
The Perception of Rectangular Area and Guidelines for Creating
Effective Treemaps

Abstract—Treemaps are space-filling visualizations that make efficient use of limited display space. They recursively subdivide
rectangular areas to encode numerical values and because of their efficiency they are commonly used to display large amounts of
hierarchical data. However, area judgments are known to be less accurate than judgments of other visual encodings, such as length.
We investigate the effects of rectangle aspect ratio and data density (data marks per unit area) on value comparison judgments
involving both leaf and non-leaf nodes. Our study of aspect ratios finds that 90-degree rotation has little impact on estimation
accuracy and, contrary to common assumptions, a wider distribution of aspect ratios results in higher accuracy. We then compare
treemaps with hierarchical bar chart displays and identify the data density at which length-encoded bar charts become less effective
than area-encoded treemaps. Based on these results, we propose guidelines for the effective use of treemaps and suggest alternate
approaches to treemap layout.

Index Terms—Graphical Perception, Information Visualization, Treemaps, Visual Encoding, Experiment, Mechanical Turk.

1 INTRODUCTION

• Amount of data available keeps growing, and large datasets are
becoming easily accessible [?, ?, ?]. Visualization is an effective
tool to help identify trends or patterns, or discover a story, in the
data.

• Visualizations are often touted for their space-filling properties
[8, 6, 11]. Treemaps are one of the most commonly used space-
filling visualization types [14, ?, ?, ?]. However, treemap design
is not rooted in empirical evidence.

– Treemaps use a non-optimal encoding [?]. Length or po-
sition is known to be a superior encoding [?, 3, ?], but is
less space effective (only uses one dimension of the space).
What is the tradeoff between space-savings and readabil-
ity? Given a limited amount of space and the amount of
data to visualize, when is it best to use what type of encod-
ing?

– Squarified treemaps claim to ease area comparison by min-
imizing aspect ratios, but this claim has heretofore not
been evaluated.

• Need guidelines for choosing the most effect visualization type.
Would also like recommendations that guide future design of lay-
out algorithms etc.

2 RELATED WORK

Graphical perception. Bertin [?]: “Resemblance, order, and proportion
are the three signifieds in graphics.” Previous work on comparing vi-
sual encoding variables. Talk about area in particular (Steven’s Law).
Talk about Cleveland & McGill, Heer & Bostock and others. Mention
integral / separable dimensions?

Heer & Bostock find that circular area, rectangular area (comparing
2 rectangles), and rectangular area (in treemaps) have similar judg-
ment accuracy. They also find an affect due to aspect ratio in both
rectangular comparison conditions. Comparing aspect ratios of 2/3, 1,
3/2, they found that comparing squares resulted in significantly higher
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error. We seek to replicate this result, and extend the analysis to a
wider variety of aspect ratios.

Treemap work on communicating structure. What are all the pre-
vious studies on treemaps? Kosara/Metaphor [16]: mention effects of
task prompt / metaphor (“under” vs. “contained in”)? Note that we
are not investigating structure directly in this work, however, we are
incorporating comparisons between leaf and non-leaf nodes.

3 RESEARCH GOALS

What are we trying to achieve?
What aspects are common to each experiment? Note shared error

measure.
For example, mention Mechanical Turk issues here? (Introduce

MTurk as a shorthand for Mechanical Turk). Introduce notions of HIT,
reward, and qualification task.

4 PILOT STUDIES

Before investigating effects due to aspect ratio or data density, we first
conducted pilot studies to inform our experimental approach. Specif-
ically, we wanted to test the effects of true proportional difference,
luminance contrast, and judgment type. To do so, we conducted two
separate experiments.

4.1 Pilot 1: Proportional Difference and Luminance
In our first pilot study, we showed subjects a 600×400 pixel squarified
treemap display visualizing 24 uniform random values. Two rectan-
gles were selected at random and marked A and B for comparison.
We asked subjects to identify which rectangle was smaller and what
percentage the smaller was of the larger. In each trial, the RGB inten-
sity of each cell was varied randomly between 0.3 and 1.0 according
to a uniform distribution.

We conducted the pilot on MTurk as 100 HIT distinct hits, each
with 24 assignments and a reward of $0.03. A total of 41 subjects pro-
vided 2400 responses; we removed 121 outlier responses (5%) with
an absolute error greater than 35%. We then analyzed responses by
applying Analysis of Covariance (ANCOVA) to the log absolute er-
ror of subjects’ proportion estimates, treating both true proportional
difference and luminance difference as covariates.

Multiple prior studies [3, 5] have demonstrated an effect of the true
proportional difference on the accuracy of proportional judgments. As
shown in Figure 1, our pilot study results exhibit a nearly identical
profile for rectangular area judgment as that of Heer & Bostock [5].
Our analysis finds that the true difference has a strong, statistically
significant effect on accuracy (F(1,2252)= 253.90, p < 0.001). We
also note a high prevalence of responses that were a factor of 5 and
that as a result, trials for which the true difference is also a factor of
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Fig. 1. Average area judgment errors in Pilot 1, binned by true differ-
ence. Errors peak at 60% and diminish at the extremes of the scale.

5 correspondingly exhibited less error. This reduced error is presum-
ably an artifact of estimation bias and not due to improved perception.
These results verify that the true proportional difference has a strong
effect on judgment accuracy and should be carefully controlled across
experimental conditions.

We also sought to verify that luminance differences among treemap
cells—commonly used to encode an additional quantitative variable—
do not interfere with area judgments. In other words, we wanted
to confirm that luminance and area are separable perceptual dimen-
sions [4, 13]. Our analysis finds no significant effect due to luminance
difference (F(1,2252) = 0.086, p < 0.767), in agreement with prior
work. The implication is that studies of area judgment do not need to
include interactions with luminance in order to produce correct, gen-
eralizable results.

4.2 Pilot 2: Proportional Judgment Type

Proportional judgments of the form “what percentage is the smaller of
the larger” have been used in numerous graphical perception experi-
ments (e.g., [3, 9, 15, 5]), often to aid comparison with prior studies.
However, one can equivalently express proportions in terms of mul-
tiples: as a scalar factor that is the reciprocal of the percentage. If
equivalent, the ranking of visual variables (e.g., length vs. area) and
systematic estimation biases (e.g., underestimation of area as predicted
by Steven’s Power Law [12]) should be invariant to how the judgment
task is formulated. Thus in our second pilot study, we sought to check
that these two response types (percentage and scalar difference) are
equivalent in terms of both bias and absolute error.

Subjects were shown either two circles (requiring an area compari-
son) or two rectangles of equal height (requiring a length judgment) in
a 600x400 pixel image. In both cases, the shapes were center aligned.
One shape was marked with the number “100” and the other with
a question mark (“?”). We asked subjects to estimate the unknown
value using the other shape as a reference. When the smaller shape is
unknown, the question takes the form of a percentage judgment with
valid responses between 0-99. When the larger shape is unknown, the
question takes the form of a scale judgment indicating by what factor
the unknown shape is larger. For each combination of shape and task,
we tested proportional scale factors of 1.4, 1.8, 2.4, 3.6, 5.1, 8.3, 14.4,
and 24.2. The study was deployed on MTurk as 32 HITS (2 judgment
types x 2 encodings x 8 differences), each with 24 assignments and a
reward of $0.04. A total of 29 subjects provided 768 responses; we
removed 7 outlier responses (%0.9) with an absolute percentage error
greater than 35%.

We then analyzed responses using Analysis of Variance (ANOVA)
of the log absolute percentage errors. Consistent with prior re-
sults [3, 5], we found a significant advantage for length judgments
over area judgments (F(1,729) = 26.84, p < 0.001) and again found
a strong effect of true proportional difference (F(7,729) = 42.38, p <
0.001). The raw (non absolute) error scores revealed that area judg-
ments on average resulted in underestimates, again consistent with
prior work [12, 10]. Finally, we found no significant effect due to the
judgment type (F(1,729) = 0.001, p = 0.969). We also found similar
results when analyzing error in terms of scalar, rather than percentage,
differences. These results provide evidence that there is no significant
performance difference between percentage and scale judgments and

Fig. 2. Example stimuli from the aspect ratio study. Rectangles varied
in terms of both proportional difference and aspect ratio.

justifies the continued use of percentage judgments tasks in subsequent
experiments.

5 EXPERIMENT 1: THE EFFECTS OF ASPECT RATIO

Aspect ratio experiment and results goes here. List motivation and
hypotheses here. Motivation: - high aspect ratios are bad [7, 13]. -
squares? heer and bostock

Hypotheses: - difference will again be a factor - rotation will ham-
per comparison. Rotation is more cognitively difficult than judgments
of translation and scale [1]. - large ratios? - squares?

5.1 Method
We asked subjects to compare rectangles of varying size and aspect
ratio. We showed subjects a 600×400 pixel image containing two
center-aligned rectangles and instructed them to identify which of the
two rectangles (marked A or B) was the smaller and then estimate the
percentage the smaller was of the larger by making a “quick visual
judgment.” Note that stimulus images consisted solely of two rectan-
gles (Fig. 2) and not a a full treemap display. As Heer & Bostock [5]
found no significant accuracy differences between these two stimulus
types, we are confident that our results generalize to treemap displays.

We controlled both the true proportional difference between rectan-
gles and their aspect ratios. True differences varied over 0.32, 0.48,
0.58, 0.72. To reduce accuracy differences due to estimation bias,
these values were explicitly placed at equal, symmetric distances from
their nearest factor of 5. Rectangle aspect ratios were determined by
the cross-product of the set { 2

9 , 2
3 , 1, 3

2 , 9
2} with itself. This set was

chosen to facilitate comparison with the results of Heer & Bostock [5]
(who used the set { 2

3 , 1, 3
2}) and also to probe the effects of includ-

ing more extreme aspect ratios. As all non-square aspect ratios have a
matching rotated variant (e.g., a rectangle with ratio 2

3 is a 90◦ rotation
of a rectangle with ratio 3

2 ), we included an additional replication of
the 1×1 condition for balance. Our experiment design thus consisted
of 104 unique trials (HITs): 4 (difference) × 26 (aspect ratios with
replication).

As a qualification task we used multiple-choice versions of two ex-
ample trial stimuli. For each trial, we recorded subjects’ discrimina-
tion (which rectangle was smaller) and proportion (what percentage
the smaller is of the larger) judgments. We did not analyze timing data
due to known issues with the standard MTurk interface [5]. We re-
quested a total of 104 HITs with N=25 assignments and paid a reward
of $0.03 per HIT.

5.2 Results
We collected 104×25 = 2,600 responses, from which we removed 18
outliers (0.7%) with absolute errors above 35%. To analyze the data,
we used log absolute error: log2(|judged percent - true percent| + 1).
We then conducted an ANOVA with a 4×6×2 factorial design:
• (4) proportional difference: 0.32, 0.48, 0.58, 0.72
• (6) aspect ratio pairs: rotated variants ( 2

9 , 9
2 ) are grouped

• (2) relative orientation: same ( 9
2 ×

9
2 ) or different ( 9

2 ×
2
9 ).

The model is partially unbalanced, as orientation does not apply to
comparisons with squares.
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Fig. 3. Area judgment error by true proportional difference. Error bars
indicate 95% confidence intervals.
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Fig. 4. Judgment error by orientation and aspect ratio. Squares omitted
due to rotation invariance. Error bars indicate 95% confidence intervals.

5.2.1 Proportional Difference Dominates

We again found a strong effect dye to the true proportional differ-
ence (F(3,2173) = 94.56, p < 0.001). True difference produced the
strongest effect in our model, shifting average absolute errors by up
to 18%. This result argues for the importance of including true differ-
ence as either a factor or covariate in proportional judgment studies.
Applying Bonferroni-corrected post-hoc tests, we found that all dif-
ference levels were significantly different (p < 0.05) except for 0.58
and 0.72. Finally, the effects of proportional difference appear to be
independent of the other factors; we found no significant interactions
(p > 0.05) with either orientation or aspect ratio.

5.2.2 Orientation Affects Extreme Aspect Ratios

We then examined the effects of shared orientation on judgment ac-
curacy, excluding comparisons involving squares. We found no main
effect due to orientation (F(1,1490) = 0.669, p = 0.414). This re-
sult implies that, on average, 90◦ rotation of rectangles has little to no
effect. However, we did find a significant interaction effect between
orientation and aspect ratio (F(2,1490) = 7.23, p < 0.001). Figure 4
shows error rate by both orientation and aspect ratio. Mental rota-
tion appears to increase error when comparing the most extreme ratios
in our study (4.5 x 4.5) and suggests that rotation may contribute to
higher judgment errors as aspect ratios deviate further from squares
(e.g., as occurs in slice-and-dice treemaps [8]).

5.2.3 Diverse Aspect Ratios Improve Accuracy

Finally, we analyzed the impact of aspect ratio on judgment accuracy,
finding a significant effect (F(5,2173)=13.85, p < 0.001). Applying
post-hoc tests with Bonferroni correction, we found that aspect ratio
pairs of 450x450 and 100x100 exhibited significantly higher error than
the pairs 100x150, 150x150 and 150x450. Similarly 100x450 was sig-
nificantly more error prone than 150x450. All other differences were
not significant. Figure 5 shows the resulting rank ordering by error of
aspect ratio pairs and their corresponding confidence intervals. The
results indicate that average judgment accuracy improves when com-
paring rectangles with diverse aspect ratios, even when one of the as-
pect ratios is large. The highest error occurred when comparing two
extreme aspect ratios or comparing squares. The latter result replicates
the results of Heer & Bostock [5], who similarly found increased error
for comparison of squares.
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Fig. 5. Area judgment error by aspect ratio. Squares and extreme ratios
have the highest error. Error bars indicate 95% confidence intervals.

5.3 Discussion
Our experiment found that graphical perception suffers when compar-
ing large aspect ratios, particularly when the rectangles having differ-
ent orientations. These results support the general intuition against
treemap layout algorithms that produce rectangles with large aspect
ratios (e.g., slice-and-dice [8]). On the other hand, subjects exhib-
ited equally poor accuracy when comparing squares. As a result,
the perceptual justification for squarified treemap layout algorithms
[2, 14]—that squares promote more accurate comparisons—appears
to be faulty. Rather, our findings are consistent with the hypothesis
that subjects partially rely on 1D length comparisons when estimat-
ing area, as comparing the lengths of sides as a proxy for area leads
to maximal error when comparing squares. It appears that squarified
algorithms are effective in part because (a) they avoid extreme aspect
ratios and (b) they are unable to perfectly achieve their “squarifica-
tion” objective, instead producing a distribution of aspect ratios. As
we discuss later in the paper, this insight can also be applied to inform
improved approaches to treemap layout.

6 EXPERIMENT 2: THE EFFECTS OF DATA DENSITY

Our first experiment investigated value comparison accuracy in two
types of charts designed to display hierarchical data: a treemap and a
grouped bar chart. We used a squarified treemap layout [2], as it is
the most commonly used treemap layout. In addition, our results from
our aspect ratio experiment suggest that squarified treemaps produce
marks that users can effectively compare. We did not ask questions
about the structure of the tree, instead choosing to focus on the value
comparison task, which we believe is the more common task (NK:
Probably should do some studies asking about the structure of the
tree?).

We designed this experiment to answer the following questions:

• How does choosing a treemap or grouped bar chart display affect
estimation time and accuracy?

• How does data density affect estimation time and accuracy?

We were interested in three types of comparisons: leaf to leaf, leaf
to non-leaf, and non-leaf to non-leaf. In a treemap, these compar-
isons are all rectangular area comparisons, but in the grouped bar chart
condition comparing a non-leaf node to another node requires a more
complicated cognitive process than the leaf-leaf comparison, which is
a length comparison.

6.1 Methods
For each trial, we showed participants a chart with two highlighted
nodes. In the grouped bar chart display, a highlighted node may be a
group of bars. We then asked the participant to indicate which of the
two was smaller (the discrimination task), and then what percentage
the smaller was of the larger (the estimation task).

Before participants could accept our HITs, we required them to pass
a qualification task that consisted of two example charts (one for each
chart type) and two test questions (one for each chart type). The test
questions were the same as the trial, but with multiple choice responses
instead of free-text. For the estimation task answer choices, only one



was correct while the others were grossly incorrect, thus ensuring that
participants understood the instructions.

NK: Insert statistics about how many took/passed qualifica-
tion?

We tested 2 chart types (treemap and grouped bar chart), 5 data
densities (256, 512, 1024, 2048, 4096 leaves), and 3 comparison types
(leaf-leaf, leaf-non-leaf, non-leaf-non-leaf). A fully crossed design
with 5 replications per cell resulted in 2 ·5 ·3 ·5 = 150 HITs per task.
Each chart was sized at 600x400 pixels and displayed within a frame
600 pixels tall.

For each trial we recorded the time to completion for both the dis-
crimination and estimation tasks, and participant’s screen resolution,
color depth, and browser type as reported by JavaScript. We used
N=24 assignments per HIT.

NK: Insert statistics about:

• # of unique participants

• completion time (for all HITs)

• display resolution

Other notes. Did not ask structural questions because we were
focusing on the value comparison task, which we hypothesize is the
more common task.

6.1.1 Stimuli: Squarified Treemap

Discuss here? Why chosen?

6.1.2 Stimuli: Hierarchical Bar Chart

Fig. 6. A sample tree visualized as a (a) treemap, and (b) grouped bar
chart.

There are many ways one could represent hierarchical data in a bar
chart display. We designed our bar chart layout to use space as effi-
ciently as possible while still maintaining some encoding of the struc-
ture of the data. Our central idea was to display each leaf as a bar,
disregarding the level of that leaf in the hierarchy. Siblings that are
leaves form a bar chart.

We first count the number of groups of leaves that share a parent
(i.e., groups of siblings): this is the number of cells in the final display.
Each cell contains a bar chart displaying the leaves in a group. Figure
6 shows an example tree visualized as a treemap and a grouped bar
chart display. There are four groups of siblings in this example: one
leaf is attached to the root and receives its own cell, while each of
the other three groups of leaves are two levels from the root and each
receive their own cell. The width of a bar indicates what level the leaf
it encodes is at in the tree: the thicker the bar, the higher the level. In
Figure ??, the top-left bar encodes the first-level leaf, so it is slightly
thicker than the other bars. Finally, the color of the borders of the cell
also indicate what level each bar is at: lighter borders indicate a higher
level.

Every cell is the same size. We lay out the cells in a grid and at-
tempt to minimize the aspect ratio of the cells while allowing enough
width to show the densest cell (i.e., the cell with the most leaves). We
therefore compute the minimum width required to display the dens-
est cell, allowing the bars to shrink to a minimum width of one pixel
while maintaining gaps of one pixel, and divide the available width by
the minimum width to obtain the maximum number of columns pos-
sible. We then compute the number of rows that will minimize the
aspect ratio of a cell given the maximum number of columns. This
sometimes results in empty cells in the display.

NK: Discuss features of the chart that encode structure? Specif-
ically, coloring, although all bars are the same color regardless of
what level they are at.

6.1.3 Data generation
We create trees using a simple randomization process. Each tree has
two levels below an implicit root node. We start at the root node and
add a random number of children. To each of these children, we further
add a random number of children. We then choose nodes in the tree at
random (possibly including the root node) and add individual leaves
until we reach the desired number of leaves.

• Creates ragged trees

6.2 Results
7 DESIGN RECOMMENDATIONS

8 CONCLUSION
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