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ABSTRACT
We present TimeNets, a new visualization technique for ge-
nealogical data. Most genealogical diagrams prioritize the
display of generational relations. To enable analysis of fam-
ilies over time, TimeNets prioritize temporal relationships
in addition to family structure. Individuals are represented
using timelines that converge and diverge to indicate mar-
riage and divorce; directional edges connect parents and chil-
dren. This representation both facilitates perception of tem-
poral trends and provides a substrate for communicating non-
hierarchical patterns such as divorce, remarriage, and plu-
ral marriage. We also apply degree-of-interest techniques
to enable scalable, interactive exploration. We present our
design decisions, layout algorithm, and a study finding that
TimeNets accelerate analysis tasks involving temporal data.
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INTRODUCTION
The combination of networking, database technology, visual-
ization, and content analysis algorithms is creating new pos-
sibilities for the collective aggregation and interpretation of
information. In this paper, we take a specific domain of col-
lective information aggregation – genealogy – and develop
an improved visualization that could eventually anchor a so-
cial sensemaking system. Genealogy, or the study of fami-
lies, is a popular activity pursued by millions of people, rang-
ing from hobbyists to professional researchers [17]. The ge-
nealogical research process involves determining when and
where people lived as well as their biographies and kinship.
It often leads to diverse knowledge of religious histories, mi-
gration trends, and historical social conditions; tracing an-
cestry gives us an understanding of our history.

The most common task confronting genealogists is to cor-
rectly identify individuals and their familial and temporal
relations. To keep track of their findings, people typically
use genealogical diagrams, or “family trees”, such as ances-
tor (pedigree) charts and descendant charts (Figures 1a-b).
By aligning people by generation, the charts prioritize the
display of kinship relations, facilitating the identification of
marriages, parent-child relations, siblings, and cousins.

However, such representations often omit other aspects of
genealogical data, particularly time. For instance, genealo-
gists must frequently cope with temporally ambiguous evi-
dence in order to establish kinship [15]. To infer genealog-
ical relations, a researcher may compare estimates of an in-
dividual’s birth date with the marriage dates of potential par-
ents; misapprehension may lead to an incorrect reconstruc-
tion of the family. Most existing genealogical diagrams (e.g.,
[4, 9, 10, 16]) share a common set of limitations:

1. They do not show family lattices well. Families are lattices
of relationships, not trees. The most popular visualizations
are ancestor charts (binary trees of generations of parents),
descendant charts (trees of generations of children) and
hourglass charts (combined ancestor and descendant charts
for a specific individual). This approach assumes a hierar-
chical structure that does not fit real-world families [16].

2. They do not show complex relationships well. Traditional
diagrams are unsuited for communicating complex pat-
terns such as divorce, remarriage, out-of-wedlock births,
and polygamy. These are part of real family histories and
may have different meaning in world cultures.

3. They do not show temporal attributes well. Temporal at-
tributes such as birth, death, marriage and divorce dates
are either omitted or depicted only by text labels.

4. They do not scale well. One of the major advances in ge-
nealogy in recent years has been the online availability of
family data, making it easier to construct larger family re-
lationship networks. Yet, unless heavily edited by hand,
automatically generated diagrams are not suited to depict
these larger networks. They tend to show perhaps eight
generations, sacrificing depth or breadth of relationships.

5. They do not show the relationship between nodes at a dis-
tance. It is hard to see the relationship to a famous per-
son or between two people co-mentioned in an historical
record if they are not close together in the family network.

To address the limitations of traditional genealogical dia-
grams we contribute TimeNets, a visualization technique for
genealogical data. TimeNets encode both family kinship
and timelines of individual life events; interactive degree-of-
interest filtering is used to scale to large data sets. TimeNets
address complex relationships by laying them out on individ-
ual lifespan timelines. These timelines also express temporal
attributes, such as birth or marriage date. Scale is handled
using focus+context techniques: a degree-of-interest func-
tion filters the display based on a user’s indicated interest in
some nodes and their relationship to other nodes. The same
mechanism also allows for the display of nodes at a distance
and the contextual nodes that relate them.



RELATED WORK
To place TimeNets in context, we review existing techniques
for both timeline and genealogy visualization.

Genealogy Visualization
In a broad sense, there exist two types of genealogical re-
lationships. Parent-child relationships (consanguine rela-
tions) define a hierarchy in genealogical data. Relationships
through marriage (conjugal relations) are non-hierarchical
and merge family trees. Together these form a lattice of
relationships—complex but still simpler than a general graph.
Visualizing the whole lattice structure is not realistic; it is
reasonable to instead find sub-structures that depict what is
of greatest interest to genealogists. The most common ge-
nealogical research is ancestral research—tracing ancestry
of self—and descendant research—finding descendants of an
ancestral couple. They correspond to constructing a tree of
ancestors and a tree of descendants. This observation verifies
why ancestor (pedigree) and descendant charts (Figure 1) are
canonical charting methods for genealogical data.

Other depictions have also been applied. An hourglass chart
combines both a pedigree and a descendent chart centered
on a specific individual (Figure 1c). Fan charts are ways of
drawing these trees without connecting lines and with more
space available to the leaves of the chart [4]. These charts
make it easy to understand the basic hierarchical relation-
ships of direct dependency at the cost of suppressing other
relationships. Specialized charts, such as a Table of Con-
sanguinity or a Canon Law Relationship Chart [3] are used
to determine the degree of relationship between people who
share a common ancestor, such as great aunt or third cousin
twice removed. Sometimes these basic genealogical charts
are combined with pictorial artwork.

(a) (b) (c) (d)

Figure 1: Genealogy diagrams. (a) Ancestor chart. (b)
Descendant chart. (c) Hourglass chart. (d) Dual tree.

McGuffin and Balakrishnan [16] introduced Dual Trees (Fig-
ure 1d). Dual Trees generalize the hourglass chart by offset-
ting the roots of the trees with respect to each other; mul-
tiple roots are connected along the hierarchy and each root
has its own hourglass chart. As a result, more information
can be shown at a time without introducing edge crossings.
To maintain readability, however, only a limited number of
nodes are shown on a computer screen. An interaction tech-
nique for expanding or collapsing a node is used to explore
large data and transition between different dual-tree subsets.

The genealogical techniques described are widely used in
published genealogies and software. They are successful in
showing a limited number of hierarchical relationships, but
have the five limitations we have previously described.

Figure 2: Biographical lifelines by Priestley, 1765 [21].

Figure 3: Genelines pedigree chart [9].

Timeline Visualization
An inspiration for making genealogical diagrams more ex-
pressive itself has an impressive pedigree. In 1765, Joseph
Priestley used timelines to depict the lifespans of two thou-
sand famous people from 1200 B.C to 1750 A.D (Figure 2).
He also invented using dots to indicate uncertainty in birth
and death dates. The horizontal axis is time and people’s
vertical position is ordered by “importance.” Kinship is not
shown, but Priestley’s diagram makes clear who was a con-
temporary of whom and who was living during world events.

Timelines have been used to visualize life events in a num-
ber of domains, such as medical records and criminal justice.
One of the best known of these are Lifelines [20] and its suc-
cessors. Lifelines use timelines to visualize personal histo-
ries based on medical records. Each timeline shows differ-
ent sections of the record such as diagnosis and medications.
Users can drill down into timelines for details-on-demand.
Temporal and causal relationships among different sections
can be also inferred, but require significant cognitive effort.
The Pattern Finder [5] is a descendant of the Lifelines work
that visualizes mined temporal patterns in multivariate data.

Randall Munroe of XKCD [18] hand-crafted timelines of in-
teractions among movie characters. Each character is repre-
sented using a lifeline differentiated by color. Lines converge
and are grouped using a gray background to indicate which
characters are together at a given time. A hierarchy is not
defined on the data and accordingly not shown.

Timelines have also been applied to the visualization of fam-
ily networks. Genograms [10] are like family trees, but lines
depicting a marriage represent ordinal time. Genograms can
depict more complex relationships like divorce and remar-
riage, but depend on special symbols. Genograms are most



Figure 4: TimeNets with different styles. (a) Thin lines
with external labels. (b) Thick lines with internal labels.

useful when the number of people depicted is moderate and
they are easiest to use when most relationships are hierar-
chical. Genelines [9] depict people as timelines (Figure 3)
and are good at showing temporal attributes. How they show
non-hierarchical patterns such as divorce and remarriage and
how they scale to large data are unclear, however.

Degree-of-Interest Techniques
As family networks become larger, they no longer fit on the
screen using any of the techniques discussed so far. Degree-
of-Interest techniques, introduced by Furnas [7], compute a
score for each node in the network based on which nodes
are presumed to be of most interest to the user. Nodes be-
low a threshold score are suppressed. Using versions of this
technique, Heer and Card [13] were able to display large DOI
Trees on the order of a million nodes. Card et al [2] combined
DOI Trees with time-varying organizational data to display
changes over 50 years of leadership of a medium sized coun-
try. van Ham and Perer [22] recently extended DOI tech-
niques to general graphs. DOI techniques might also aid
the scaling and filtering of family network diagrams. In this
project, we apply it to a neighbor of trees—genealogical lat-
tices. Interest might be assigned based on the relatives of a
focal person, the relatives two people might have in common,
or search results, such as every relative named “Christopher”.

TIMENET DESIGN
As the related work suggests, three visualization paradigms
have promise for genealogies: hierarchies, timelines, and
degree-of-interest techniques. Our challenge is to bring all
three of these techniques into correspondence through uni-
fied visual encoding and layout algorithms. In this section,
we describe the series of visual encoding decisions and asso-
ciated trade-offs involved in crafting TimeNets. We focus on

Figure 5: Early design prototypes. (a) Lifeline interpo-
lation techniques. (b) Different children layouts.

Figure 6: Marriages of Elizabeth Taylor. (a) Spouses
ordered chronologically. (b) Alternating spouse layout.
(c) Genogram representation [10].

high-level design goals and defer discussion of implementa-
tion and interaction details to the next section.

In designing TimeNets, our goal was to support simultane-
ous graphical representation of ancestor and descendant re-
lations, complex conjugal relationships, temporal attributes,
and data uncertainty—all in a scalable fashion. In addition
to generational structure, non-hierarchical relationships can
get complicated. Divorce and remarriages are frequent in
modern family settings. Furthermore, in non-traditional fam-
ily arrangements, one might have more than one spouse at a
time. A timeline is a natural way to visualize these relation-
ships as well as other important temporal attributes such as
marriage dates. Taken together, both hierarchical and tem-
poral information will enable effective understanding of re-
lationship dynamics and story telling of family history.

People as Individual Lifelines
To make temporal attributes salient, we started with the com-
mon convention of a linear timeline. A TimeNet’s horizon-
tal axis represents time progressing from left to right. The
examples in this paper use metric timelines; ordinal time-
lines are possible with minor modifications. Similar to prior
genealogical timelines [9, 21, 18], we represent a person as
an individual lifeline (Figure 4). The left end of the lifeline
represents a person’s birth and the right end represents their
death; thus the horizontal extent of the line depicts a person’s
lifespan. By default we use line color to depict sex (blue for
male, red for female). Lifelines include text labels consisting
of a person’s name and potentially other data. Line width is
left as an aesthetic design parameter; if the lifeline is thick
enough, we place the label within it (Figure 4b).

Marriage/Divorce as Converging/Diverging Lifelines
With the horizontal axis devoted to time, the vertical axis
is free to represent relationships. We use vertical proximity
to encode conjugal relations: two or more lifelines converge
into a bundle of adjacent lines to denote a marriage (Figures 4
and 5a). The point at which the lines meet represents the
marriage date. Conversely, lines diverge to indicate divorce.
This representation naturally encodes a variety of marriage



Figure 7: The marriages of Osama bin Laden. Gradi-
ents indicate uncertainty of birth or marriage dates.

patterns, as sequences of marriage, divorce, and remarriage
are depicted by the convergence and divergence of lifelines.
Plural marriage (polygamy) is represented by more than two
lines converging into a shared marriage bundle (Figure 7).

In the case of multiple marriages, the question arises of how
to order spouses. Our default approach is to vertically order
spouses by their first marriage date; hence a vertical scan
visits spouses in chronological order. A different approach is
to alternatively place spouses above and below a focal person
(Figure 6). An alternating placement reduces line crossings,
but makes it more difficult to determine spouse ordering. In
either case, when a person divorces we return their lifeline
to its original position, facilitating consistent placement and
enabling a horizontal scan to determine if a divorce occurs.

We have also explored a variety of lifeline interpolation
strategies (Figure 5a). Orthogonal lines and circular arcs
clearly depict the dates of marriage and divorce, however,
splines with continuous curvature are easier to follow (par-
ticularly for line crossings) and elicit higher user preference
ratings. We default to using cubic Bézier curves, but users
can change the interpolation settings if desired.

Unfortunately, line crossings due to multiple marriages are
sometimes unavoidable. To alleviate this problem, we use
the aforementioned spline interpolation and can apply alpha
blending to facilitate line-following. In some cases, a divorce
and subsequent remarriage may be in close temporal proxim-
ity, resulting in nearly vertical line crossings. In such cases,
we slightly exaggerate the time period to enable better per-
ception of the crossing (Figure 8).

Figure 8: Divorce and remarriage in close proximity.
(a) No perturbation. (b) Perturbed event points.

Parent-Child Relationships as Drop Lines
To represent consanguine relations, we depict children as
lifelines emanating from their parents. Our first design itera-
tion initiated a child’s lifeline directly on the parents’ mar-
riage line; the child line then diverged into its own space
(Figures 5b, 9c). Informal user testing revealed that this rep-
resentation is confusing, as it is often ambiguous which line
corresponds to a child and which to a divorced spouse. Fur-
thermore, this representation can result in lifelines with very
long vertical stretches that both add visual noise and compli-
cate perception of temporal patterns (Figure 9c).

Instead, we adopt a strategy similar to Genelines [9]: we de-
pict parent-child relations using a directional edge (or “drop
line”) that connects the parents to the start of the child’s life-
line. To make lines perceptible but not distracting we render
parent-child edges using faded dashed lines. Parent lines are
annotated with a visual marker indicating the directionality
of the edge. One disadvantage of this approach is that tracing
from parent to child requires more complex line-following.
However, there are a number of compensating advantages:
drop lines enable more accurate perception of temporal at-
tributes (e.g., birth date and lifespan) and reduce the saliency
of edge crossings when child lines are positioned far from
their parent lines (compare Figures 9b and 9c). Moreover,
drop lines easily accommodate children born out of wedlock:
we simply place markers on each parent’s lifeline and con-
nect them with the drop line (Figure 9a).

By default, we vertically sort children by birth date. We place
younger children closer to their parents, as this arrangement
helps minimize line crossings. We can also alternate child
placement above and below parents (Figure 5b), but such al-
ternation impedes quick apprehension of birth order.

Uncertainty
Genealogical data regularly suffer from missing or approxi-
mate values. Without indications of uncertainty, visual anal-
ysis may lead to inaccurate conclusions. Missing temporal
attributes such as birth and death dates can be particularly
problematic for our time-based layout. As described in the
next section, we first estimate missing attributes to derive
potential birth, death, and marriage dates. We then include
visual markers to convey missing and uncertain values to
viewers (Figure 7). By making uncertain data values more
apparent, we hope to assist users as they clean and curate
their data. For uncertain birth and death dates, we fade life-
lines using a gradient; the lifeline takes on full saturation at
the estimated date of birth or death. For uncertain marriage
and divorce dates, we draw an underlying marriage marker
and again use a gradient to indicate uncertainty. By clicking
an uncertain value a user can then enter a revised date.

Other Patterns and Attributes
While TimeNets directly show marriage, ancestry, and tem-
poral patterns, they can also be used as a substrate for con-
veying additional data. For example, the color encoding
of lifelines can be changed to communicate attributes other
than gender. A variable color encoding scheme may show
changes in geographic location (e.g., continent or country)
over time, or the occurrence of different diseases. TimeNets
can also highlight structural patterns: one might highlight an
ancestral path or view the output of a graph analysis routine.

Figure 9: Child layouts. (a) Children born out of and in
wedlock. (b) With drop lines. (c) Without drop lines.



Figure 10: Progressive elision by DOI (left-to-right).

Focus + Context Techniques
To navigate large genealogies, we use degree-of-interest
(DOI) estimation to determine the most salient aspects of
the data and then filter the elements deemed less interesting.
TimeNets visually communicate the existence of elided ele-
ments in two ways. First, when a person has a DOI value be-
neath the visibility threshold but is married to someone with
above-threshold DOI, a segment of their lifeline is shown to
indicate the duration of their marriage (Figure 10). Second,
to handle low-interest descendants, drop lines are still used,
but are faded out (c.f., [22]). These marks provide an indi-
cation of the elided context, and thus serve as “information
scent” [19] for further exploration.

IMPLEMENTATION
TimeNets are constructed in a two-stage process: data pro-
cessing and visual encoding. In the data processing stage, we
ingest genealogical data and apply a series of data transfor-
mations, including estimation of missing temporal attributes.
In the visual encoding stage, we calculate degree-of-interest
values and use them to layout the graph and label visible el-
ements. In this section, we detail each of these steps.

Data Model
Although a variety of genealogical data formats have been
proposed, the de facto standard within the genealogical com-
munity is GEDCOM [8]. Accordingly, we parse GEDCOM
files as one data source for TimeNets. Unfortunately, the
GEDCOM specification is incapable of representing many
types of interpersonal relationships, including same-sex mar-
riage, polygamy, and incest. As a result, we developed our
own data model for representing genealogical data. The first
step in our pipeline is thus to ingest data from an external
source—such as a GEDCOM file or web repository such as
Freebase [6]—and map it to our data model.

We use a basic relational data model. At its simplest, the
model consists of two relational tables: a list of individual
people and a table of relationships. For individuals, we as-
sume the presence of at least five attributes:

<id, name, sex, date of birth, date of death >

We encode relationships using foreign keys for two people
and require relationship type and temporal attributes:

<person1 id, person2 id, relationship type,
relationship start date, relationship end date >

Here person1 id and person2 id refer to individual records
in the person table. Relationships involving multiple people
are represented by multiple entries (rows). The primary rela-
tionship type values are Child-of and Spouse-of, though these
types are extensible. Moreover, the data model can be ex-
tended by introducing additional columns (e.g., geographic

data) or by introducing additional tables (e.g., lists of histor-
ical events to include along a timeline).

Missing Data Estimation
TimeNets rely on temporal attributes such as birth date and
death date in order to compute a layout. However, it is com-
mon for genealogical data to have missing or incomplete
temporal values, e.g., a data set may have birth and death
dates but lack marriage dates. To address this issue, we esti-
mate missing data values as part of our data processing stage.

We use a rule-based method to estimate missing dates. The
basic idea is to take advantage of the regularities among tem-
poral attributes. We define an ordered chain of rules for each
attribute, and use the first applicable rule in the chain:
· birth← parents’ marriage; mean sibling birth; mean spouse birth; ...
· death← mean sibling death; mean spouse death; ...
· marriage← oldest child’s birth; ...
· divorce← assume no divorce

We use default estimates if no applicable rule exists. For
instance, we offset a person’s birth date (e.g., by 20 years) to
estimate a missing marriage date and assume a the person is
alive if their lifespan is under a threshold (e.g., 85 years).

The main goal of our estimation rules is to ensure that we
have at least reasonable values for missing attributes for sub-
sequent visualization. However, our current solution is only a
stopgap method. While we have attempted to select suitable
defaults, analysts can modify the estimation rules or add new
ones; in the future we plan to improve the estimation process
using machine learning techniques. As discussed previously,
TimeNets also visualize the uncertainty of estimated dates so
that analysts can identify and repair missing values if desired.

Degree-of-Interest Calculation
Once the data has been suitably transformed, we calculate
degree-of-interest (DOI) estimates. These DOI values pro-
vide a rank-ordering of the “interestingness” of people within
the genealogical graph based on a current set of focal nodes
(e.g., clicked elements or search result hits). These values
are in turn used to subsequently filter and layout the graph;
after the DOI values are computed, only the nodes whose
DOI values are above a chosen threshold are visualized. Our
approach is based on previous models [1, 2, 13], with modi-
fications to support non-hierarchical marriage relationships.

Our default DOI function is as follows. Starting with a set of
maximally interesting focus nodes, we traverse the genealog-
ical graph and assign lower DOI values with increasing dis-
tance. If a root element (e.g., central matriarch) is defined,
maximal DOI values are assigned both to focus nodes and
their relatives along the path to the root. Otherwise, DOI val-
ues decrease linearly across consanguine relations. Across
conjugal relations, DOI values decrease more slowly using
fractional DOI increments. Thus for a given focal node,
spouses will be given higher interest than either parents or
children. For both spouses and children, additional fractional
DOI increments are assigned based on date order; for exam-
ple, first spouses have slightly higher DOI than later spouses.

Of course, other DOI functions are possible. For instance,
one might be interested in exploring cousin relationships



and thus assign cousins higher interest values. Our system
is modular and can be extended to incorporate alternative
schemes. However, we leave the specification of new interest
functions by genealogical analysts to future work.

Layout
Once DOI values are calculated, we compute the layout.
The layout algorithm works by grouping genealogical ele-
ments into a three-level scenegraph consisting of nodes, lo-
cal blocks, and global space (Figure 11). Nodes represent
the bounding region for a specific lifeline. People either di-
rectly or transitively connected by marriage are grouped to-
gether to form a local block. Our algorithm first segments
the graph into local blocks and performs a local layout for
each, determining node bounds in the process. Blocks are
then positioned by a global layout pass.

Local block segmentation A directed acyclic graph of blocks
is constructed by traversing the genealogical structure in
depth-first fashion and grouping conjugally-related people.
Blocks may have more than one parent due to intermar-
riage. Our current approach has one limitation: it assumes
that cross-generational incest (e.g., mothers marrying sons
or sons-in-law) does not occur. We believe this to be a rea-
sonable assumption for most real-world data sets.

Local layout and lifeline generation For local layout, we first
arrange visible nodes along the time dimension relative to the
origin of the block and determine node lengths. We then gen-
erate lifelines and set their vertical ordering. We also com-
pute the position and style attributes of marks representing
elements beneath the current DOI threshold.

Lifelines are generated according to the design principles in
the previous section. We maintain event points for temporal
attributes of each person, including dummy event points to
aid spline routing (e.g., between birth and marriage points).
If divorce and re-marriage events occur in close spatial prox-
imity, we perturb the event points along the horizontal di-
mension to ensure better perception of line crossings. We
then place a label along (or in) the lifeline. If necessary, we
truncate the label to fit the horizontal bounds of the lifeline.

The vertical placement of event points depends on a person’s
computed DOI. We start by finding the person with maximal
DOI in the block. We vertically oscillate this focal lifeline
between a married and non-married position. The focal life-
line then serves as a reference line for spouses, whose life-
lines converge to and diverge from the reference line (Fig-
ure 6). Different orderings are possible (Figure 4); the default
is to order spouses vertically above the reference line.

Global layout Once the block hierarchy is built, global lay-
out is performed by positioning each block. First, we arrange
blocks along the horizontal axis according to the minimum
birth date in each block. Second, we perform the vertical
layout, ensuring that the bounding boxes for local blocks do
not intersect. We use different placement schemes for ances-
tors and descendants. For descendants, we traverse descen-
dant blocks in pre-order, ensuring that the visit order is from
the youngest child to the oldest child within each generation
(Figure 12a). Each block’s position is then assigned accord-

Figure 11: A three-level scenegraph groups nodes into
local blocks within a global coordinate space.

(a) (b)

Figure 12: Global layout. (a) Descendants placed by
pre-order traversal, (b) Ancestors by in-order traversal.

ing to the visit order. As a result, the first-visited block is
positioned below the root and the second-visited block is po-
sitioned below the first block, and so on. For ancestors, we
visit blocks using in-order traversals (Figure 12b). Once lay-
out is performed, we check if the vertical size fits the screen
space. If not, we iteratively cull low-interest nodes and up-
date the layout until it fits.

Interaction and Animation
Interactive navigation of TimeNets is similar to previous
DOI-based visualizations [13]. Clicking a node makes it the
current focus and updates the layout; control-clicking multi-
ple elements defines multiple foci. In this way, one can nav-
igate the graph and build up views of interest. Alternatively,
one can type a search query; the result set is used as focal
nodes. We use staged animations to communicate changes
between interface states: the first stage fades out elements
whose DOI has dropped beneath threshold, the second stage
animates previously visible elements to their new positions,
and the third stage fades in newly visible elements.

EVALUATION
To inform the iterative design of TimeNets, we conducted
a controlled experiment comparing the effectiveness of gen-
erational “family tree” diagrams with TimeNets. Subjects
were shown a genealogical diagram and asked comprehen-
sion questions. We hypothesized that (H1) traditional tree di-



agrams support faster and more accurate perception of struc-
tural family relations but that (H2) TimeNets better facilitate
the apprehension of patterns with a temporal component.

Method
We asked subjects to complete tasks with two different vi-
sualizations: a modified descendant chart (Figure 13a) and
a TimeNet chart (Figure 13b). We augmented the descen-
dant chart design to support multiple marriages: spouses are
listed in chronological order and each marriage is indicated
by a curved edge annotated with marriage and divorce dates.
Edges to children originate from these marriage markers. We
used 600 × 600 pixel images depicting a fictitious family of
36 people. Each person was labeled with a common first
name with either 5 or 6 letters. To avoid ambiguity all names
of the same gender have a unique first letter. Names were
varied between diagram conditions.

For each diagram, subjects were asked to answer comprehen-
sion questions (Table 1) grouped into three categories:

· Structural questions involving only kinship,
· Temporal questions involving only timing, and
· Structural × Temporal questions involving both.

There were 36 unique tasks in all, 18 for each diagram.
Subjects were instructed to accurately answer questions as
quickly as they could. A total of N=22 subjects participated
via Amazon’s Mechanical Turk [12] and were paid $0.10
USD per task. Before participating, subjects had to success-
fully complete a suite of qualification practice tasks. To com-
bat known reliability issues with timing on MTurk [12], we
used a “ready-set-go” interaction with each task and timed
the tasks ourselves using JavaScript.

Results
We analyzed both task accuracy and response time. To ana-
lyze accuracy, we first scored each subject response as either
correct or incorrect; the overall accuracy rate was 90%. We
found no significant differences between tree diagrams and
TimeNets for structural (χ2(1,211)=1.030, p=0.310), tem-
poral (χ2(1,210)=0.072, p=0.789), or structural × temporal
(χ2(1,206)=1.603, p=0.205) tasks.

St
ru

ct
ur

al

How many daughters does Irina have?
How many half-siblings does Peter have?
Who is Isaac and Holly’s closest male ancestor?
Which person has had the most marriages?
Which mother of two is still married to her first husband?
Which woman has step-children but not biological children?

Te
m
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l

How many people were alive in 1950?
Which person was born during the 1920s?
Were Marcus and Carmen alive at the same time?
Who was born most recently?
Who died in infancy?
Who has the longest lifespan?

Te
m

p
×

St
ru

ct How many couples got married in the 1970s?
Which of Leslie’s sons was the last to get married?
Who did Brenda marry after divorcing Roger?
Who was half the age of their spouse when they married?
Which uncle is younger than some of his nephews?
Who is at least 10 years younger than all their siblings?

Table 1: Representative User Study Tasks.

Next, we examined response times. The response times are
not normally distributed, so we used a non-parametric test
(Mann-Whitney U) to analyze the data. For structural tasks,
the median response time using TimeNets is 2.8s slower
(19.9s vs 17.1s, 14%) than tree diagrams. This difference,
however, is not significant (U (108,103) = 5353, p = 0.637).
For other tasks, TimeNets exhibit a statistically significant
advantage. The median response time using TimeNets is 4.3s
faster (14.6s vs 18.9s, 23%) for temporal tasks (U (104,106)
= 4408, p = 0.012) and 6.0s faster (18.1s vs 24.1s, 25%) for
structural × temporal tasks (U (103,103) = 4430, p = 0.041).

Discussion
Our results provide scant evidence for H1: we found no sig-
nificant differences in accuracy across chart types, and while
the descendant charts were slightly faster for structural tasks,
the difference was not significant. On the other hand, we did
find evidence for H2: tasks requiring the use of temporal at-
tributes were completed significantly faster using TimeNets,
resulting in a ∼25% time savings. Our results suggest that
(a) TimeNets can be quickly learned by a lay audience and
(b) compared to tree diagrams, TimeNets better facilitate per-
ception of temporal trends in genealogical data.

In addition to establishing concrete benefits for TimeNets,
our study also provided qualitative insights for improving fu-
ture designs. From subjects’ comments and our own test runs
we learned that visual search for a person’s name often dom-
inates task time regardless of diagram type. This observation
suggests that search and highlighting mechanisms for finding
individuals could facilitate interactive use of either diagram
type. Also, more sensitive studies (e.g., using eye tracking)
might be able to separate the effects of diagram type on vi-
sual search versus decoding and inference.

These results provide promising formative evidence for the
use of TimeNets in genealogical research: TimeNets appear
to be well-suited for conveying structural and temporal data
in an integrated fashion, and may prove a useful tool for anal-
yses involving temporal attributes and/or complex marriage
relations. Still, further evaluation is needed to more deeply
understand the strengths and weaknesses of genealogical vi-
sualization techniques. New studies might examine depic-
tions of data uncertainty, and case studies with practicing ge-
nealogists are necessary to assess the effectiveness of these
techniques in real-world contexts.

CONCLUSION
In this paper we presented TimeNets, a time-based repre-
sentation of genealogical data. By depicting individuals as
timelines which converge and diverge to depict marriage,
TimeNets represent a number of real-world phenomena—
including divorce, remarriage, plural marriage, and out-of-
wedlock births—that are either difficult or impossible to
represent using standard genealogical diagrams. By using
degree-of-interest techniques, TimeNets also support scal-
able, interactive exploration. In a controlled experiment
we found that TimeNets exhibited significant advantages
over family tree diagrams for tasks involving temporal data:
TimeNets accelerated task times ∼25% without diminishing
accuracy. These results suggest that TimeNets could serve as
a useful tool for genealogical hobbyists and researchers.
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Figure 13: Genealogical diagrams used as experiment stimuli. (a) Descendant chart. (b) TimeNet.

Though we have focused on human genealogical data, we
believe our techniques can be applied to other domains con-
cerned with time-varying branching and merging phenom-
ena. Examples include academic genealogy, biological evo-
lution, artistic movements, computer systems (e.g., multi-
threading), and organizational structures (e.g., firms and sub-
sidiaries [14]). Exploring such domains may also suggest
new variations of TimeNets. For example, the use of ordinal
time, alternative degree-of-interest functions, and additional
means of communicating structural units (e.g., a nuclear fam-
ily) are all potentially useful extensions of our technique.

Looking forward, the design of TimeNets is just one step in a
larger research agenda. Genealogical research is an attractive
domain for studying rich, collaborative sensemaking prac-
tices [11]: it engages millions in a social process of foraging
for data, evaluating multiple uncertain data sources, analyz-
ing the data, and then disseminating the resulting products.
As a first step in this domain, we designed TimeNets to be
able to aggregate and represent genealogical data more repre-
sentative of real-world families. We hope to extend TimeNets
to the web to both study and support collective curation, anal-
ysis, and dissemination of genealogical data.
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