
prefuse: a toolkit for interactive information visualization
Jeffrey Heer

Group for User Interface Research
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720-1776, USA

jheer@cs.berkeley.edu

Stuart K. Card
User Interface Research Group

Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, CA 94301, USA
card@parc.com

James A. Landay
DUB Group

Computer Science & Engineering
University of Washington

Seattle, WA 98195-2350, USA
landay@cs.washington.edu

ABSTRACT
Conventional software toolkits for building graphical user
interfaces are typically not well-suited for the demands of
information visualization, in which thousands of interactive
objects may be visible at any time and data items may
regularly come in and out of existence. In this paper we
present a set of higher-level abstractions for authoring
scalable, highly-interactive visualizations of large data sets.
These abstractions are realized in prefuse, an extensible
user interface toolkit for visualizing both structured and
unstructured data. The toolkit supports node-link diagrams,
containment diagrams, and visualizations of unstructured
(edge-free) data such as scatter plots and timelines. prefuse
applies scalable abstractions for mapping abstract data into
visual forms and manipulating visual data in aggregate,
supporting design in a modular and principled fashion. To
evaluate the architecture, we built a series of applications
demonstrating the toolkit’s power and flexibility. We also
conducted a qualitative user study with eight programmers
and found that, with the toolkit, non-experts could quickly
build useful interactive visualizations.

Keywords
Information visualization, user interfaces, toolkits, graphs,
trees, interaction techniques, navigation, 2D graphics, Java

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and Techniques.
H.5.2. [Information Interfaces]: User Interfaces. I.3.6
[Methodology and Techniques]: Interaction Techniques.

INTRODUCTION
Information visualization seeks to augment human cognition
by leveraging human visual capabilities to make sense of
large collections of abstract information [10]. Since the
introduction of data graphics in the late 1700’s [45], visual
representations of abstract information have been used to

demystify data and reveal otherwise hidden patterns. The
advent of graphical interfaces has further enabled direct
interaction with visualized information, giving rise to over a
decade of information visualization research and providing
means by which humans with constant perceptual abilities
can grapple with increasing hordes of data.

Still, as inexpensive processing and graphics capabilities
continue to improve, there remains a dearth of information
visualization applications on current systems. While some of
the reasons are economic [18], there are technical roadblocks
as well. One is that information visualization applications are
difficult to build, requiring both mathematical and
programming skills to implement complex layout algorithms
and dynamic graphics, resulting in applications of increased
complexity with more stringent performance demands.
Another reason is that infovis applications do not lend
themselves to “one size fits all” solutions. While successful
visualizations often reuse established techniques, many do so
in a way uniquely tailored to the semantics of the application
domain (e.g., [29]), requiring additional programming.
Finally, while many visualization and interaction techniques
have been developed, we lack a unified software framework
for applying them in novel ways. This suggests the need for a
toolkit approach, supporting a diversity of customized
applications by providing high-level support for common
visualization solutions in a reusable fashion.

While available GUI toolkits have significantly accelerated
the development of user interfaces [35], infovis brings two
unique scalability requirements for which current UI toolkits
are not well-suited. The first is in terms of performance.
Handling thousands of dynamic data items while maintaining
real-time animated interaction is a technical challenge not
well addressed by standard toolkits in which individual
widgets incur a high overhead. Simply waiting for faster
processors is not sufficient, as increases in computing power
and networking have brought similar increases in the size of
relevant data sets. Furthermore, dealing with thousands of
on-screen data elements and perhaps millions of off-screen
elements raises issues of programming scalability, affecting
the program complexity and time costs programmers of such
applications must endure. Suitable abstractions are needed
for presenting and manipulating large collections of
visualized data.

To address these concerns and better support the design and
implementation of novel visualizations, we have built
prefuse1, an extensible user interface toolkit for crafting
interactive visualizations. The basic formalism of a graph — a
set of entities and relations between them — is used as the
toolkit’s fundamental data structure, enabling a broad class of
interactive visualizations. This comprises node-link diagrams,
containment diagrams, and visualizations of unstructured
(edge-free) data such as scatter plots and timelines. prefuse
introduces abstractions for filtering source data into
visualized content and using composable actions to perform
batch processing of this content, allowing developers to
manipulate content in aggregate. prefuse also includes a rich
library of layout algorithms, navigation and interaction
techniques, integrated search, and more.

The primary goal of prefuse is to facilitate visualization
design by reducing implementation costs, allowing existing
techniques to be combined in new ways, and promoting
application modularity and extensibility. Furthermore,
prefuse potentially lowers the threshold [35] for application
design by abstracting much of the mathematics and systems
engineering common to interactive visualizations.

To provide a modular toolkit in a principled manner, prefuse
implements existing theoretical frameworks for information
visualization [9,10,13]. These models decompose design into
a process of representing abstract data, mapping data into an
intermediate, visualizable form, and then using these visual
analogues to provide interactive displays (Figure 1). Prior
work has validated the model’s expressiveness, providing a
comprehensive taxonomy of visualization techniques [13].
prefuse implements this model by providing suitable abstract
data structures, transforming source data into visualizable
content through filtering, manipulating visual data using lists
of composable actions, and mapping visual data into
interactive views through a configurable rendering system.
prefuse also demonstrates that these generalized abstractions
can be provided without unduly sacrificing performance.

Informed by a review of existing applications, our own years
of experience designing novel visualizations, and earlier
toolkit evaluations, the prefuse toolkit offers:
• Data structures and I/O libraries (including database

connectivity) for unstructured, graph, and tree data
• Multiple visualizations of a single data source
• Multiple views of a single visualization
• Scalability to thousands of on-screen items, and to

backing data sources with millions of elements
• Batch processing of data using composable modules
• A library of provided layout and distortion techniques
• Animation and time-based processing
• Graphics transforms, including panning and zooming

1 In line with the musical naming conventions of Java interface
toolkits, the prefuse (pronounced "pref-use") name derives from
prefuse73, an electronic musician whose work fueled toolkit
development. prefuse is intentionally spelled in the lower-case.

• A full force simulator for physics-based interfaces
• Interactor components for common interactions
• Integrated color maps and search functionality
• Event logging to support visualization evaluation

prefuse is written in the Java programming language using
the Java2D graphics library. We decided to support only 2D
visualizations, as the benefits and tradeoffs incurred by 3D
visualization are still an unresolved topic of debate [14,15].
Furthermore, 3D programming is often more complicated,
raising the threshold for end-programmer extensibility.

In the next section we describe the design of the prefuse
toolkit. We then discuss the toolkit’s evaluation, presenting
applications demonstrating the toolkit’s flexibility and power,
and a qualitative user study demonstrating the usability of the
prefuse API. Finally, we survey related work and conclude.

DESIGN OF THE PREFUSE TOOLKIT
We now describe the toolkit design (illustrated in Figure 1),
presenting the architecture, basic abstractions, and provided
libraries for processing and visualizing information.

Abstract Data
The prefuse visualization process starts with abstract data to
visualize, represented in some canonical form. prefuse
provides interfaces and default implementations of data
structures for unstructured, graph, and tree data. The basic
data element type, an Entity, supports any number of named
attributes (name-value pairs) and provides the base class
from which structural types such as Node, TreeNode, and
Edge descend. prefuse provides extensible interfaces for
input and output of this data, and includes (currently read-
only) support for incremental loading and caching from a
database or other external store, supporting bounded
visualizations of data collections too large to fit in memory.

Filtering
Filtering is the process of mapping abstract data to a
representation suitable for visualization. First a set of abstract
data elements are selected for visualization, such as a focal
region of a graph [16] or a bounded range of values to show
in a scatter plot. Next, corresponding visual analogues (called
VisualItems) are generated, which, in addition to the attributes
of the source data, record visual properties such as location,
color, and size. Individual filters are provided in prefuse as
Action modules, discussed later in this section.

The filtering abstraction fits comfortably in current design
frameworks. In the data state model of [13], filtering
constitutes the Visualization Transformation: reducing
abstract data to visualizable content. Filtering can also be
understood as implementing a tiered version of the model-
view-controller pattern [27]. Abstract data provides a base
model for any number of visualizations, while filtered data
constitutes a visualization-specific model with its own set of
view-controllers. This enables multiple visualizations of a
data set by using separate filters, and different views of a
specific visualization by reusing the same filtered items.

Managing Visual Items: The ItemRegistry
prefuse provides three types of VisualItem by default:
NodeItems to visualize individual entities, EdgeItems to
visualize relations between entities, and AggregateItems to
visualize aggregated groups of entities. These items are
arranged in a graph structure separate from the source data,
maintaining a local version of the data topology and thereby
enabling flexible representations of visualized content. If
needed, additional VisualItem types can also be introduced.

VisualItems are created and stored in a centralized data
structure called the ItemRegistry, which houses all the state
for a specific visualization. Filter Actions request visual
analogues from the registry, which returns the VisualItems,
creating them as needed, and records the mapping between
the abstract data and visualized content. The ItemRegistry
also contains a FocusManager, overseeing FocusSets of
items (e.g., selected items and search results).

To support scalability, the ItemRegistry manages VisualItems
using a caching approach, tracking item usage and
performing garbage collection when previously visible items
are no longer being filtered. This supports the constrained
browsing of large data structures — including many
focus+context schemes — by keeping only a working set of
currently visualized items in the registry. To ensure
performance, the ItemRegistry also recycles item instances
when they are removed from the registry, avoiding object
initialization costs that can cripple performance.

Actions
The basic components of application design in prefuse are
Actions: composable processing modules that update the
VisualItems in an ItemRegistry. Actions are the mechanism for
selecting visualized data and setting visual properties,
performing tasks such as filtering, layout, color assignment,
and interpolation. To facilitate extensibility, Actions follow a
simple API: a single run method that takes an ItemRegistry
and an optional fraction indicating animation progress as
input. In addition, base classes for specific Action types such
as filters and layout algorithms are provided. While Actions

can perform arbitrary processing tasks, most fall into one of
three types: filter, assignment, and animator actions.

Filter actions perform the filtering process discussed earlier,
controlling what entities and relations are represented by
VisualItems in the ItemRegistry. prefuse comes with filters for
visualizing structures in their entirety, and for visualizing
data subsets determined using degree-of-interest estimates
[16,19]. By default, filters also initiate garbage collection of
stale items in the registry, hiding these details from toolkit
users. Advanced users can optionally disable default garbage
collection and apply dedicated GarbageCollector actions.

Assignment actions set visual attributes, such as location,
color, font, and size, for VisualItems. prefuse includes
extensible color, font, and size assignment functions and a
host of layout techniques for positioning items.

Finally, animator actions interpolate visual attributes between
starting and ending values to achieve animation, using the
animation fraction provided by the Action interface. prefuse
includes animators for locations, colors, fonts, and sizes.

ActionLists and Activities
To perform data processing, Actions are composed into
runnable ActionLists that sequentially execute these Actions.
These lists form processing pipelines that are invoked in
response to user or system events. ActionLists are Actions
themselves, allowing lists to be used as sub-routines of other
lists. ActionLists can be configured to run once, or to run
periodically for a specified duration.

Consider the following example, in which an ActionList
containing a force-directed layout and color function is
applied to create an animated visualization that updates every
20ms. The ActionList parameters are the ItemRegistry to
update, the duration over which to run (-1 being an infinite
duration), and the rate at which to re-run the list.
ActionList forces = new ActionList(registry,-1,20);
forces.add(new ForceDirectedLayout());
forces.add(new ColorFunction());
forces.add(new RepaintAction());
forces.runNow(); // schedule the list to start now

Figure 1. The prefuse visualization framework. Lists of composable actions filter abstract data into visualizable content and
assign visual properties (position, color, size, font, etc). Renderer modules, provided on a per-item basis by a RendererFactory,
draw the VisualItems to construct interactive Displays. User interaction can then trigger changes at any point in the framework.

The execution of ActionLists is managed by a general activity
scheduler, implemented using the approach of [22]. The
scheduler accepts Activity objects (a superclass of ActionList),
parameterized by start time, duration, and step rate, and runs
them accordingly. The scheduler runs in a dedicated thread
and oversees all active prefuse visualizations, ensuring
atomicity and helping avoid concurrency issues. A listener
interface enables other objects to monitor activity progress,
and pacing functions [22] can be applied to parameterize
animation rates (e.g., to provide slow-in slow-out animation).

Rendering and Display
VisualItems are drawn to the screen by Renderers,
components that use the visual attributes of an item (e.g.,
location, color) to determine its actual on-screen appearance.
Renderers have a simple API consisting of three methods:
one to draw an item, one to return a bounding box for an
item, and one to indicate if a given point is contained within
an item. prefuse includes Renderers for drawing basic
shapes, straight and curved edges, text, and images
(including image loading, scaling, and caching support).
Custom rendering can be achieved by extending existing
Renderers, or by implementing the Renderer interface.

Mappings between items and appearances are managed by a
RendererFactory: given a VisualItem, the RendererFactory
returns the appropriate Renderer. This layer of indirection
affords a high level of flexibility, allowing many simple
Renderers to be written and then doled out as needed. It also
allows visual appearances to be easily changed, either by
issuing different Renderers in response to data attributes, or
by changing the RendererFactory for a given ItemRegistry.
This also provides a clean mechanism for semantic zooming
[36] – the RendererFactory can select Renderers appropriate
for the current scale value of a given Display.

Presentation of visualized data is performed by a Display
component, which acts as a camera onto the contents of an
ItemRegistry. The Display subclasses Swing’s top-level
JComponent, and can be used in any Java Swing application.
The Display takes an ordered enumeration of visible items
from the registry, applies view transformations, computes the
clipping region, and draws all visible items using appropriate
Renderers. The Java2D library is used to support affine
transformations of the view, including panning and zooming.
In addition, an ItemRegistry can be tied to multiple Displays,
enabling multiple views (e.g., overview+detail [10]).

Displays support interaction with visualized items through a
ControlListener interface, providing callbacks in response to
mouse and keyboard events on items. Displays also provide
direct manipulation text-editing of item content and allows
arbitrary Swing components to be used as interactive tooltips.

The prefuse Library
The core prefuse architecture described above is leveraged
by a library of significant components. These components
simplify application design by providing advanced functions
frequently used in visualizations.

Layout and Distortion. prefuse is bundled with a library of
Action modules, including a host of layout and distortion
techniques. Available layouts include random, force-directed,
top-down (Reingold-Tilford) [38], radial [48], indented
outline, and tree map [8,42] algorithms. These layouts are
parameterized and reusable, hence one can write new layouts
by composing existing modules. In addition, prefuse supports
space distortion of item location and size attributes, including
graphical fisheye views [41] and bifocal distortion [30].

Force Simulation. prefuse includes an extensible and
configurable library for force-based physics simulations. This
consists of a set of force functions, including n-body forces
(e.g., gravity), spring forces, and drag forces. To support real-
time interaction, n-body force calculations use the Barnes-
Hut algorithm [2], building a quad-tree of elements annotated
with center of mass values, to compute the otherwise
quadratic calculation in log-linear time. The force simulation
supports various numerical integration schemes, with trade-
offs in efficiency and accuracy, to update velocity and
position values. The provided modules abstract the
mathematical details of these techniques (e.g., 4th Order
Runge-Kutta [47]) from toolkit users. Users can also write
custom force functions and add them to the simulator.

Interactive Controls. Inspired by the Interactor paradigm [34],
prefuse includes parameterizable ControlListener instances
for common interactions. Provided controls include drag
controls for repositioning items (or groups of items), focus
controls for updating focus and highlight settings in response
to mouse actions, and navigation controls for panning and
zooming, including both manual controls and speed-
dependent automatic zooming [23].

Color Maps. To aid visualization, prefuse includes color
maps for assigning colors to data elements. These maps can
be configured directly, built using provided color schemes
(e.g., grayscale and color gradients, hue sampling), or
automatically generated by analyzing attribute values.

Integrated Search. To simplify the addition of search to
prefuse visualizations, the toolkit includes a FocusSet
implementation to support efficient keyword search of large
data sets. This component builds a trie (prefix tree) of
requested data attributes, enabling searches that run in time
proportional to the size of the query string. Search results
matching a given query are then available for visualization as
a FocusSet in the ItemRegistry’s FocusManager.

Event Logging. prefuse includes an event logger for
monitoring and recording events. This includes both user
interface events (mouse movement, focus selection) and
internal system events (addition and deletion of items from
the registry). Although useful for debugging and performance
monitoring, the primary motivation for this feature is to assist
user studies, providing a unified framework for evaluating
visualizations. Recorded logs can be used to review or replay
a session. We have even synchronized the event logger with
the output of an eye-tracker, enabling us to playback sessions
annotated with subjects’ fixation points.

EVALUATION
In this section we present a set of applications built with the
prefuse framework, verifying the toolkit’s expressiveness
and scalability, and the results of a study of the toolkit API.

Test Applications
Each iteration of toolkit design has included the design and
implementation of applications to test toolkit expressiveness,
application development rates, and scalability. Here we
introduce some of these applications, which span existing
systems and novel research. Where available, we include the
time cost and lines of code needed to write the applications.

Animated Radial Layout
The first prefuse application was a re-implementation of Yee
et al’s system for animated exploration of graphs using radial
layout [48], shown visualizing a social network of terrorists
involved in the 9/11 attacks in Figure 2. Clicking a node in
the visualization initiates an animated transition in which that
node becomes the new center of the diagram. To avoid visual
“clumping” during animation, the nodes follow arced
trajectories. Our application also highlights a node and its
neighbors upon mouse-over, facilitating exploration.

We built this application in prefuse using three ActionLists.
The first filters the graph data and computes a radial layout.
The second animates between configurations, updating item
colors and interpolating node positions in polar coordinates.
When clicked, a node is made the new focus and a focus
listener schedules these lists to run. A third list updates color
values in response to mouse-over events. This application
consists of 190 lines of code.

A radial layout can suffer from occlusion when too many
items are present. To improve legibility, we added jitter to
the application by including an ActionList that briefly runs a
force simulation using anti-gravity. Using prefuse’s library
components, it took 12 lines of code and 5 minutes of
development time to add this feature.

Force-Directed Layout
Using prefuse’s provided force simulator, it is very easy to
create physics-based interfaces. Force-based techniques are
commonly used for graph layout, for example by creating a
simulation in which nodes exert anti-gravity to push each
other away, edges act as springs, and friction or drag forces
are used to ensure that items settle. A well-known
visualization utilizing these techniques is the Visual
Thesaurus from plumbdesign [46]. We have built a similar
application in prefuse, shown in Figure 3 visualizing an
online social network. The application consists of a single
ActionList, parameterized to re-run every 20ms. The list
consists of a filter, a force directed layout action, and a color
function. In 3 lines of code we added controls for dragging
nodes, panning, and zooming. With 5 more lines, we also
added an overview display, bringing the total to 164 lines.

Figure 2. Animated radial layout of terrorist connections.

Figure 3. Zoomable force-directed layout of an online social
network, including an overview display.

Figure 4. Data Mountain of a book and movie collection.

Data Mountain
Another example application using the prefuse force
simulator is a re-implementation of the Data Mountain,
which allows users to visually organize documents in a 2½-
dimensional environment [39]. Figure 4 shows a Data
Mountain built using prefuse, visualizing a colleague’s
collection of books and movies. Image URLs are included as
data attributes, allowing images to be automatically retrieved
from the web by prefuse’s image renderer. Images are scaled
according to an item’s size value, which is set proportionally
to an item’s y-coordinate by a custom SizeFunction.
Dragging a thumbnail moves it around the space,
simultaneously initiating an ActionList containing a force-
based layout and the aforementioned size function. Anti-
gravity is used to push nearby documents out of the way,
while invisible springs are used to anchor items to their
locations. As a result, perturbed documents return to their
original positions after a dragged document has passed
nearby. These spring anchor points are updated when the
drag completes. The entire application was written in under 2
hours and consists of 211 lines of code.

Distortion-Based Navigation
Figure 5a depicts a graph visualization using space distortion
to present a focus+context view. Moving the mouse pointer
causes the focus of the distortion to change accordingly. This
was implemented using a run-once ActionList to filter the
graph and compute the layout, and a second list containing a
fisheye distortion action. The demo has 142 lines of code and
was built in about an hour. Using a similar design, we also
built a working prototype of fisheye menus [5], shown in
Figure 5b. Using prefuse, we were able to build the prototype
in just 20 minutes with 86 lines of code, the bulk of which
consists of a simple layout that computes the item locations
and scaling factor for the initial, undistorted view.

TreeMaps
As an example of containment diagrams, we built a TreeMap
browser using prefuse, shown visualizing an 8,000 node
hierarchy in Figure 6. Each box represents a node in the tree
and contains its descendants in nested boxes. The
visualization is backed by a single ActionList containing a
TreeFilter, a custom SizeFunction to assign node areas, a
“squarified” tree map layout [8], and a ColorFunction that
uses a color map to assign node color according to depth in
the tree. With two extra lines of code we added panning and
zooming to the display, allowing users to explore the various
“cities” in the figure more closely. The application was built
in under a day, with most of the effort spent writing and
testing the TreeMap layout for the prefuse library. The actual
application consists of 133 lines of code.

Scatter Plot
SpotPlot is a scatter plot viewer built by a colleague with
whom we shared our toolkit. As shown in Figure 7, SpotPlot
uses range sliders to control a filtered view of data—both the
scatter plot display and the axis values update in response to
the slider-specified ranges. SpotPlot uses a single ActionList

Figure 5a. Space Distortion demo. 5b. A Fisheye Menu.

Figure 6. TreeMap of a nearly 8,000 node ontology. The
callout shows a zoomed-in portion of the map.

Figure 7. SpotPlot scatter plot. Range sliders control the scale
and view of visualized data.

with a custom filter, which uses the current range slider
values to filter data elements, and a layout action that places
items according to their (x,y) data values. A custom Renderer
draws different shapes in response to node attributes. The app
also uses a customized Display component, overriding the
postPaint method from the Display class to draw the scatter
plot axes. The application consists of 523 lines of code in 7
source files, written in under a week of part-time work. We
were encouraged that other researchers could pick up our
toolkit and quickly build useful components.

Hyperbolic Tree Browser
In a more strenuous test of the toolkit, we used prefuse to re-
implement the well-known hyperbolic tree browser [28],
shown in Figure 8. Implementing the hyperbolic tree required
writing a number of new Action modules. The first was a
hyperbolic layout routine that takes a filtered tree, computes
the hyperbolic coordinates of each data item (including
control points for curved edges), and projects the coordinates
on to the complex plane, storing the coordinates as attributes
of visualized items. Another Action was written to map these
complex coordinates to the actual on-screen locations,
completing the layout. To add interactivity, a hyperbolic
translation Action was added to compute coordinate
translations in hyperbolic space, projecting the results back
onto the complex plane. The translation module is run in
response to individual mouse drags, but also doubles as an
animator, interpolating between two positions in response to
clicked items. Finally, we also introduced an Action to toggle
the visibility of items on the periphery of the display,
improving interactive frame rates for large trees.

Though implementing the hyperbolic tree proved to be
complicated, the prefuse architecture allowed the design to
be mapped into individual, reusable Action modules and sped
up design by providing highly-customizable rendering and
animation support. In all, we wrote 631 lines of code, 372 in
new Action modules and 259 in application code. Actual
development time was less than three days.

Degree-of-Interest Trees
Finally, the most intricate prefuse application built to date is
an enhanced version of the Degree-of-Interest Tree

(DOITree) browser [11,19]. DOITrees are tree visualizations
featuring multiple focus+context techniques, including the
use of degree-of-interest functions [16] to determine which
regions of the tree are visible, and the use of aggregates to
represent unexpanded subtrees and to group lower-interest
siblings in the face of limited space resources. Figure 9
shows a prefuse-built DOITree visualizing a web directory
with over 600,000 nodes. Clicking a node in the visualization
causes it to become a focus, initiating a recalculation of DOI
values and layout followed by an animated transition. The
visualization also supports multiple foci, selected through
both manual selection and keyword search.

DOITrees are implemented using four ActionLists, all of
which are sequentially scheduled in response to mouse
clicks. The first list performs filtering, computes layout, and
assigns initial colors. The second ActionList interpolates
positions and colors to provide animated transitions. The
third and fourth lists assign and then animate highlighting
changes designed to make newly visible nodes easier to
track. Additionally, an ActionSwitch (similar to a multiplexer)
is used in the first list to select from one of three filters: a
standard fisheye calculation, a custom filter showing only
focus nodes (e.g., search results) and their ancestors, and
another filter showing only focus nodes and their least
common ancestors. Each filter provides progressively more
“zoomed-out” views of the data, facilitating exploration of
different foci that may be quite far apart in the tree [19].

The DOITree browser consists of 1929 lines of code, 1011 in
reusable Action modules and 918 in application code. As we
developed the app over a period of two months, the toolkit
enabled us to add animated behaviors (initial highlighting
and fade-out for tracking newly visible items), design and
incorporate a new layout algorithm [19], provide integrated
handling of search results, and customize item appearances to
specific application domains. This application also
demonstrates the toolkit’s scalability, maintaining real-time
interaction with data sets containing nearly a million items.

Finally, the applications above showcase prefuse’s support of
module reuse and extensibility, using provided modules (e.g.,
filters, layouts, renderers, interactors) across visualizations,
while also making it easy for both ourselves and others to
introduce customized components.

Figure 8. Hyperbolic Tree Browser.

Figure 9. Degree-of-Interest Tree visualizing a 600,000 node web directory.

Qualitative User Study
We wanted to better understand the learnability and usability
of the prefuse API for other programmers. In particular,
toolkit abstractions such as filtering and runnable action lists
might seem foreign to some programmers, constituting the
threshold for toolkit use [35]. To investigate these concerns,
we adopted the evaluation method of [26] and conducted a
user study of the prefuse API, observing 8 programmers use
the toolkit to build applications and then interviewing them
about their experiences.

The 8 participants were of varying background and expertise:
4 computer science students (2 undergrads, 2 grads), 3
professional programmers and/or user interface designers,
and 1 information visualization expert. All were screened for
familiarity with Java, the Swing UI toolkit, and the Eclipse
integrated development environment.

Participants were first given a brief tutorial, including a code
walk through some sample applications. Subjects were then
given a social network data file and asked to perform three
programming tasks. The first was to create a static (non-
animated) visualization of the data set using a random layout.
The second task asked subjects to refine their visualization by
applying a layout technique of their choice and using color to
convey information about one or more data attributes.
Finally, subjects were asked to add interactivity and
animation, supporting a change of focus or other means of
exploring the data. Tasks were performed on a Windows PC
pre-loaded with the Eclipse IDE and prefuse source code,
examples, and API documentation. Subjects were
encouraged to “think-aloud” and were given up to an hour to
complete the tasks. The tasks were videotaped and subject’s
code samples were saved for later analysis.

The tasks were followed by a short, open-ended interview in
which subjects were asked about their experiences and their
understanding of various toolkit abstractions. Subjects were
asked to recount their approach to designing their application,
and asked to describe, in their own words, different toolkit
concepts such as filtering and action lists. Interviews
typically lasted 15-20 minutes and were audio recorded.

Results
Every subject successfully built a working visualization, and
7 of the 8 subjects completed every task. All subjects were
able to load data from disk, construct working action lists,
and subclass existing modules to customize processing.
Subjects did not necessarily complete tasks in the order
presented (they were told this was fine) and half encountered
trouble at some point during development.

The most common difficulty for subjects was structuring data
appropriately. Four subjects wanted to apply a radial layout
in their design, but ran into troubles when they filtered a
general graph structure and the radial layout algorithm,
expecting a tree structure, threw an exception. Confusion also
surrounded the use of individual filtering modules. While the
interviews revealed that all subjects grasped the general

concept of filtering, one subject didn’t realize that, as
implemented, they were responsible not only for controlling
what is visualized, but also how the visualized items are
linked together. This was confounded by an earlier toolkit
design that was overly confusing, in which individual filters
were used to process nodes and edges separately. This
roadblock prevented the subject from finishing all the tasks.

In response to these issues, we subsequently redesigned the
filters provided by the toolkit. Instead of separate modules
for different data aspects (e.g. node filters, edge filters), we
now provide unified filters for filtering visual structures.
Furthermore, we made the filters more robust to input data.
For example, a TreeFilter will now overlay a tree structure on
filtered items even when the source data is a general graph.

The study also proved useful for unearthing naming issues.
Most notably, VisualItems had originally been called
GraphItems, an obvious (in hindsight) blunder that fueled
confusion as to which data was abstract and which was visual
content. ActionLists were initially called ActionPipelines, but
were renamed to avoid association with the streaming nature
of traditional pipeline architectures.

Participant reaction to the toolkit, even from those who had
difficulty, was encouraging. Many appreciated the toolkit
design, saying “I’m surprised I needed as little code as I did!”
and “[It’s] shockingly easy to use.” Four of the subjects
wanted to use prefuse in their own work, and have
downloaded the toolkit. One subject, who had been searching
for tools to build visualizations of software execution, stated
“This is the first thing I have found that can do what I want.”

Evaluation Summary
Through the evaluation process, the toolkit has made great
strides. Both the test applications and user study have
validated the goals of our toolkit while revealing needed
functionality and suboptimal design decisions. The filtering
abstraction, while setting the learning curve for the system,
was understood by user study participants and has enabled an
array of scalable visualizations. Using Actions and
ActionLists, study subjects built useful visualizations in under
an hour, and toolkit users have appreciated the accompanying
extensibility. The creator of the SpotPlot application told us
“I liked being able to define and think about the individual
components separately. For example, I like the idea of
being able to plug in a jitter component later.”

We have found that iterative design, a proven method for
developing user interfaces, has also proven a valuable design
method for software toolkits, where the users are
programmers and the interface is an API [26]. prefuse is now
being used by other researchers and by students in an infovis
course. We are following this work in a longitudinal study of
toolkit use, and look forward to the insights (and dilemmas)
this next round of evaluation will bring.

RELATED WORK
The design of prefuse extends a large body of related work,
categorized here into three areas: information visualization,
graph drawing, and user interface and graphics toolkits.

Information Visualization
prefuse has been inspired by the rich body of information
visualization work that has preceded it. This includes a host
of designs, including TreeMaps [8,42], Cone Trees [40],
Perspective Walls [32], StarField displays [1], Hyperbolic
trees [28], DOITrees [11,19], SpaceTrees [37], and more. In
addition, prefuse leverages transformation and navigation
techniques, including focus+context schemes [16], space
distortion [30], point-of-interest navigation [31], and panning
and zooming [23,36]. prefuse also inherits from the
Information Visualizer (IV) [12], perhaps the first integrated
framework for infovis. prefuse’s activity scheduler works
analogously to the IV’s governor, overseeing activities and
adjusting frame rates as necessary. prefuse furthers this work
by introducing high-level support for application design,
including theoretically-grounded abstractions for processing
visualized data and a library of reusable components.

Equivalent to the information visualization reference models
of [9] and [10], Chi proposed the data state model [13] as a
framework for structuring infovis applications. prefuse
contributes a generalized implementation of this theoretical
model to support a wide range of visualization designs [13].
prefuse’s data structures provide Analytical Abstractions of
data. Filter Actions compute visualization transformations,
creating a Visualization Abstraction of VisualItems in an
ItemRegistry. Other Actions operate upon this abstraction to
set visual properties. The RendererFactory and Renderers
then provide visual mapping transformations to create Views,
realized as Display instances.

Most information visualization research to date has consisted
of exploring the space of successful designs and techniques.
We believe the field is now moving into a second phase in
which this knowledge is applied in a principled manner to
achieve more powerful visualization environments, as
currently exemplified by the Polaris database visualization
system [44]. prefuse furthers this trend by situating infovis
research and models in an extensible, modular framework.

Graph Drawing
For decades, the graph drawing community has devised
algorithms for the aesthetic layout of graph structures. These
are given thorough coverage in [4]. Perhaps the best known
software for graph drawing is the excellent graphviz package
from AT&T [17], which creates static images of graphs.

A graph drawing project with similar aims as prefuse is
Marshall et al.’s Graph Visualization Framework (GVF)
[33], which uses a related notion of filtering for determining
graph visibility, and also includes a library of layout routines.
The GVF, however, has only limited support for full
interactivity and animation.

There are several other research and commercial graph
drawing systems, including pajek [3] and products from Tom
Sawyer and yWorks. prefuse is differentiated by its focus on
interactivity and design flexibility. For example, one could
not build a DOITree with these tools. In recent years the
graph drawing community has moved towards more
interactive solutions, and we hope prefuse contributes to this.

User Interface and Graphics Toolkits
prefuse also leverages previous work on user interface
toolkits, such as pioneering work on input abstractions like
the model-view-controller [27] and interactor [34]
paradigms, and the rich history and lessons learned from
toolkit development [35]. This includes early systems for
graph layout and editing [20,24] and for including animation
in user interface toolkits [22].

More recent toolkits include support for advanced graphics
capabilities, such as SATIN [21], a toolkit for pen-based
interaction, and the Jazz [6,7] and Piccolo [6] toolkits for
zoomable user interfaces. These toolkits use a scenegraph
abstraction to structure interface layout and support
animation and zooming. prefuse shares with these toolkits
the use of lightweight glyphs (i.e., VisualItems) instead of full
widgets and support for advanced graphics and animation.
Similar to Jazz, prefuse utilizes aspects of “minilithic” design
[6,7], for example by decoupling interactive objects from
rendering to provide increased functionality. The use of
prefuse’s RendererFactory to achieve dynamic rendering also
parallels SATIN’s multi-views. In contrast, however, prefuse
is specifically designed for infovis applications, and provides
higher-level abstractions for presentation, navigation, and
batch processing of interactive objects.

Finally, concepts from 3D graphics toolkits, such as OpenGL
[43] and VTK [25], have influenced prefuse. Though
different in application and implementation, the ActionList
was inspired by 3D rendering pipelines. While 3D toolkits
provide a wide array of functionality, they impose a steeper
learning curve and operate at a lower level. prefuse simplifies
design by providing targeted abstractions for information
visualization and an integrated framework supporting
common presentation and interaction techniques.

CONCLUSION
In this paper we have introduced prefuse, a user interface
toolkit for crafting interactive visualizations of structured and
unstructured data. prefuse supports the design of 2D
visualizations of any data consisting of discrete data entities,
such as graphs, trees, scatter plots, collections, and timelines.
prefuse implements existing theoretical models of
information visualization to provide a flexible framework for
simplifying application design and enabling reuse and
composition of visualization and interaction techniques. In
particular, prefuse contributes scalable abstractions for
filtering abstract data into visual content and using lists of
composable actions to manipulate data in aggregate.

Test applications built with the toolkit demonstrate the
flexibility and performance of the prefuse architecture. A
user study showed that programmers could use the toolkit to
quickly build and tailor their own interactive visualizations.

prefuse is part of a larger move to systematize information
visualization research and bring more interactivity into data
analysis and exploration problems. In future work, we plan to
introduce more powerful operations for manipulating source
data, provide additional processing, rendering, and
interaction components, and potentially develop a visual
environment for application authoring. First and foremost,
however, both we and others are now using the toolkit to
build and evaluate new interactive visualizations for a variety
of application domains.

prefuse is open-source software. The toolkit software and
interactive demonstrations are available on the web at
http://prefuse.sourceforce.net.

ACKNOWLEDGMENTS
We would like to thank our colleagues at Berkeley and PARC,
particularly Alan Newberger, Jock Mackinlay, Ed Chi, Scott
Klemmer, and Lance Good, for their insight and comments. We
also profusely thank all the subjects in our user study. The first
author was supported by an NDSEG fellowship.

REFERENCES
1. Ahlberg, C. and B. Shneiderman. Visual Information Seeking: Tight

Coupling of Dynamic Query Filters with Starfield Displays. CHI’94.
pp. 313-317, April 1994.

2. Barnes, J. and P. Hut, A Hierarchical O(N Log N) Force Calculation
Algorithm. Nature, 1986. 324(4).

3. Batagelj, V. and A. Mrvar, Pajek: Analysis and Visualization of Large
Networks, in Graph Drawing Software, Springer. p. 77-103, 2003.

4. Battista, G.D., P. Eades, R. Tamassia, and I.G. Tollis, Graph
Drawing: Algorithms for the Visualization of Graphs. Upper Saddle
River, NJ: Prentice Hall, 1999.

5. Bederson, B.B. Fisheye Menus. UIST’00. pp. 217-225, 2000.
6. Bederson, B.B., J. Grosjean, and J. Meyer, Toolkit Design for

Interactive Structured Graphics. Technical Report HCIL-2003-01,
CS-TR-4432 , UMIACS-TR-2003-03, University of Maryland 2003.

7. Bederson, B.B., J. Meyer, and L. Good. Jazz: An Extensible Zoomable
User Interface Graphics Toolkit in Java. UIST’00. pp. 171-180 2000.

8. Bruls, M., K. Huizing, and J.J. van Wijk. Squarified TreeMaps. In
Proceedings of Joint Eurographics and IEEE TCVG Symp. on
Visualization (TCVG 2000): IEEE Press. pp. 33-42, 2000.

9. Card, S.K., Information Visualization, in The Human-Computer
Interaction Handbook. Lawrence Erlbaum Associates, 2002.

10. Card, S.K., J.D. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. San Francisco,
California: Morgan-Kaufmann, 1999.

11. Card, S.K. and D. Nation. Degree-of-Interest Trees: A Component of
an Attention-Reactive User Interface. Advanced Visual Interfaces. 2002.

12. Card, S.K., G.G. Robertson, and J.D. Mackinlay. The Information
Visualizer, an Information Workspace. CHI'91. pp. 181-188 1991.

13. Chi, E.H. A Taxonomy of Visualization Techniques Using the Data
State Reference Model. InfoVis '00. pp. 69-75 2000.

14. Cockburn, A. and B. McKenzie. Evaluating the Effectiveness of
Spatial Memory in 2D and 3D Physical and Virtual Environments.
CHI'02, Minneapolis, MN. pp. 203-210 2002.

15. Czerwinski, M., D.S. Tan, and G.G. Robertson. Women Take a Wider
View. CHI'02. pp. 195-202, 2002.

16. Furnas, G.W., The Fisheye View: A New Look at Structured Files, in
Readings in Information Visualization: Using Vision to Think, S.K.
Card, et al, Editors. Morgan Kaufmann: San Francisco, 1981.

17. Graphviz. http://www.research.att.com/sw/tools/graphviz/
18. Grokking the Infoviz, Economist Technology Quarterly, June 2003.

19. Heer, J. and S.K. Card. DOITrees Revisited: Scalable, Space-
Constrained Visualization of Hierarchical Data. Advanced Visual
Interfaces. Gallipoli, Italy, May 2004.

20. Henry, T.R. and S.E. Hudson. Interactive Graph Layout. UIST’91. pp.
55-64, November 1991.

21. Hong, J.I. and J.A. Landay. SATIN: A Toolkit for Informal Ink-Based
Applications. UIST’00. pp. 63-72 2000.

22. Hudson, S. and J.T. Stasko. Animation Support in a User Interface Toolkit:
Flexible, Robust, and Reusable Abstractions. UIST’93. pp. 57-67, 1993.

23. Igarashi, T. and K. Hinckley. Speed-Dependent Automatic Zooming
for Browsing Large Documents. UIST’00. pp. 139-148, 2000.

24. Karrer, A. and W. Scacchi. Requirements for an Extensible Object-
Oriented Tree/Graph Editor. UIST’90. pp. 84-91, October 1990.

25. The Visualization Toolkit User's Guide: Kitware, Inc., 2003.
26. Klemmer, S.R., J. Li, J. Lin, and J.A. Landay. Papier-Mâché: Toolkit

Support for Tangible Input. CHI’04, Vienna, Austria 2004.
27. Krasner, G.E. and S.T. Pope, A Description of the Model-View-

Controller User Interface Paradigm in the Smalltalk-80 System.
Journal of Object-Oriented Programming, 1988. 1(3): p. 26-49.

28. Lamping, J. and R. Rao, The Hyperbolic Browser: A Focus + Context
Technique for Visualizing Large Hierarchies. Journal of Visual
Languages and Computing, 1996. 7(1): p. 33-55.

29. Lee, B., C.S. Parr, D. Campbell, and B. Bederson. How Users Interact
with Biodiversity Information Using Taxontree. Advanced Visual
Interfaces. Gallipoli, Italy 2004.

30. Leung, Y.K. and M.D. Apperley, A Review and Taxonomy of
Distortion-Oriented Presentation Techniques. ACM Transactions on
Computer-Human Interaction, 1994. 1(2): p. 126-160.

31. Mackinlay, J.D., S.K. Card, and G.G. Robertson, Rapid, Controlled
Movement through a Virtual 3d Workspace. Computer Graphics,
1990. 42(4): p. 1971-1976.

32. Mackinlay, J.D., G. Robertson, and S.K. Card. The Perspective Wall:
Detail and Context Smoothly Integrated. CHI91. pp. 173-179 1991.

33. Marshall, M.S., I. Herman, and G. Melancon, An Object-Oriented
Design for Graph Visualization. Software: Practice and Experience,
2001. 31(8): p. 739-756.

34. Myers, B.A., A New Model for Handling Input. ACM Transactions on
Information Systems, 1990. 8(3): p. 289-320.

35. Myers, B.A., S.E. Hudson, and R.F. Pausch, Past, Present, and Future
of User Interface Software Tools. ACM Transactions on Computer-
Human Interaction, 2000. 7(1): p. 3-28.

36. Perlin, K. and D. Fox. Pad: An Alternative Approach to the Computer
Interface. SIGGRAPH'93. pp. 57-64, 1993.

37. Plaisant, C., J. Grosjean, and B. Bederson. Spacetree: Supporting
Exploration in Large Node Link Tree, Design Evolution and Empirical
Evaluation. InfoVis’02. Boston, MA. pp. 57-64, October 2002.

38. Reingold, E.M. and J.S. Tilford, Tidier Drawings of Trees. IEEE
Transactions of Software Engineering, 1981. SE-7: p. 21-28.

39. Robertson, G.G., M. Czerwinski, K. Larson, D.C. Robbins, D. Thiel,
and M.v. Dantzich. Data Mountain: Using Spatial Memory for
Document Management. UIST’98. pp. 153-162 1998.

40. Robertson, G.G., J.D. Mackinlay, and S.K. Card. Cone Trees: Animated
3D Visualizations of Hierarchical Information. CHI'91. pp. 189-194, 1991.

41. Sarkar, M. and M.H. Brown. Graphical Fisheye Views of Graphs.
CHI’92. pp. 83-91, May 1992.

42. Treemaps for Space-Constrained Visualization of Hierarchies. 1998.
http://www.cs.umd.edu/hcil/treemap-history/

43. Shreiner, D., M. Woo, J. Neider, and T. Davis, OpenGL Programming
Guide. Addison-Wesley, 2003.

44. Stolte, C., D. Tang, and P. Hanrahan, Polaris: A System for Query,
Analysis and Visualization of Multi-Dimensional Relational
Databases. IEEE Transactions on Visualization and Computer
Graphics, 2002. 8(1).

45. Tufte, The Visual Display of Quantitative Information. Graphics Press,
1983.

46. Visual Thesaurus. http://www.visualthesaurus.com
47. Runge-Kutta Method, From MathWorld.

http://mathworld.wolfram.com/Runge-KuttaMethod.html
48. Yee, K.-P., D. Fisher, R. Dhamija, and M.A. Hearst. Animated

Exploration of Dynamic Graphs with Radial Layout. InfoVis'01. pp.
43-50 2001.

