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ABSTRACT
We present a new technique for efficiently computing
Degree-of-Interest distributions to inform the visualization
of graph-structured data. The technique is independent of
the interest distribution used, and enables fluid interaction
with very large data sets (over 100,000 nodes).
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INTRODUCTION
Information visualization seeks to leverage human visual
processing to make sense of abstract information. One
particularly rich class of information structures ripe for
visualization are those representable as graphs (i.e. nodes
and edges), including organization charts, website linkage,
and computer networks. One effective technique for the
display of such data is the fisheye view [3], a focus+context
approach that uses lightweight modeling of user interest to
inform the display of information. User interest is modeled
using a Degree-of-Interest (DOI) function, which assigns a
single number representing the estimated relative interest of
the user to each node in the structure. These numbers are
used to appropriately layout and render the structure, for
example by controlling which nodes are visible and which
are elided (hidden). Figure 1 presents a segment of a
fisheye visualization of a large directory of websites.

Both Furnas [3] and Card [2] describe the use of a DOI
function. By convention, DOI values of 0 indicate maximal
interest, with decreasing negative numbers representing
correspondingly lower interest levels. The actual DOI
distribution can be computed in any number of ways,
though for standard browsing tasks on tree structures, the
fisheye distribution [3] has proven quite effective. In tree
structures, this value is a combination of the distances of a
node from the tree root and any (often user selected) focal
nodes.

To support natural and fluid interaction with human users,
DOI-based visualizations must ensure that the calculation
of each node’s DOI value is done efficiently. The goal is to
sustain continuous interaction without noticeable delays,
leaving a window of at most 100ms [1] for the system to
recompute the DOI distribution and node layout.

Unfortunately, common implementations of this technique
do not scale computationally. A straightforward approach
to computing DOI is to start at the focal nodes and
propagate interest out through the structure. Though
simple, this technique runs in time proportional to the size
of the structure. For large structures (100,000+ nodes) this
introduces unacceptable delays in the user interface,
limiting the scale and responsiveness of the visualization.

One can reduce calculation by exploiting the structure of
the DOI function used. For example, during a change of
focus in a fisheye distribution, the DOI estimates may not
change for a large segment of the structure. As noted by
Furnas [4], the nodes in need of updating in a tree structure
lie within the subtree rooted at the nearest common
ancestor of the previous and current foci. Unfortunately, the
subtrees in need of updating may still be arbitrarily large,
and in the worst case the whole tree may need to be
evaluated. Furthermore, this scheme exploits knowledge of
the DOI function being used, and so does not generalize to
other possible interest distributions or more complicated
topologies.

We describe a new general interest estimation approach,
named disinterest thresholding, that instead scales with the
number of visualized items and requires no information
about the interest distribution used.

METHOD
Our approach is based on the realization that, from the
perspective of the visualization, all elided nodes are equally
uninteresting. If all elided nodes have the same computed
DOI and this DOI is below the visualization threshold, the
visualization will remain unchanged. This suggests the
technique of disinterest thresholding: compute the DOI
only for those items that will be visible. The DOI
distribution is altered such that it saturates to a specified
minimum DOI value below the visible threshold. This
number is used as the default for all other, non-visible
nodes. Figure 2 illustrates the difference between a normal
fisheye DOI distribution on a tree compared to one
generated using disinterest thresholding.
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Figure 1 Segment of a multi-focal fisheye visualization of
the Open Directory Project (dmoz.org)
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Figure 2 Fisheyes with and without disinterest thresholding

We have implemented disinterest thresholding using a
backing array, reminiscent of a virtual memory page table,
called the node attribute registry. This table serves as an
attribute cache for the set of nodes considered sufficiently
“interesting” for display. Each row of the table contains the
non-structural attributes necessary for the display of a
visible node, including the DOI values, (x, y) coordinates,
node size, and node color. When an attribute is needed, the
registry is consulted. If the node is in the table, the desired
attribute is simply returned. If the node is not in the
registry, a suitable default is supplied. In such cases, the
DOI value returned is the saturated disinterest threshold,
and the coordinates returned are those of the node’s first
visible ancestor, allowing newly visible nodes to naturally
flow out from their parents in animated transitions.
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Table 1 Example Node Attribute Registry segment

Nodes are added to the registry, if not already present,
when their DOI is set. Upon insertion, a node is assigned its
index into the registry. Anytime a node’s DOI is assigned, a
dirty bit for the corresponding table row is also set. Upon
completion of DOI computation, all dirty entries have their
dirty bit cleared, and all non-dirty registry entries are
marked empty, clearing unvisited entries. This process
preserves the state of nodes that remain visible across
transitions while freeing up space as nodes become elided.

EVALUATION
To evaluate the scalability of our technique, we ran a series
of automated benchmarks using algorithmically-generated
DOITrees [2]. We generated uniform trees of branching
factor 8, varying the depth from 1 to 6. At each depth level
we performed a series of simulated walks through the tree,
each walk moving a single focus from the root down to a
leaf node and back. A disinterest threshold of DOI = -2 was
used. These experiments were performed on a 1GHz PIII
machine with 256MB RAM and 16MB S3 video card. The
generated trees were stored solely in physical memory.

Figure 3 graphs the time required for DOI calculation (in
milliseconds) against the number of nodes, comparing the
naïve, least common ancestor [4], and disinterest
thresholding techniques.

The plot shows that calculation time scales logarithmically
for disinterest thresholding and linearly for the other
techniques. Furthermore, disinterest thresholding completes
DOI calculation under 20ms even at ~300,000 nodes. The
other techniques cross the 100ms threshold at under 10,000
nodes. The key statistic governing the performance of
disinterest thresholding is the number of visible nodes,
which here is logarithmically related to the total node
count.

CONCLUSION
In our experience, the disinterest thresholding technique
has enabled fluid, lag-less interaction with structures on the
order of half a million nodes. A few observations should be
noted, however. First, as the technique scales with the
number of visualized nodes, it is not appropriate for
visualizations in which large numbers of nodes (i.e. over
10,000) are visible at once. Such cases can easily
overwhelm the user’s perceptual abilities, so the use of
other visualization techniques may be advised. Second,
responsive performance is also dependent on an efficient
layout algorithm. We have used a tree layout algorithm that
is linear in the number of visible nodes [2], but other useful
layouts may carry higher computational costs. Finally,
disinterest thresholding only approximates an interest
distribution, and so should be used carefully if DOI values
are to be used for purposes other than visualization.

The abundance of very large data sets requires efficient and
scalable techniques for data exploration. Here we have
described a technique for scaling common visualization
approaches to large amounts of data. Future work will
attempt to do even better, with the goal of supporting fluid
interaction with millions and even billions of nodes.
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Figure 3 DOI Calculation Times


