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ABSTRACT
Real-time interaction and visualization over large data volumes
requires careful coordination of data queries and visual updates.
Mosaic is an architecture for optimizing scalable and interoperable
visualizations backed by a database, providing a platform for de-
veloping and deploying optimizations that span both visualization
clients and backing databases. Mosaic applications consist of data-
consuming clients that publish data needs as declarative queries,
parameterized by shared filtering selections. These queries are man-
aged and automatically optimized by a coordinator that proxies
access to a scalable data store. For example, by analyzing selec-
tion predicates and client queries, the coordinator automatically
constructs materialized views to perform selection updates over
pre-aggregated data at interactive rates. Given only a high-level
specification, Mosaic automatically enables orders-of-magnitude
performance improvements over standard update queries.
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1 INTRODUCTION
To support effective analysis, interactive data systems should re-
spond to user input at “rates resonant with the pace of human
thought” [11], as “milliseconds matter” [2, 6, 17, 27] for user in-
terface latency. Unfortunately, most visualizations fail to provide
low-latency interactions with large datasets [3, 26]. Existing meth-
ods for low-latency updates to user selections [1, 16, 18–20, 24, 25]
typically support only a subset of visualization types (such as scatter
plots or time series) and interactions (such as panning and zooming).
Moreover, many optimizations are not designed to work together
in a single system, and require manual tuning or precomputation.
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Figure 1: Mosaic architecture overview. A coordinator prox-
ies queries to a backing data source for one or more data-
consuming client views. Selections broadcast reactive updates
for query predicates. Interactions that update selections may
be handled directly by a client, or via interactor components.

Instead, we contend that data analysts should be able to specify
desired views and interactions at a high-level, then benefit from
automatic optimizations that provide low-latency interaction over
datasets with millions or even billions of records.

Mosaic [10] is an open-source software architecture for linking
databases and interactive views. It provides a principled separation
of concerns between client views that consume data, interactors that
generate predicate clauses to select data subsets, and selections that
manage clauses to resolve view-specific filters. Mosaic’s selection
model translates common operations performed in data analysis
interfaces (using inputs such as menus, sliders, tables, and interac-
tive visualizations) to filtering predicates, and enables coordinated
updates across interface components. Unlike many prior formula-
tions [5, 9, 22], this model flexibly supports cross-filtering in which
selections apply to some interface views, but not others.

Since data queries follow predictable patterns [1, 18, 20], the
Mosaic coordinator can build materialized views automatically to
optimize selection update queries. The coordinator optimizes mul-
tiple queries using views [7], sidestepping the NP-hard problem of
multi-query optimization [13]. In addition to pre-aggregated mate-
rialized views, Mosaic supports query caching, query consolidation,
and prefetching optimizations. Together, these optimizations can
reduce interface latency by orders of magnitude, enabling real-time
interaction (under 100ms, and often 1-10ms) over datasets with
millions to billions of records. The coordinator manages both the
front- and backend and can therefore optimize across data and
rendering concerns—each of which are insufficient in isolation [3].
This flexible architecture makes Mosaic an effective platform for
developing and deploying optimizations for scalable visualizations.

We demonstrate how Mosaic and its current optimizations sup-
port interactive visualizations of diverse datasets, including U.S.
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flight records, New York City taxi trips, and the Gaia star cata-
log. Using DuckDB [21] as a backing store, Mosaic can be flexibly
deployed in web browsers, Jupyter notebooks, or database servers.

2 THE MOSAIC ARCHITECTURE
A Mosaic application consists of data-consuming client views regis-
tered with a central coordinator. Interactions among components
are mediated by params and selections, reactive variables for scalar
values and query predicates, respectively. Figure 1 illustrates this
architecture. For clarity the figure depicts a single client; Mosaic ap-
plications typically include multiple clients with shared selections.

Interactive selections indicate records of interest in terms of dis-
crete point values or continuous intervals; these records may then
be filtered or highlighted within the interface. Formally, a selection
𝑆 = ⟨𝐶, 𝑅⟩ consists of a set of predicate clauses𝐶 provided by inter-
actors and a resolution operator 𝑅 : ⟨𝐶, 𝑣⟩ → 𝑝 . Each clause 𝑐 ∈ 𝐶

corresponds to a boolean-valued selection predicate, as in a SQL
WHERE clause. The resolution operator 𝑅 takes a clause set 𝐶 and
a client view 𝑣 as arguments and produces an output predicate 𝑝
that can subsequently be applied to filter data for 𝑣 . The operator 𝑅
does so by aggregating boolean predicate clauses, for example via
intersection or union, including client-sensitive cross-filtering.

Client views publish their data needs as declarative queries. Each
client view may be associated with a selection for filtering that
client’s data. Each client is responsible for incorporating a resolved
selection predicate into its query. Selection updates result in new
client queries to filter and potentially re-aggregate data.

The coordinator manages client queries, performs optimizations,
submits queries to a data source, and returns results or errors back
to clients. The default configuration uses DuckDB [21] as the back-
ing engine, though in principle other database systems can be used.
The separation between clients, selections, and the coordinator
enables automatic optimizations that span visualization clients and
query generation. By transforming queries before execution, the
coordinator enables exploration of optimization techniques with-
out modifications to either client code or the underlying database.
The coordinator currently supports query caching, query consoli-
dation (merging compatible queries into a single issued query), and
prefetching (clients may speculatively publish queries before re-
sults are needed). Critically, the coordinator can also automatically
materialize pre-aggregates to optimize selection updates.

2.1 Pre-Aggregated Materialized Views
As datasets grow to millions or more rows, rendering all records
becomes infeasible due to both perceptual and computational con-
cerns [18]. Instead, it is common to bin, group, and aggregate
data for more scalable displays, from basic histograms to high-
resolution raster views. By analyzing queries and a current active
selection clause, Mosaic determines appropriate dimensions and
pre-aggregated measures to support efficient update queries as se-
lection parameters change. Querying the materialized views can
improve performance by multiple orders of magnitude.

To pre-aggregate data automatically, the coordinator (1) checks
if a query filtered by an active selection performs aggregation
amenable to optimization, (2) determines dimension columns by
extracting query GROUP BY criteria and possible selection values

Figure 2: Pre-aggregation and querying for univariate mea-
sures. Each sufficient statistic is included as a column in a
materialized view, alongside grouping dimensions.

Figure 3: Pre-aggregation and querying for standard devia-
tion and bivariate measures. Each sufficient statistic is in-
cluded as a column in amaterialized view, alongside grouping
dimensions. The symbol 𝑥 indicates the average value of 𝑥
across the full dataset; it is included to mean-center the data
to prevent floating point error.

(e.g., pixel-level binning over selection intervals), and (3) creates
a materialized view with measure columns containing sufficient
statistics for all aggregate query results.

To determine the dimensions of the pre-aggregated materialized
view, Mosaic first extracts all columns referenced in the GROUP BY
clause of a client query. It must then add the dimensions corre-
sponding to an active selection clause. For selections over point
values, discrete point values are binned for each column included in
the selection. For example, if a clause selects (𝐴 = 𝑎𝑖 ) AND (𝐵 = 𝑏 𝑗 ),
the values of columns 𝐴 and 𝐵 are included as materialized view
dimensions. For an interval selection clause, the system determines
an appropriate pixel-level binning scheme based on screen size and
scale transform (linear, log, etc.) metadata provided by an interactor.

Materialized view measure columns consist of sufficient statistics:
pre-aggregated data, binned by the dimensions, from which the
requested aggregates can be constructed. For example, to construct
a COUNT aggregate, one can apply the COUNT function upon ma-
terialization, then query the materialized view for updates using
the SUM function. Functions such as SUM, PRODUCT, MIN, MAX, and
logical aggregates can be applied for both construction and update
queries. In these cases, only a single measure column is needed.
Figure 2 shows pre-aggregation schemes for some basic aggregates.
Mosaic also optimizes more complex aggregates including standard
deviation and regression calculations, as shown in Figure 3.
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Figure 4: Pre-aggregated materialized view construction (top)
and interactive update performance (bottom), from [10]. Me-
dian times and interquartile ranges are shown.

2.2 Mosaic Component Libraries
Mosaic includes a set of example client components. Basic inputs
include menu, search, and sliderwidgets. These components pub-
lish selection clauses upon interaction and may be configured with
values from a backing data table column. The table component pro-
vides an infinite-scroll grid view over data columns. The grid may
be filtered by a selection, and the component can publish selection
clauses for user-selected rows. To reduce latency, the table compo-
nent queries for row batches, and sends requests to the coordinator
to prefetch adjacent off-screen data batches.

For visualization, vgplot is a grammar of interactive graph-
ics that combines concepts from prior visualization tools. A plot
consists of graphical marks, each of which is a query-generating
Mosaic client. Individual marks span basic shapes (rectangles, areas,
lines, symbols) to gridded raster images, and may include associ-
ated transformations that are pushed to the database (e.g., binning,
aggregation, linear regression, and M4 optimization [12, 14]), or
run in the browser (e.g., kernel density estimation [8]). Plots may
include interactors that listen to input events and generate selection
clauses, for example based on clicked points or brushed intervals.

2.3 Performance Benchmarks
Figure 4 shows performance benchmarks from an earlier paper [10].
The tests compare Mosaic using DuckDB-WASM, a local DuckDB
server, and a remote server. They were conducted on a 2021 Mac-
Book Pro with an M1 Pro processor. Pre-aggregated materialized
views are computed in 1-2 seconds for dataset sizes up to 100M rows;
beyond that, precomputation is helpful. Mosaic server configura-
tions maintain interactive update rates (under 100ms) at high data
volumes, though begin to degrade when pre-aggregated raster data
becomes denser. VegaFusion [15], a state-of-the-art optimizer for
Vega [23], is not competitive, as it does not perform pre-aggregation.
Mosaic provides low-latency updates with order-of-magnitude im-
provements over existing web-based visualization tools.

3 DEMONSTRATION
Our demonstration highlights Mosaic’s support for interactive data
visualizations at scale. Users can interact to visually explore diverse
datasets and experiment with system configurations.

Figure 5: Interactive maps of 1.3B taxi pick-ups and drop-offs
in New York City, cross-filtered by pickup time and location.

Figure 6: Linked visualizations of over 1.8B stars in the Gaia
star catalog. High parallax stars are selected.

Figure 7: Probe recordings from a mouse brain. Prefetching
enables smooth panning over 10.7M time samples (4.1B rows).

3.1 Datasets and Visualizations
To demonstrateMosaic’s capabilities, we include datasets of varying
size and complexity, combined with visualizations that range from
simple single-view graphs to linked, multi-view dashboards. Below
we describe some of these datasets and visualizations.
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U.S. Flights: The flight data consists of 44.8M U.S. flight records,
with attributes such as arrival delay and departure time. Linked his-
tograms enable dynamic exploration of subsets, such as identifying
multivariate patterns through cross-filtering.

New York City Taxi Trips: This dataset describes over 1.3B
taxi rides in NYC. These are visualized using two interactive maps
representing pickup and drop-off location, alongside a temporal
histogram for pickup times (Figure 5). Users can explore both spatial
and temporal patterns with linked filtering across all three views.

Gaia Star Catalog: The ESA Gaia catalog contains observations
of 1.8B stars, with properties such as location, magnitude, and
parallax. Our interactive dashboard (Figure 6) includes a sky map,
Hertzsprung–Russell diagram, and associated histograms. All plots
are linked via selections, enabling detailed inspection.

Mouse Neuron Spikes: A dataset of mouse brain neural record-
ings, using a probe with 384 sensor channels across 10.7M time
points (4.1B rows). The data is visualized as tiled raster images
(Figure 7); prefetching enables smooth panning and zooming for
fine-grained exploration of high-density neural signals.

Each visualization is specified declaratively in a YAML format,
defining data to load, visualization specifications (marks, interac-
tors, etc.), and linking via selections. Specifications are compiled
into JavaScript programs that use the Mosaic and vgplot APIs.

3.2 Demonstration Workflow
Participants first select a dataset and visualization, such as the Gaia
star catalog or NYC taxi trips datasets. Then they can use a con-
figuration interface to alter the deployment context (e.g., among
DuckDB-WASM in browser or a local DuckDB server), change visu-
alization parameters, and enable or disable optimizations including
query caching and pre-aggregated view generation. Each change
is reflected in real time, with the GUI displaying generated SQL
queries and performance metrics like response times. By adjusting
these settings, participants can experience how Mosaic enables
interactivity and scalablity in visualizations via automatic optimiza-
tion, maintaining low-latency updates across diverse datasets and
visualization configurations.

4 RELATEDWORK & CONCLUSION
Visualization tools such as D3 [4], Vega [23], and Vega-Lite [22] sup-
port various visual encodings and interactions, but fail to provide
low-latency interaction for larger datasets. VegaFusion [15] and
VegaPlus [26] rewrite Vega [23] workflow specifications to query a
database, but do not provide pre-aggregation optimizations. Other
visualization methods that pre-aggregate data (e.g., [16, 18, 20])
support fewer aggregation functions, are not applied automatically,
and some require lengthy precomputation to build indexes.

Mosaic generalizes Vega-Lite’s selection model [22] to support a
more expressive and extensible set of interactions. It enables low-
latency updates (under 100ms, often 1–10ms) and supports “cold
start” exploration by pre-aggregating data on the fly for up to hun-
dreds of millions of rows. Mosaic also provides a platform for new
optimization techniques; future work could investigate adaptive in-
dexing based on interaction patterns, approximate query processing,
or hybrid client/server execution models. The Mosaic architecture,
optimizations, and examples are available at idl.uw.edu/mosaic.
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