooting is a significant 
security risk and also presents a technical expertise barrier. 
Recent research in interaction proxies demonstrates a strategy 
for runtime accessibility repair and enhancement without 
rooting a phone, without requiring an app’s source code, 
preserving all capabilities of a phone’s built-in accessibility 
infrastructure [47]. These techniques modify interaction 
using floating windows inserted between an app’s original 
interface and the manifest interface a person perceives and 
manipulates, deciding how to coordinate and modify 
interaction with the added floating windows according to 
information available via standard platform accessibility 
APIs. The robust annotation techniques we develop in this 
paper are also based entirely on information available via 
standard platform accessibility APIs, offering the potential 
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This interface includes 6 elements with missing 
or misleading labels for use by a screen reader. 

 
 

TalkBack allows end-users to add custom labels 
to only 2 of the elements (shown in green). 

 
 

We develop new annotation methods that allow 
developers to repair all 6 elements. 

Figure 1: Missing and misleading labels are a common and 
important accessibility issue that can be addressed by new 
approaches to robust annotation for accessibility repair. 



for broad deployment. Later sections demonstrate several 
case studies of runtime accessibility repairs implemented 
using a combination of annotations and interaction proxies. 

Screen and Element Identifiers 
As noted in the introduction, social annotation on the web has 
generally been implemented via the combination of a URL 
(i.e., indicating the context in which an annotation is applied) 
and an XPath (i.e., within the context of the URL, indicating 
which element is annotated). This strategy cannot be directly 
applied in mobile apps because the various screens of an 
app lack robust identifiers (i.e., the equivalent of a URL). 
Robust annotation of mobile apps therefore requires both: 
1) methods for identifying a screen within an app, and 
2) methods for identifying specific elements within that screen. 

Prior research exploring screen identifiers has not been 
motivated by runtime interface modification and is 
generally inappropriate for that purpose. For example, Flow 
is an Android developer toolkit that allows naming interface 
states, navigating between them by name, and remembering 
the history of states [37]. However, such a toolkit must be 
integrated by an app’s developer and cannot be used to 
reason about screens as part of an external repair. 

The Rico project developed a large dataset of mobile app 
designs, gathered by capturing data during crawls of mobile 
apps [7]. Rico encounters a screen identification problem in 
determining whether an interaction during a crawl results in 
an app entering a new interface state or a state that has 
previously been captured. They define a context-agnostic 
similarity heuristic that compares two screens based on: 1) the 
number of pixels that differ in the two screen images, and 
2) the number of differences when comparing the values of 
ViewIDResourceName for elements of the two screens. Two 
screens were considered the same if both were below 
manually-tuned thresholds, requiring the same value for 
99.8% of pixels and all but 1 ViewIDResourceName value. 
These thresholds resulted in an estimated 9% error rate 
(6% error incorrectly determining two screens were the same, 
3% error incorrectly determining two screens were different). 
Rico’s use of pixel comparison is appropriate for crawling, 
but problematic for runtime modification (e.g., it requires 
additional permissions, can present performance challenges).  

Other mobile app crawls similarly attempt to minimize 
revisitation of known screens by testing for similarity. For 
example, DECAF and PUMA define a generic feature vector 
encoding the structure of a screen’s interface hierarchy, 
then use a cosine-similarity metric to determine screen 
equivalence according to a threshold [21,26]. An evaluation 
in DECAF with a .92 threshold estimated a 20% error rate 
(including 8% error incorrectly determining two screens were 
the same and 12% error incorrectly determining two screens 
were different). The threshold can be varied to obtain different 
tradeoffs between thoroughness and speed of a crawl, but a 
developer cannot otherwise correct either class of error.  

In contrast to both of the above, the screen identification 
methods we develop in this paper: 1) use more information 

in the structure of the interface hierarchy to reduce overall 
error, and 2) allow the developer of an accessibility repair 
to explicitly correct any errors in screen identification to 
ensure robust annotation for runtime interface modification. 

Automated testing tools address a need to be in a known state 
by executing pre-defined interaction sequences that bring an 
app to known screens (e.g., [1,18,36]). Because the developer 
of a test knows what screen will be active in each step of that 
test, they can reference elements of that screen. For example, 
UiSelector is an element identifier used in Android tools [19], 
specifying elements by properties such as ContentDescription, 
ClassName, State information, Text value, and location in an 
interface hierarchy. Within the context defined by a screen 
identifier, we use a similar approach to element identifiers so 
that we leverage developer familiarity with this approach. 

ANDROID BACKGROUND 
This section reviews several Android capabilities. We first 
discuss why existing capabilities are inappropriate for robust 
annotation, then provide background on accessibility 
services and Android’s existing limited repair capabilities. 

Android’s accessibility services expose a WindowId for each 
View. Intended to support input interactions across multiple 
processes, WindowId is not stable (i.e., it will change each 
time an app is launched). It is therefore inappropriate as an 
identifier for storing annotations for use in future sessions. 

When available, Android’s accessibility services also expose 
a ViewIdResourceName for each View. ViewIdResourceName 
is Android’s primary approach to a robust identifier (e.g., to 
be used in automated testing). Unfortunately, it is optional 
and often not specified by an app developer. When 
specifying an app’s layout in an XML layout file, including a 
ViewIdResourceName allows a developer to obtain a reference 
to that element at runtime (i.e., similar to web programming 
practices of accessing an element according to an id attribute). 
However, app developers commonly create interface elements 
directly in code, obtain direct references to those elements, and 
therefore see no reason to specify a ViewIDResourceName. 
ViewIDResourceName is also not required to be unique, and 
the same value may be used by multiple elements in different 
contexts (e.g., elements in different screens of an app). 
ViewIDResourceName is therefore also not an adequately 
available and robust identifier for annotating Android elements. 

Android allows an accessibility service to capture an image 
of the screen if a person grants screenshot permission to the 
service. A person may refuse this permission. Apps can also 
specify a FLAG_SECURE to disable screen capture, a 
common practice in apps that contain sensitive information 
(e.g., in banking apps). Prior research has examined 
pixel-based analysis and annotation (e.g., [8,9,10,20,46]), but 
the application of those techniques in mobile apps is limited 
by potential lack of access to screenshots and concerns for 
mobile performance challenges in pixel-based analysis. 

Our approach focuses on using information available via the 
standard Android accessibility APIs. Each interface element 



is represented as an AccessibilityNode that exposes 
properties of that element (e.g., ClassName, AvailableActions, 
Text, ContentDescription). Each AccessibilityNode can also 
access its parent and any children, allowing us to obtain and 
consider the tree of all interface elements in a screen. 

As noted in our introduction, Android’s TalkBack screen 
reader allows adding custom labels to elements. When a 
person navigates to an element without alternative text, they 
may perform a gesture to open the “local context menu”, 
find the “add label” option, and enter a label for that element.  
Current support for interactive correction has several 
limitations: 1) It is often difficult for a person with a visual 
impairment to know the correct label for an unlabeled element, 
which can require trial and error or seeking assistance from 
another person. 2) TalkBack support for correction applies 
only to ImageButton or ImageView elements, which must 
have a ViewIDResourceName assigned by the app developer. 
3) TalkBack does not allow replacing an existing label, 
even if it is incorrect or misleading. Improved support could 
enable significant advances relative to such limitations 
(e.g., greater ability to annotate elements, new ability to share 
robust annotations among the many people using an app). 

APPROACH AND SYSTEM OVERVIEW 
Our focus is on developing an approach to robust annotation 
of mobile app interface elements. Figure 2 overviews our 
approach, currently implemented in a set of related tools. 
Later sections discuss details of our approach and our current 
tools in more detail, while also emphasizing that different 
tools can be composed to implement the overall approach. 

Beginning from the left of Figure 2, a developer implementing 
an accessibility repair first captures screens they would like 
to annotate within an app. We have developed a capture 
tool that can be used for this, implemented as an Android 
accessibility service. With the tool running in the 
background, the developer visits each screen that will be 
annotated. A software button added by the tool then allows 
capturing a current screen (i.e., a screen image and a 
snapshot of the current AccessibilityNode hierarchy). 

Collection will often include multiple captures of the same 
screen, as illustrated by color and shape in Figure 2. This can 
occur when a screen is visited multiple times during collection, 
or when a screen is captured with different content (e.g., the 
same Yelp rating screen captured for different restaurants). 

The developer of a repair identifies template screens that 
correspond to unique screens in the app. A template tool 
displays unique template screens in a row, with captured 
variations displayed in the column underneath each template. 
The tool applies our current screen equivalence heuristics, as 
discussed and evaluated in later sections, so that templates 
are automatically identified. A developer therefore only 
needs to inspect and potentially correct identified templates. 

A developer then authors annotations using a combination 
of a screen identifier for the template screen in which an 
annotation applies, an element identifier for the annotated 
element within that screen, and the metadata to be associated 
with that element. We have developed an annotation tool to 
support authoring annotations. It displays the screen image, 
uses AccessibilityNode data to generate an element identifier 
when a developer selects an element in the image, provides 
highlighted feedback on elements that will be selected as a 
developer edits an element identifier, and allows inputting 
JSON-formatted metadata to be included in an annotation. 

A developer can then create an accessibility service that uses 
annotations for the runtime repair of accessibility issues on 
end-user devices. We have developed a runtime library that 
supports comparing the current screen of an app against 
template screens for that app. If the current screen matches a 
template, the library further supports testing element identifiers 
of annotations against the current screen. The accessibility 
service can then use matching annotations in applying its 
runtime repairs. Later sections discuss three example 
services we have implemented using this approach. 

Supporting a Range of Accessibility Repair Scenarios 
Our approach and tools can support a variety of scenarios 
for a developer implementing annotation-based accessibility 
repair. Two example scenarios can include: 1) targeted repair 
in one or two screens of an app, or 2) more general-purpose 
repair of a class of errors across many different apps. 

In the first scenario, a developer might decide to modify the 
navigation order within a specific screen of a specific app 
(e.g., in the “file explorer” screen of the Dropbox app). The 
developer can open the app, visit the screen to be repaired, 
and capture its data. The developer can then inspect that 
data in our annotation tool, obtain a screen identifier for the 
“file explorer” screen, and obtain element identifiers for 
elements to be modified. The developer could then implement 

 
Figure 2: We develop and evaluate new methods for robust annotation of mobile app interface elements appropriate for 
runtime accessibility repair, together with end-to-end tool support for developers implementing accessibility repairs. 



a custom accessibility service that: 1) uses our runtime 
library to detect when the app’s context matches the “file 
explorer” screen identifier, 2) obtains references to interface 
elements in the screen using their element identifiers, and 
3) uses the references to re-order navigation in that screen. 

In the second scenario, the developer may find they want to 
extend their repair to other apps in which people report the 
same type of accessibility issue. Instead of developing many 
such specialized repair services, the developer can generalize 
their repair service. They can remove the use of specific 
screen identifiers and element identifiers, instead defining an 
annotation type and modifying their code to repair navigation 
according to any annotations available for the current screen. 
This might be sufficient for their needs, they might extend our 
annotation tool to make it easier to author such annotations, 
or they might examine new approaches to supporting a 
community of interested people in annotating many apps. 

IMPLEMENTING ROBUST ANNOTATION 
Annotation is implemented using a combination of a screen 
identifier and an element identifier. A screen identifier 
corresponds to a template screen, and a set of screen 
equivalence heuristics are used in both: 1) defining template 
screens (i.e., determining whether a screen is a variation of an 
existing template screen or distinct from existing templates), 
and 2) runtime identification of screens (i.e., determining 
whether the current screen matches a screen identifier). 
This section discusses each of these key components. 

Screen Identifier 
A screen identifier corresponds to a template screen and any 
variations of that screen, where a variation informally has 
the same screen structure with minor differences in content 
(e.g., images, text, number of items in a list). Annotations 
applied to a template will also apply to any variations, 
which both: 1) minimizes effort that might otherwise be 
spent annotating many different versions of a screen, and 
2) allows our approach in screens containing dynamic 
content that could not otherwise be feasibly annotated. 

A set of template screens is initialized with the first captured 
screen (i.e., a single template with no variations). Each 
screen is then compared against the set of current templates 
using screen equivalence heuristics. If a screen is equivalent 
to an existing template, it is added as a variation. Otherwise, 
the screen is used as a new template. Although a capture 
includes both a screen image and accessibility data, the image 
is used only for developer inspection and annotation. Screen 
equivalence heuristics must be based in the accessibility 
data, because the image will not be available at runtime. 
A developer may also use any variation as the representative 
screen for a template, as all of the variations are equivalent. 

At runtime, an accessibility service can capture accessibility 
data for a screen and use our runtime library to compare 
that screen against the set of template screens for that app. 
This uses the same screen equivalence heuristics. If a match 
is found, annotations associated with that template screen 
are considered relevant to the current screen of the app. 

Our template tool generates a unique and random screen 
identifier for each template screen (e.g., “screen_1520907”). 
A developer may also associate a human readable identifier 
with the screen identifier (e.g., “file explorer”), while 
ensuring human readable names are unique within an app. 
Identifiers can then be used with our runtime library to detect 
a screen (e.g., for a repair to the “file explorer” screen). 

Element Identifier 
A developer can then reference elements in a template screen 
using techniques familiar in Android testing frameworks 
(i.e., UiSelector and XPath selectors). Our implementation 
of these selectors also differentiates between stable and 
dynamic properties. Stable properties are unlikely to change 
between screen content updates (i.e., between variations), 
including ClassName, Depth, IsLeaf, and ViewIdResourceName. 
Dynamic properties are more likely to change, including 
ContentDescription, Location, NumberOfChildren, Size, and 
Text. The current set of properties could be extended if 
necessary or if future versions of the Android Accessibility 
APIs expose additional properties of interface elements. 

Our annotation tool also automatically generates a unique 
and random element identifier for each element in a template 
screen (e.g., “element_59401”). Each default element identifier 
corresponds to a selector including the element’s path in the 
hierarchy and its stable properties. A developer can verify 
the default selector by using the annotation tool to inspect 
how it applies in each variation. If necessary, a developer 
can edit the default selector, again inspecting how it applies 
in each variation. They may also associate a human readable 
name with an element identifier (e.g., “menu button”). 
At runtime, an accessibility service can use our runtime 
library to obtain a reference to an interface element using 
either an element identifier or a supported selector. 

Screen Equivalence Heuristics 
Annotation requires screen equivalence heuristics for 
determining a set of template screens for annotation and 
determining whether the active screen of an app matches 
one of those templates. As previously noted, we rely only 
on information available via standard Android accessibility 
APIs, so that: 1) our runtime library does not require rooting 
end-user devices, and 2) our runtime library does not require 
pixel-based analysis of screen images, which may be 
unavailable and may present performance challenges in a 
mobile app. Our heuristics are instead based in two key 
insights regarding identification of template screens. 

First, contexts where Android identifiers fail to correspond to 
a meaningful notion of a screen are not random (i.e., are not 
well described by ignoring any one ViewIdResourceName 
nor by treating them as noise in a similarity metric). Instead, 
they are often systematic, resulting from developer behaviors 
(e.g., failing to provide an identifier, copy-pasting code 
resulting in non-unique identifiers) or standard toolkit 
behaviors (e.g., widgets that dramatically change what is 
presented in a screen with only subtle indications of that 
change in the accessibility API information for the screen). 
We develop a set of heuristics based in such systematic 



behaviors, and we evaluate our heuristics in a later section. 
We note these heuristics can also be updated and extended 
as we gather additional data or as toolkit behaviors evolve 
(e.g., introducing new widgets that require adjustments).  

Second, the two types of error in screen equivalence have 
different implications. We define a FalseSame error as 
incorrectly determining two screens are the same. This can 
result in what should be a distinct template screen instead 
being considered a variation of an existing template 
(i.e., requiring developer correction), or it can also result in a 
runtime screen matching an incorrect template and retrieving 
incorrect annotations. We define a FalseDifferent error as 
incorrectly determining two screens are different. This can 
result in additional annotation overhead through the creation 
of spurious templates that could be combined, or it can result 
in a screen not being annotated at runtime. Our techniques 
allow the developer of an accessibility repair to correct either 
form of error, but we design our default screen equivalence 
heuristics to minimize FalseSame errors. This corresponds to 
preferring a need for greater annotation effort over the 
possibility of annotations being incorrectly applied at runtime. 

Our current screen equivalence is implemented using eight 
heuristics, each based on a specific app developer practice 
or toolkit behavior. Heuristic 1 makes an early determination 
based on explicit app developer indication that screens differ. 
Heuristics 2 to 5 account for common interface structures that 
require special consideration, transforming the accessibility 
API representation to better support comparison. Heuristic 6 
then filters items that should not be considered in comparison. 
Given these special case checks and adjustments, Heuristic 7 
then makes the primary comparison based on values of 
ViewIdResourceName in the two screens. Heuristic 8 then 
further reduces FalseSame errors by comparing values of 
ClassName in the two screens. After discussing each heuristic, 
we discuss how a repair developer can correct any errors. 
1. Compare ActivityName: If two screens both have an 

ActivityName value that was specified by the developer, 
but not the same value, the screens are considered different. 
This heuristic is intended to reduce FalseSame errors. 

2. Check for Navigation Drawer: This common Android 
element presents a menu above an interface by dimming 
and preventing interaction with elements under the 
menu. When this heuristic detects an open navigation 
drawer, it transforms the representation of the interface 
so remaining heuristics apply only to contents of the 
menu (i.e., ignoring the occluded background elements). 
If one screen contains an open navigation drawer, but 
the other does not, the screens are considered different. 
This heuristic is intended to reduce FalseDifferent errors. 

3. Check for a Floating Dialog: This common Android 
element also occludes elements underneath it. This 
heuristic similarly detects a floating dialog, transforms 
the representation so remaining heuristics apply only to 
contents of the floating dialog, and considers two 
screens different if only one contains a floating dialog. 
This heuristic is intended to reduce FalseDifferent errors. 

 

4. Check for Tab Layout: Android’s tab layout preloads the 
content of each tab, presenting the same tree to the 
Android accessibility APIs regardless of which tab is 
selected. When this heuristic detects a tab layout, it uses a 
binary Selected property of the active tab to transform the 
representation so remaining heuristics apply according to 
the content of that active tab. It also considers two 
screens different if only one contains a tab layout. This 
heuristic is intended to reduce FalseSame errors. 

5. Check for Radio Button Group with a Multi-Page View: 
This alternative approach to tab-like functionality similarly 
results in an Android accessibility API tree structure that 
does not adequately correspond to the selected radio button. 
This heuristic uses a binary Checked property of the active 
radio button to transform the representation so remaining 
heuristics apply according to content of the active view. 
This heuristic is intended to reduce FalseSame errors. 

6. Visibility Filter: Common Android container elements 
expose elements in their accessibility API structure that 
are outside the bounds of the screen (e.g., WebView), so 
we transform the representation by filtering to include 
only visible elements (i.e., elements with boundsInScreen 
values that correspond to non-zero area within the screen). 
This heuristic is intended to reduce FalseSame errors. 

7. Compare ViewIdResourceName: This stable property of 
each element will not change when an element’s content 
is modified. If the set of ViewIdResourceName values 
are not the same, the screens are considered different. 
This heuristic is the primary comparison based on any 
transformations applied in the previous heuristics. 

8. Compare ClassName: As with ViewIdResourceName, this 
stable property will not change when an element’s content 
is modified. We consider this additional stable property 
to helps address situations where ViewIdResourceName 
is not informative. If the set of ClassName values are 
not the same, the screens are considered different. 
This heuristic is intended to reduce FalseSame errors. 

Our evaluation shows these heuristics are highly effective, 
and they can be extended as additional data suggests new 
heuristics. However, any approach will sometimes require 
correction by the developer of a repair. For a FalseSame error, 
a developer can write an element selector that differentiates 
the two screens. Any future screens that match the original 
template will then be separated into two templates based on 
whether they match the selector. For a FalseDifferent error, a 
developer combines the two template screens and their 
variations. Any future screens will be considered equivalent 
if they match either of the original templates. Although we 
have not found it necessary, we note that multiple such 
corrections could be composed as needed. 

Annotation Storage 
The tasks of inspecting, editing, and using annotations  
require: 1) collections of template screens, each including a 
screen image, associated accessibility data, and a screen 
identifier used for referencing that template screen, 
2) variations associated with each template screen, 3) element 



identifiers for each element in each template screen, and 
4) annotations defined as a combination of a screen identifier, 
an element identifier, and the annotation metadata to be 
associated with that element of that screen. Our current 
implementation stores this data in Google’s Firebase. 

DATA COLLECTION AND ANNOTATION TOOLS 
Our core methods for screen identifiers, element identifiers, 
and screen equivalence can be applied in a variety of tools. 
We have created an initial set of tools to support development 
of repairs based on these methods. This section introduces 
our current tools and briefly discusses potential alternatives. 

Capture Tool 
Implemented as an Android accessibility service, this tool 
runs in the background to allow a developer to capture screens. 
A developer browses to a screen they want to capture, then 
presses a software button on the navigation bar. The tool 
plays a confirmation sound, captures a screen image with 
associated accessibility data, and uploads them to the 
database. The capture tool therefore requires screenshot 
permission, but our runtime tools do not (i.e., captured images 
are used only used to support annotation and our runtime 
tools do not use pixel-level data). If a developer wants to 
capture an app that has disabled screenshot permission, they 
can use a rooted device or emulator [45]. Although a 
requirement to root a device is inappropriate for end-user 
accessibility tools, it is more appropriate for a developer 
and is the only method to circumvent FLAG_SECURE. 
Typical capture will include a developer navigating through 
an app, using the tool to capture different screens, 
interacting with the app, and capturing variations of screens. 

Template Screen Tool 
This web application supports a developer inspecting and 
potentially correcting identified template screens in each app.  
Images of template screens are shown in the top row, with 
any variations shown in a column underneath each template. 
Template screens and their variations are automatically and 
reliably identified using screen equivalence heuristics, so the 
tool is primarily used to inspect the results, obtain screen 
identifiers, make occasional corrections, and access the 
annotation tool by clicking into a screen. If a correction is 
needed, the tool supports authoring a selector or combining 
templates (i.e., as discussed in Screen Equivalence Heuristics). 

Annotation Tool 
This web application supports a developer in authoring 
annotations on a template screen. It is currently accessed by 
clicking a screen image in the template screen tool. The tool 
shows the screen image with its screen identifier and uses 
captured accessibility API data to highlight elements when 
a developer clicks on them. Developers can also author a 
custom selector and receive feedback through highlighting 
one or more elements. For each highlighted element, its 
identifier and properties are shown in a list. An annotation 
can be authored as JSON-formatted metadata, or a developer 
can extend the annotation tool with custom functionality for 
a particular class of annotation (e.g., as with customized 
annotation interfaces developed in our later case studies). 

Runtime Library 
Our runtime library supports annotation-based accessibility 
services by providing key functions for obtaining accessibility 
data, identifying a screen by comparing it to a library of 
templates, identifying elements in a screen, and retrieving 
annotations. The library also supports listening for ViewClicked 
and WindowStateChanged events, which can lead to a change 
of screen structure requiring identification of the new screen. 
Our library therefore supports overall management of relevant 
annotations, allowing a developer to focus on the functionality 
of their accessibility repair service. 
Alternative Collection and Annotation Tools 
Our current tools support an end-to-end annotation process 
for developers, chosen as a first primary audience as we 
develop tools based on this approach to annotation. We 
envision future research exploring complementary approaches. 

For example, an extension of our tools might support end-user 
capture and annotation directly on their phone (e.g., requiring 
screenshot permission during capture, but allowing end-users 
to directly collect and annotate data for a repair). Future 
research might also examine how to scale annotation, perhaps 
drawing upon crowdsourcing and friendsourcing techniques 
developed in other contexts (e.g., [35,40,41]). Our approach 
to screen equivalence could be included in tools for automated 
exploration of mobile apps (e.g., [2,21,27]), and such tools 
could benefit the capture of data for accessibility repair. 
EVALUATION OF SCREEN EQUIVALENCE HEURISTICS  
To evaluate the effectiveness of our current screen equivalence 
heuristics, we recruited 5 developer participants to capture 
screens and identify templates in a dataset of real-world 
mobile apps. Our sample of mobile apps was 5 top free 
apps in each of 10 categories. 5 participants were recruited 
from our department, as our primary criterion was to recruit 
experienced developers familiar with mobile apps. 

Each session began with simple training, showing participants 
how to capture a screen and how to use the template screen 
tool to examine identification of template screens in an app. 
We then asked each participant to capture screens for all of 
the major features in 10 apps, and if possible to capture one 
or more variations for each screen. After completing capture 
for each app, the participant was asked to use the template 
screen tool to examine the identification of template screens 
in their capture of that app and to correct any errors. 
Because our focus was on data collection, participants used 
a simplified version of the tool that allowed dragging screens 
to re-arrange them, without a need to identify a selector that 
could allow the templates to be used with our runtime tools. 
When a participant completed capture and identification of 
template screens for the 10 assigned apps, we asked them to 
examine template screens in another 10 apps captured by other 
participants. We therefore obtained 2 developer judgments 
regarding the template screens and variations within each 
app, and the lead researcher resolved the limited number of 
disagreements (a total of 12 disagreements in 9 apps). 
Participants were compensated with a $20 gift card. Data 
collection took about 5 to 10 minutes for each app.  



Participants collected a total of 2,038 screens from 50 apps. 
Following the same procedure used in [7], we examine 
equivalence in the 42,504 pairs of screens that result from 
considering all pairs within each app. Table 1 summarizes 
the improvement associated with each heuristic. Because our 
primary heuristic compares values of ViewIdResourceName, 
we report the effectiveness of other heuristics in terms of 
improvement relative to this. Considering only 
ViewIdResourceName in our dataset results in a FalseSame 
error rate of 3.10% and a FalseDifferent error rate of 2.28%. 
Adding each heuristic reduces these, and the comparison of 
ViewIdResourceName following all previous heuristics 
results in a FalseSame error rate of 0.44% and a 
FalseDifferent error rate of 0.83%. Comparison of ClassName 
then further reduces the FalseSame error rate to 0.09% while 
slightly increasing the FalseDifferent error rate to 0.92%. 

Overall this is a 97% reduction in FalseSame error with a 
60% reduction in FalseDifferent error, consistent with our 
goal of prioritizing the minimization of FalseSame errors 
(i.e., as discussed when introducing our screen equivalence 
heuristics). Remaining errors can also generally be addressed 
by the developer of a repair (i.e., specifying a selector or 
merging templates), a capability lacking from prior 
approaches to screen equivalence (e.g., [7,21,26]). Error 
rates are well below the 6% FalseSame and 3% 
FalseDifferent error rates in [7], though care must be taken 
in comparing these rates because those numbers are based 
on a different and much smaller dataset (i.e., 1044 pairs of 
screens from 12 apps used to tune the equivalence 
thresholds used in that work). Robust screen identifiers 
should also allow a developer to author an element 
identifier for any element in a screen. In contrast, we find 
the TalkBack screen reader’s reliance on 
ViewIdResourceName will allow it to apply a custom label 
to only 13.6% of TalkBack-visited elements in this data. 

Examining this data, we observe a practice of obfuscating 
ViewIdResourceName. For example, the Facebook Messenger   
app sets ViewIdResourceName to “name_removed” for all of 
its elements. Considering only ViewIdResourceName results 
in 84 FalseSame errors in this app, while our heuristics use 
ActivityName, interface structure, and ClassName to reduce 
this to only 2 FalseSame errors (which could then be corrected 
by developer specification of an appropriate selector). We 
also note approaches based entirely on ViewIdResourceName, 
including the TalkBack screen reader’s support for adding 
custom labels, will be completely ineffective in such an app 
(i.e., because all elements have the same ViewIdResourceName). 

Heuristic 8 reduces FalseSame error by checking ClassName, 
but slightly increases FalseDifferent error. Examining this, 
we find that advertising banners are a common cause of 
increased FalseDifferent error. For example, the Abs Workout 
app includes advertising elements that have different 
ClassNames before and after an advertisement is loaded. 
This suggests a future heuristic might filter advertising 
elements, perhaps by blacklisting their ClassNames. 

We also observe a small number of cases that likely cannot 
be resolved using our current techniques due to an app’s 
complete failure to implement a meaningful representation 
via the accessibility APIs. For example, the TopBuzz app 
includes a custom-implemented tab layout that does not 
expose any indication of what tab is active (e.g., nothing like 
the Selected or Checked properties in our current heuristics). 
It also does not properly expose elements of all tabs to the 
accessibility APIs, but instead exposes contents of the first 
tab regardless of which tab is currently active. Resolving 
such a complete failure may require pixel-based techniques 
(e.g., as in [8,9,10,11]). Although this will require 
screenshot permission at runtime, performance implications 
might be addressed by limiting pixel-based analysis to only 
such special-case scenarios where accessibility data fails. 

CASE STUDIES OF RUNTIME ACCESSIBILITY REPAIR 
This section demonstrates repair of three common types of 
accessibility issues, all implemented using our approach to 
robust annotation. These case studies are implemented 
using interaction proxy techniques, and correspond to prior 
proof-of-concept demonstrations in that research [47]. 
However, it was previously infeasible to scale demonstrations 
beyond a handful of elements in a handful of apps, due to a 
lack of methods for determining where and how to apply a 
runtime repair. Integrating annotation-based techniques into 
these demonstrations is an important step toward runtime 
accessibility repair in mobile apps, which the next section 
further examines in a set of 26 real-world apps. 

Missing or Misleading Labels 
As illustrated in Figure 1, many apps contain both unlabeled 
elements (e.g., elements lacking a ContentDescription that 
will therefore be read as “unlabeled”) and elements with 
misleading labels (e.g., Figure 1’s two buttons labeled “15”).  

We implemented an accessibility service that uses annotations 
to repair elements with missing or misleading values of 
ContentDescription. A developer uses the annotation tool to 
identify an element in need of label repair (e.g., by clicking it 
in the image, by writing a custom selector), then uses a text 
field to enter an appropriate ContentDescription, which the 
tool stores as an annotation. At runtime, the accessibility 

  Error Rate (%) 
 Heuristic FalseSame FalseDiff 

- Only ViewIdResourceName 3.10 2.28 
1 ActivityName 2.51 2.28 
2 Navigation Drawer 2.51 1.06 
3 Floating Dialog 2.51 0.83 
4 Tab Layout 1.55 0.83 
5 Radio Button Group 1.48 0.83 
6 Visibility Filter 0.44 0.83 
7 ViewIdResourceName as above as above 
8 ClassName 0.09 0.92 
Table 1. Improvements in error rates resulting from the 
addition of each of our current screen equivalence heuristics. 

 



services detect whether the current screen includes any 
annotations, then uses interaction proxy techniques to repair 
how annotated elements are read by the screen reader. 

Navigation Order Issues 
The navigation order of interface elements is important to 
many people (e.g., a person using swipe gestures to navigate 
interface elements with a screen reader, a person using a 
switch interface), but many apps have navigation orders 
that can make them difficult to use. For example, the 
navigation order for the Dropbox app begins with the “add” 
button and then requires navigating through all files in the 
current folder (i.e., a list of arbitrary length) before 
accessing the “menu”, “select”, or “more” buttons. 

We implemented an accessibility service that uses annotations 
to repair navigation order within a screen. A customized 
annotation interface shows the current navigation order and 
allows developers to modify the order by moving elements in 
a list. The resulting navigation order is stored as an annotation 
associated with the screen, which our accessibility service 
detects at runtime and uses to correct the navigation order. 

Inaccessible Customized Widgets 
Whenever a developer creates a custom interface element, 
they also need to write additional code to expose appropriate 
accessibility hierarchy and context [15]. Unfortunately, many 
developers fail to do this, so these custom elements can be 
difficult or impossible to use with an accessibility service. 
For example, custom rating widgets found in Yelp and many 
other apps are often inaccessible (e.g., the Yelp rating widget 
is exposed as a TextView and does not allow a person using 
a screen reader or switch interface to enter a rating). 

We implemented an accessibility service that uses annotations 
to repair some forms of inaccessible customized widgets. 
Figure 2 illustrates our enhancement of the annotation tool 
that supports rubberband selection to define clickable areas 
within an element, storing a list of these areas with a 
ContentDescription for each as an annotation on the element. 
At runtime, the accessibility service uses these annotations 
to create the missing accessibility API representations. This 
approach can only repair relatively simple custom elements, 
but also suggests an approach to more sophisticated repairs. 

EVALUATION OF RUNTIME REPAIR  
Our case studies build upon prior demonstrations of 
accessibility repairs that have received positive feedback, 
including feedback in two rounds of studies with 14 people 
with visual impairments who use screen readers [47]. The 
end-user experience with repair is the same as in this prior 
research, but prior demonstrations were limited to a handful 
of apps chosen by the research team and custom code for 
each repair. Our current evaluation therefore focused on 
examining the application of our selected categories of 
repair to accessibility issues in real-world apps. We first 
worked with a participant who uses a screen reader, repairing 
accessibility issues they identified as problematic. We then 
collected and repaired issues in a larger set of apps.  

Participant Feedback on Accessibility Repairs 
To gather initial feedback on accessibility repairs implemented 
in our case studies, we interviewed a person who is blind and 
has used an Android screen reader for 6 years. Via email prior 
to the interview, we described the three types of accessibility 
issues addressed in our case studies and asked if he found 
these issues in apps he frequently used. He replied to report 
issues in 6 apps. We then spent an hour capturing screens 
and authoring annotations to repair the accessibility issues 
he reported, followed by an additional hour examining the 
apps to find and repair issues he had not mentioned. We 
note the runtime repair of accessibility issues in 6 different 
apps would be infeasible in prior approaches requiring 
custom code to repair to specific elements in specific apps 
(e.g., prior repair demonstration in interaction proxies [47]). 

During the interview, we first asked the participant to show 
how he normally used each app and how it was inaccessible. 
We then enabled our accessibility repair service and asked 
him to revisit the interactions he had showed us. After he 
experienced all repairs to the accessibility issues he reported, 
we disabled our repair service and guided him to screens 
with additional accessibility issues he had not mentioned. 
We then re-enabled the repair service, so he could experience 
the difference. After each app, we asked him: 1) to what 
extent the accessibility issues are a barrier; 2) if a repair 
service would change how he uses the app; 3) whether the 
repair service addressed all accessibility issues he mentioned. 
At the end of the interview, we asked for his overall opinion 
and thoughts regarding our approach and its potential. 

Overall the participant expressed frustration with accessibility 
issues: “These (accessibility) barriers make me not want to 
use them (apps). I'm a customer, just happened to be blind, 
but I’d like to use these services.” He confirmed our repairs 
addressed the issues he reported, as well as additional issues 
in the same apps. He described how repairs would change 
how he uses apps, and might help more people: “Having the 
annotation available and making the app accessible make 
me more likely to use the app. I'd like to be able to use more 
stuff and do more. Enhancing (the apps) to be more usable 
and accessible…that makes it better for everybody.” 

One app he identified was BECU (i.e., a local credit union). 
The app is implemented with cocos2dx, a game engine that 
was probably chosen for its ability provide high-quality 
animations. It unfortunately exposes very limited information 
to the Android accessibility APIs. On the login screen, 
TalkBack cannot navigate focus to the input fields for the 
account name or password. This app did include support for 
Android’s voice assistant, which speaks a list of available 
options (e.g., “enter the password”), then requires double 
tapping and speaking an option. The participant objected 
that this solution did not meet accessibility expectations: 
“that’s not what I want, and it is not the way it should be 
working…I should just be able to double tap on the 
username and type it”. He also noted that speaking 
introduces privacy concerns: “I often wear headphones and 
(keep) the screen off so that nobody could hear what's 



going on”. We repaired the inaccessible login screen by 
defining a clickable area and defining a description for each 
input field. We did not continue repair beyond the login 
screen, both because we did not have credentials to use 
during capture and because we did not want to ask the 
participant to expose his personal information in testing.  

The participant also identified the At Bat app, which features 
listening to live streams of baseball games. However, after 
paying for a subscription, the participant found he could not 
access the streams. The “play” button is unlabeled, and a 
feed source must be selected to enable the unlabeled “play” 
button. Without instruction, this interaction is extremely 
difficult for a person using a screen reader. The participant 
was frustrated by the player: “it’s a big barrier that I am 
not able to really use that app, it makes me frustrated and I 
don't understand why they are unlabeled…I don't want to 
open some random buttons”. We annotated the unlabeled 
buttons with appropriate labels, repaired the navigation order 
to more easily move to the audio player, and added an 
instruction to select a feed. The participant described how 
these repairs would make the app useful: “I would actually 
use it and I paid for it…Right now, I'm not using it at all.” 

Repairs in Additional Mobile Apps 
As a complement to our in-depth exploration with the above 
participant, we made repairs in 20 additional apps. 10 were 
identified as having accessibility issues by participants in 
accessibility-related forums [16,23,38], and 10 were selected 
from the top downloaded apps in the Google Play Store. 

Details regarding the accessibility issues we repaired in a 
total of 26 apps are available at https://github.com/appaccess. 
Across 24 apps, we found and repaired 115 labels that were 
missing and 46 labels that were misleading. Across 18 apps, 
we found and repaired 29 navigation order issues. Across 
11 apps, we found and repaired 12 inaccessible custom 
widgets. We include examples of these repairs in the 
supplementary video. 

Because runtime repair of mobile accessibility issues is a 
relatively new capability (e.g., [32,47]), and because prior 
methods have required custom code specific to each repair, 
we believe this is the largest existing set of runtime repairs 
of mobile app accessibility issues, thereby providing support 
for the potential of annotation-based accessibility repair. 

CURRENT LIMITATIONS 
Our evaluation found that a relatively small number of apps 
expose an accessibility API representation that 
fundamentally lacks vital information (e.g., screens in 
TopBuzz on page 8, the BECU app on page 9). Our current 
screen equivalence heuristics cannot be effective in such 
circumstances. Careful authoring of selectors based on the 
available information might allow a motivated developer to 
differentiate screens and author repairs, but other 
approaches may also be beneficial. For example, we have 
overall avoided pixel-based analysis, but might make 
limited use of such techniques in situations like these which 
cannot otherwise be addressed. 

Currently, we examine capture and annotation of an app 
within a single version of that app running on a single phone 
(i.e., at a single screen resolution and in portrait orientation). 
We are not aware of any prior research in screen equivalence 
that has addressed this limitation, but future research toward 
large-scale deployment of annotation-based repair will need 
to consider different versions and renderings of the same app. 
Our approaches should be promising, as they do not rely upon 
element location or size and large-scale changes can likely be 
modeled as additional template screens. Scrolling, animation, 
and dynamic introduction of new elements are also classic 
difficulties in runtime interpretation and modification. Our 
runtime tools currently address this by identifying a screen 
when it first appears, then monitoring events that might 
indicate a change in the active screen. This has been 
effective, but additional approaches may be necessary. 

Our current implementation is for Android. Although it is not 
the most popular mobile platform among people who use 
screen readers, its open platform both enables our annotation 
techniques and allows advances to be directly deployed in 
accessibility services. Our overall strategy (i.e., identifying 
components and patterns that lead to screen equivalence errors) 
is likely to generalize to additional mobile platforms. 

CONCLUSION 
This paper has introduced an approach to robust annotation 
of mobile apps, using techniques appropriate for runtime 
accessibility repair. We have presented our underlying 
methods in terms of screen identifiers, element identifiers, 
and screen equivalence heuristics. We have developed an 
initial set of tools based on these methods, focused on 
developer implementation of accessibility repair services. 
We then evaluated our screen equivalence heuristics, 
presented our case studies applying annotation in runtime 
accessibility repair, and examined these case study 
implementations in repairing real-world accessibility issues. 
Supporting materials (e.g., code and screen data) are 
available at: https://github.com/appaccess. 

We have demonstrated an initial set of annotation tools, but 
there are many more possibilities. For example, our approach 
might be integrated directly into Android’s core accessibility 
services (i.e., the TalkBack screen reader and Switch Access). 
Annotation could address limitations of these tools in relying 
upon ViewIdResourceName. Future research could also 
explore tools that do not require developer-level expertise, 
including crowdsourcing or friendsourcing approaches. 
Robust approaches to mobile app screen equivalence and 
annotation can also have applications beyond accessibility, 
including interface testing, large-scale collection and analysis 
of mobile apps [7,21,33], and task automation [25]. Overall, 
we believe many new tools can be developed using the 
underlying methods developed in this initial research. 
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