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Abstract

The study of complex activities such as scientific production and software development often re-
quire modeling connections among heterogeneous entities including people, institutions and artifacts.
Despite advances in algorithms and visualization techniques for understanding such social networks,
the process of constructing network models and performing exploratory analysis remains difficult and
time-consuming. In this paper we present Orion, a system for interactive modeling, transformation
and visualization of network data. Orion’s interface enables the rapid manipulation of large graphs —
including the specification of complex linking relationships — using simple drag-and-drop operations
with desired node types. Orion maps these user interactions to statements in a declarative workflow lan-
guage that incorporates both relational operators (e.g., selection, aggregation and joins) and network
analytics (e.g., centrality measures). We demonstrate how these features enable analysts to flexibly
construct and compare networks in domains such as online health communities, electronic medical

records, academic collaboration and distributed software development.

Keywords: social network analysis, data management, data transformation, graphs, visualization, end-

user programming.

1 INTRODUCTION

As social network analysis has gained popularity, researchers have developed novel statistical techniques,
visualization designs, and user interfaces to make sense of large networks. However, many of these ad-
vances take the process of assembling a network model for granted. Much data that is collected for anal-

ysis, whether scraped from online data sources or tabulated using traditional surveys, is not inherently in
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the form of a network but instead a raw list of data points and their corresponding attributes. This requires
analysts to extract their own model of a network from the raw data. For many data sets, networks can be
modeled in as many different ways as analysts have hypotheses. For instance, after collecting a database
of online community data, analysts may wish to examine the relationships between community members
to measure collaborative support, or the relationships between thread posts to measure the dissemination
of information, or the relationships between communities as a whole to measure comparative community
success. To analyze each of these scenarios, completely different network models need to be extracted
from the original data.

Typically, refactoring network data into such various models requires custom code that can take ana-
lysts days or even weeks to write. While it is also possible to express most of the necessary operations
as database queries, this requires defining a schema, loading the data, and then forming the correct SQL
queries —including complex queries such as multi-table joins. Repeating this level of effort as new ques-
tions emerge may undermine the exploratory process and even dissuade some analysts from testing all
hypotheses.

To address these issues, we introduce Orion, a system for interactive modeling, transformation and
visualization of network data. While many visualization and data mining techniques have been proposed
for social network analysis, Orion focuses on the often-overlooked early stages of data transformation
and assessment when forming network models from source data. Orion enables iterative, exploratory
analysis by reducing hours of programming and transformation to a few minutes of interactive, graphical
specification. We make the following contributions:

A unified model and workflow language for network data. We use relational data tables as our
fundamental model and represent networks as edge tables over a domain of integer node indices. We chose
this model to correspond to those used by analytic databases and scalable network analysis packages.
Our workflow language provides both relational operators and graph analysis routines and enables the
generation of reusable analysis scripts. The language supports a range of analysis tasks including network
definition, filtering, aggregation and statistics computation.

A graphical user interface for iterative network manipulation and visualization. Orion translates

user interface actions, such as drag-and-drop and menu commands, into operations in the underlying work-
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flow language. Orion also supports the specification of complex linking relationships. The system first
constructs a graph model of links among table columns; a traversal algorithm then identifies all feasible
linking paths defining networks for a set of user-selected node types. This approach simplifies the other-
wise difficult process of specifying a series of relational join and aggregation operations. Once a network
has been defined, Orion enables visual exploration using tabular, matrix and node-link views. Networks
can also be exported for use in other analysis tools.

The rest of the paper is structured as follows. After reviewing prior work, we describe our data model
and present the Orion interface. Next, we discuss our enabling algorithms for network extraction and
describe our workflow language. As a preliminary evaluation of Orion, we demonstrate its use in case
studies of online health communities, electronic medical records, academic collaboration and distributed
software development. We then discuss future work and conclude.

This article is an extended version of an earlier publication [14] and features more network operators,
further details on our workflow language, and an additional case study. This version also includes an

appendix with implementation and evaluation details for our foreign key identification algorithm.

2 RELATED WORK

Orion draws on related work in graph visualization, analysis tools, and data management. We discuss

selected relevant projects below.

2.1 Graph Visualization Techniques

Researchers have devised a variety of visualization techniques for networks [18]. Two common represen-
tations used in social network analysis are node-link diagrams (typically using force-directed placement)
and adjacency matrix views [9]. Hybrids of the two have also been proposed [16, 17]. These approaches
organize elements according to the linkage structure of the graph.

An alternative approach is to plot network data according to the attributes of the nodes (e.g., [32, 38]),
as in a scatter plot or so-called “semantic substrates” [32]. Network links can then be drawn between
nodes. This approach is well-suited for assessing potential correlations between node attributes and net-
work structure.

In a related vein, PaperLens [25] uses multiple coordinated views of network attributes to explore
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publication databases. The NetLens system [24] generalizes this approach to support networks that fit a
“content-actor” data model, i.e., bipartite networks such as publications and authors. In contrast, Orion
supports an arbitrary number of linking relationships both within and between data tables.

Others have researched means of dealing with large graphs in excess of tens of thousands nodes.
Common strategies include filtering and aggregation. van Ham and Perer [36] introduce a degree-of-
interest function [7] that reduces a graph to a small connected subset of nodes based on a set of foci
(e.g., search results). PivotGraph [38] and Honeycomb [37] aggregate networks by “rolling up” edges
according to node attributes; e.g., an analyst can collapse a social network of corporate employees to
show the summed connection strengths between workers’ geographic locations. ManyNets [6] enables
comparison among multiple networks using a tabular view of summary graph statistics. If desired, users
can still view standard (albeit less scalable) node-link diagrams on demand.

Orion draws on this prior work: it provides both node-link and matrix visualizations and supports
network aggregation based on node attributes. However, with the sole exception of NetLens [24], each of
the above systems assume a well-defined network is given as input to the tool. None of these tools help

the user define and assess a variety of network models derived from arbitrary data tables.

2.2 Network Analysis Tools

Recent years have seen a proliferation of network analysis tools. Many of these tools combine visualization
and statistics within an interactive environment [1, 8, 28, 30, 33]. Others are programming libraries [20,
21, 26] or menu-driven interfaces [3, 35] that provide access to analysis algorithms. While these tools
support data import from common file formats (e.g., GraphML) and external data services (e.g., Twitter or
Facebook), they do little to facilitate the flexible construction of network models from arbitrary data tables.
Orion is not intended as a replacement for these systems; rather, it is designed to assist the unsupported

early stages of network analysis. In the process, it enables the use of these downstream tools.

2.3 Managing Graph Data

Another domain of related work is graph data management. Database researchers [2, 11] have developed
storage strategies and query languages [11] for large networks. Similarly, a number of commercial sys-

tems —including neo4j, InfiniteGraph, AllegroGraph, DEX, OrientDB, and sones/GraphDB — are now
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available. These systems facilitate storage, indexing, and querying of large graphs, but with goals dif-
ferent from Orion. Representative applications include managing social network web sites and querying
motifs in biological networks. Orion instead supports the construction and assessment of network models

from source data.

2.4 Interactive Data Transformation and Querying

Orion focuses on transforming data to create network models. In a related vein, other research systems
have been designed to assist the early stages of data cleaning and reformatting. Google Refine [19] and
Data Wrangler [22] enable analysts to reformat input data sets and correct data errors prior to analysis.
D-Dupe [23] assists the process of finding and resolving duplicates within a data set. Any of these tools
might be used to prepare data tables prior to network modeling with Orion. Similar to Wrangler, Orion
produces as output not only data, but also a declarative transformation script that can be reapplied to new
data and inspected to review data provenance. In this light, Orion can also be understood as an end-user
programming tool for network manipulation.

Orion was particularly influenced by the Polaris system [34], now commercialized as Tableau. Polaris
maps drag-and-drop operations of data variables into a formal algebra from which both database queries
and resulting visualizations are derived. One key insight from this work is the value of deeply coupling
visualization tools with rich facilities for data transformation. Orion similarly provides a user interface in
which user actions are mapped to statements in an underlying data transformation language. While Polaris
enables filtering and aggregation operations over a single data table, Orion instead enables manipulation
of multiple tables, including linking relationships realized as relational joins.

The two systems most similar to Orion are Gilbert & Auber’s work on automated graph generation
[10] and Liu et al.’s Ploceus [27]. Both of these systems enable analysts to extract network models from
tabular data and visualize the results. Gilbert & Auber [10] analyze the relationships among table columns
to infer a hierarchy of values (e.g., Continent, Country, City). They present an interactive visualization
of these hierarchies with which users can select a desired network model that links entities according to
shared column values. However, the system only operates on a single table. Ploceus [27] enables users

to similarly extract networks based on shared properties and provides a suite of filtering, aggregation and
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subdivision operations. Like Orion, Ploceus defines most of its operations using relational algebra and
includes support for multi-table joins. However, Orion provides more sophisticated subdivision methods
and is unique in providing mixed-initiative support for network construction: Orion can automatically

infer foreign key relationships and recommend possible network models for requested node types.

3 DATA MODEL

A variety of data models exist for handling graph data; common structures include adjacency lists and ad-
jacency matrices. However, these representations alone are insufficient for network analytics, as in many
cases networks must be derived from a prior data source permitting a number of models and parameteri-
zations. As a simple example, a social network extracted from an email archive might include links only
between senders and recipients, or might include links among all co-recipients.

Prior research on visualization toolkits has noted the value of representing networks as relational tables
[12]: each row represents an edge in the graph, and columns contain source and target node values among
other edge attributes. This format provides a sparse representation of the network, enables easy querying
of attributes, and supports efficient edge iteration. On the other hand, this format is inefficient for path
following and is thus ill-suited for many graph algorithms. As a result, we adopt a hybrid data model in
Orion.

We use relational data tables as our base representation. Tables can represent individual node types
or linking relationships. At times, node types may be implicit within the attributes of a table; Orion
provides methods to promote these values to their own table. Networks can be inferred from the foreign
key relations among tables. This design allows us to support arbitrary node types and linking relations
while facilitating integration with relational databases.

Once a specific linking relationship has been chosen (as described in subsequent sections), Orion
models the network using a specialized edge table format. Source and target columns represent incident
nodes using zero-based integer indices. For efficient processing, these indices default to the row index in
the corresponding node table. This scheme works well for edges involving a single node table, but leads
to index collisions among different tables. To ensure distinct keys we bias the indices for a given table by

the total size of any previous tables. The mapping from node tables to index ranges is stored as metadata
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for the edge table.

Some graph analysis routines, such as force-directed layout or clustering coefficient calculation, can
be performed by simply iterating over edges. However, other methods —including shortest path and
betweenness centrality algorithms — must traverse the graph by following paths. Accordingly, our edge
tables support the construction and caching of adjacency lists, represented as an array of sorted integer
arrays for in-links, out-links or both.

This integer-based representation provides multiple benefits. In particular, it allows rapid access of
associated node data via index-based table lookups and facilitates the creation of efficient network analysis
routines. Representing nodes as zero-based integers enables the use of simple arrays to keep state within
graph algorithms, avoiding the overhead of associative data structures.

Our data model, like the rest of Orion, is implemented in the Java programming language. We have
implemented our own data structures and processing routines, but our data model was intentionally chosen
to correspond to those used by modern analytic databases and scalable network analysis packages (e.g.,
[26]). In future work, we want to exploit this correspondence to implement our workflows on massively
scalable platforms. We use relational operators for as much of our workflow as possible so that we can later
leverage shared-nothing parallel databases. That said, we will show shortly that our own implementation

already scales to networks involving millions of elements, and so supports a broad class of data sets.

4 THE ORION USER INTERFACE

With the Orion user interface, analysts can import source data from multiple formats, specify a variety of
network models, compute statistics, and visualize the results. Analysts can then export either the resulting
data or a declarative script defining the transformation workflow. In this section, we first describe the de-
sign of the Orion interface through a concrete usage scenario. We then provide more detailed descriptions

of Orion’s user interface components.

4.1 Usage Scenario

Consider the real-world example of a researcher (a Computer Science PhD student) studying online health
communities organized around medical conditions (e.g., asthma, lupus, lyme disease, etc). Driving ques-

tions include: How do community dynamics and structure vary across conditions? Can we gain new
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Figure 1: The Orion User Interface, consisting of (a) a schema viewer for manipulating data tables and (b)
a linker interface for creating network models. Analysts drag-and-drop desired node types to the linker
and Orion responds with (c) a table of possible linking paths. The (d) preview display shows the resulting

network data. Analysts can also specify (e) aggregation, (f) filtering, and (g) splitting (subdivision) criteria.

insights from the co-occurrence of symptoms and conditions? To explore these questions, our analyst col-
lected over 3 million discussion posts from MedHelp.org, a public online health site. The initial database
consists of a single table where each row represents a post on the site. Table columns include a forum
(community) name, the user name of the poster, the post date, the title of the discussion thread, and the
post text.

From this data, the analyst would like to analyze the social networks of the individual communities.
She begins by importing the data table (a large CSV file) into Orion. The table and its columns are
displayed in the Schema Viewer in Figure la.

Next, she must define the entities of interest that might form the nodes of her graph. Currently, these
entities reside implicitly as values within the table. The analyst right-clicks the username field and selects
“Promote” in the resulting context menu. This operation causes all username values to be extracted from

the table: a new table is constructed with one row for each unique user and the username field in the
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original table is replaced with a foreign key referencing the new table. As the analyst wishes to model a
social network based on co-participation within a discussion thread, she similarly promotes the thread_id
field as an entity of interest.

The analyst would now like to construct a social network among users. She drags the id field (the
primary key) from the username table and drops it on the Linker interface in the center of the Orion
window (Figure 1b). The interface allows analysts to specify desired source and target node types. In
response, Orion calculates all feasible network definitions involving username entities as nodes (Figure
Ic). In this case, there is only one feasible result: linking users by shared threads. Should the analyst wish
to consider alternatives, she could promote other entities (e.g., individual forums).

When the analyst clicks the check box to include the linking path, Orion responds by showing a preview
of the resulting graph (Figure 1d). Orion previews include both a list of tables that will be generated, and
an inspector for individual table values. For now the analyst would like to limit her exploration to a single
community. She drags the forum field from the Schema Viewer to the Filter region of the Linker; she
then selects the “Asthma” forum using the resulting search box (Figure 1f). The preview updates in turn.
Satisfied, the analyst clicks the “Create Network™ button to add the network to the data set; the Schema
Viewer updates with a new edge table containing links between all posters to the “Asthma” forum who
have posted to the same thread; by default, edge weights indicate the number of shared threads between
two users.

By right-clicking the “Asthma” edge table, the analyst reveals additional options. She can choose
to visualize the network using both matrix and node-link diagrams. In a matrix overview (Figure 2a),
the disjoint structure of the community becomes evident which suggests that newcomers arrive into the
community, ask a question, and it gets handled by one of a handful of leaders. This also suggests that
the community may serve as an “answer mill” rather than a place of prolonged discussion. The analyst
can dig deeper by filtering the visualization to only show a highly active cluster and pivots to a node-
link visualization (Figure 2b). Here, with nodes sized by their post count and colored according to their
betweenness centrality, the analyst can focus on specific nodes of interest for further analysis.

Individual tables can be inspected and visualized using bar or scatterplot charts. Each visualization

also supports interactive filtering controls. After filtering the graph to highlight interesting patterns, the
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Figure 2: Orion Visualizations of Online Health Communities. From left-to-right: (a) A sorted matrix
view of an online asthma forum. A few central leaders divide up responses among incoming questions.
(b) Node-link diagram of highly active cluster of the same forum. (c) Plot of betweenness centrality
values for two different network models, sized by number of posts. The models have similar centrality

distributions.

analyst can save the filtered edge table as an additional entry in the Schema Viewer. The analyst can also
compute statistics, including node degrees, betweenness centrality and clustering coefficients. Statistical

operators add additional columns to the implicated edge and/or node tables.

Now the analyst would like to assess the effects of using a different network model. The current model
includes edges connecting all posters to the same thread. What happens if instead thread respondents are
connected only to the thread initiator? The analyst follows the same modeling path as before, but this time
adds a join predicate: she right-clicks the linking path of the network and chooses to filter how the ohc table
is linked to itself. In this particular data, a poster has a post_id of 0 if they initiated the thread and a post_id
greater than O if they responded to the thread. As these data characteristics are specific to this particular
community data, the analyst enters a customized formula in the resulting dialog: INT1 (‘post_id’) ==0

&& INT2 (‘post_-id’) >0

The formula ensures that the source node always corresponds to the thread initiator and that the target
node is a respondent. The analyst creates this network, computes betweenness centrality values, compares
values for the two models in a scatter plot (Figure 2¢) and notes a high degree of correlation. She decides

to proceed with the simpler model connecting only initiators to respondents.

The analyst would now like to start comparing the various health communities. She revisits her previ-

10
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ous steps, but instead of filtering the forum field, she drags it to the Split region. The preview display then
shows entries for multiple networks — one for each forum. Upon completion, these networks are grouped
together within a subtree of the Schema Viewer. Context menus for the grouping element enables batch
invocation of statistics for all contained networks (see Figure 13 for an example). The analyst can now

continue analyzing the diverse characteristics of health communities.

4.2 User Interface Design

The previous scenario illustrates a subset of the modeling and visualization functionality supported by
Orion. We now describe the user interface components in more detail. Along the way, we outline addi-
tional functionality, such as the ability to merge multiple sets of edges and construct “roll-up” graphs via

node aggregation.

421 Schema Viewer

The Schema Viewer (Figure 1a) provides an overview of all data tables in the current data set and supports
data manipulation. Source data tables and generated edge tables are indicated by icons. Table attributes
are displayed using icons indicating their data type, with special annotations for primary and foreign key
fields. Context menus enable analysts to rename and remove both tables and columns, create derived
columns using an expression language, specify primary keys, and promote values in one or more columns
to new node tables. Analysts can also access statistics and visualization options via context menus. Drag-
and-drop interactions allow analysts to specify foreign key relations (by dragging a field on to a primary
key with a matching type), import data (by dragging external data files from the operating system), and

querying for network models (by dragging fields to the Linker interface).

4.2.2 Link Specification

The Linker interface (Figure 1b) is the primary means of defining networks. Analysts start by dragging
desired node types to fields for source and target nodes. Orion responds by computing the possible linking
paths between the source and target nodes and displays the results in a table. Users can select the resulting
paths to include those edges within the resulting network model.

Filtering. Analysts can drag-and-drop fields to specify filtering criteria (Figure 1f). Filters can be

11
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Figure 3: Network splitting operations supported by Orion. From left-to-right: (a) subdivision by category,

(b) sliding windows, (c¢) anchored windows and (d) subgraph extraction.

created for any table involved in the network. Orion generates dynamic query widgets — selection lists
and range sliders —based on the data type. Corresponding predicates are then applied during network
construction to limit the nodes and edges included in the final graph. In addition to single table predicates,
analysts can specify filtering criteria directly on joins. Filterable joins are presented in a context menu
when an analyst right clicks a linking path. Currently, Orion only supports user-defined join predicates

specified as Java code statements.

Splitting. An alternative to filtering is to split a network into a collection of subgraphs. Examples
include inspecting time slices and splitting on categorical variables (e.g., health forums). To specify sub-
division criteria, a user first drags a node or edge field to the Split region (Figure 1g). Orion then displays a
widget enabling further parameterization (Figure 3). Networks generated by splitting appear in the Schema

Viewer as grouped collections that support batch operations.

Orion supports splitting by categorical variables to create separate networks that isolate a given node
or edge attribute value. For quantitative and temporal attributes users can specify window functions; both
sliding windows (which sequentially cover a domain) and anchored windows (which extend from fixed
reference bounds) are supported. Of course, not all such splits are useful: naively splitting on a node’s
primary key results in a collection of singleton graphs. In this special case, Orion instead interprets the
split as a request for subgraphs centered at each node and provides a graph distance control. Analysts can
extract all nodes and edges within a specified graph distance to isolate egocentric networks. For example,

a distance of 1.0 includes all neighbors, a distance of 1.5 includes all neighbors and edges between them,

12
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a distance of 2.0 includes all nodes within two hops, and so on.

Rollup. When specifying desired node types via drag-and-drop, typically the primary key of a node
table is used. If analysts instead drag-and-drop a non-key field, an aggregated network will be constructed
that uses the unique field values as individual nodes (c.f., PivotGraph [38]). The underlying nodes are
grouped according to the requested field; edges between groups are tallied to provide an aggregate repre-
sentation of the underlying graph.

Multiple Edge Sets. By selecting multiple linking paths, Orion allows analysts to construct networks
with multiple edge sets. When multiple paths are selected, the linking interface enables controls for
choosing an aggregate function for merging edge sets (Figure le); options include basic logical (or, and)
and arithmetic (count, sum, product) operations. For arithmetic operations, analysts can also provide
numerical weights for each edge set.

Preview & Confirmation. As analysts manipulate settings within the linker display, a preview panel
updates in response (Figure 1d). Analysts can review the number and size of all tables generated, and
inspect the values of individual tables. Once an analyst is satisfied with the linking definition, they can

click the ‘Add Network’ button to add all resulting tables to the Schema Viewer.

4.2.3 Visualization

Orion also supports visualizations: table displays, basic data graphics (bar and scatterplot charts), node-
link diagrams, and matrix views (see Figure 2). Visualizations are shown in a separate window with
different visualization types accessible via tabbed panes. These windows include a schema viewer showing
only the data tables implicated in the current visualization. Orion uses the Java implementation of the
Protovis specification language [13] to generate these visualizations.

Analysts can parameterize a display using filtering, sorting, zooming, and visual encoding controls.
Node-link diagrams use a force-directed layout algorithm based on a physical simulation. Matrix rows
and columns can be sorted by node attributes or by linkage to hunt for patterns within the data. Layout
and sorting facilities are included among the analytic operators described in §6.5. As our interactive
data transformation methods constitute the primary contributions of this paper, we leave consideration of

additional visualization facilities to future work.

13
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5 NETWORK DEFINITION AND EXTRACTION

Having introduced the Orion interface, we now discuss some of the underlying algorithms enabling inter-
active network modeling. While relational tables provide a flexible model for representing data, network
extraction involves creating linking queries that regularly include one or more join operations. As a result,
defining networks via a query language such as SQL can be tedious and error-prone. To simplify the
process, Orion models the connections among data tables and analysts request networks simply by spec-
ifying the desired node types. The system then enumerates the possible network definitions, from which
an analyst can choose.

We describe the steps of this process in the following subsections. First, we construct a linking graph
that models the foreign key relations among tables. In response to user queries (i.e., desired node types),
we then run a search algorithm over this graph to identify valid linking paths. Linking paths are then

translated into relational algebra statements for extracting network edge tables.

5.1 Linking Graph Construction

To aid network definition, Orion builds a linking graph: a data structure that supports user queries over
possible network models. Nodes within a linking graph correspond to data table fields (columns); primary
key fields are assumed to represent a specific node type. Edges in the graph represent relationships among
fields (e.g., foreign key references) that might be used to define a network among node types. Given input

schemas for a set of data tables, Orion constructs a directed graph containing three types of edges:

1. Key reference (R) edges link all primary and foreign keys representing the same node type.

2. Intra-table (T') edges link all foreign keys within a table. The edges represent potential linking paths

between node types.

3. Conjugate (C) edges link a foreign key F of one node type to a primary key P of a different node

type if and only if the table containing F has an additional foreign key that references P.

While the first two edge types are straightforward, conjugate edges merit further explanation. These

edges represent paths in which one can join a linking table with itself to form a unipartite graph—a

14
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Figure 4: Schema and linking graph for publications data. Primary keys are italicized. Links are styled
according to the edge type; links without arrows are bi-directional (R & T edges). The graph is a data

structure for finding all networks involving a pair of node types.

Query: Authors.ld x Publications.Id (ties between people and papers)
Authors.Id 2 Links.Authorld L5 Links.Publd & Publications.Id

= TAuthorld ,Publd (Links)

Query: Authors.ld x Authors.ld (social ties between people)
Authors.1ld £> Links.Authorld L Links.Publd Q) Authors.Id

= Tauthorid Publd (Links) Mpupra—pubia TPubld Authorid (Links)

Authors.ld 5> Links.Authorld 1) Links.Instld £> Authors.1ld

= TAuthorld Instld (Links) MInslld:Inslld Tnstld Authorld (Links)

Figure 5: Example linking queries and results returned by Orion’s search algorithm. Linking path edges
are annotated by type: key reference (R), intra-table (7)) or conjugate (C) edges. Paths are mapped to

relational algebra statements to extract network edge tables.

process analogous to multiplying a bipartite adjacency matrix by its transpose. Key reference (R) and
intra-table (7") edges are bidirectional; conjugate (C) relationships are unidirectional, from a foreign key
to a primary key with a different node type. Figure 4 shows the schema and linking graph for publication

data extracted from the ACM digital library.

5.1.1 Automated Key Finding

To facilitate accurate key assignments—and thus accurate linking graph models—Orion includes mecha-

nisms to automatically infer single-column primary and foreign key relations. To identify primary keys,
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the algorithm finds columns with distinct elements in each row and then ranks the candidates according
to data type (e.g., integers are preferred to strings or dates) and position (left-most columns — those with
a minimal index position — are preferred). The top-ranking result for a table is then chosen as the key,
though users are free to override this choice within the interface.

For a selected primary key, Orion identifies candidate foreign keys by first finding all table columns
with a matching data type. It then scores each candidate using a logistic regression classifier. The regres-
sion model includes the following features, where P is the primary key column, F is the candidate foreign
key column, dist returns a set of distinct column values, and /cs returns the longest common subsequence

within two strings:

o = st o) o =1 - lishstise
a ist

__|les(name(P),name(F))| __ |les(table(P),name(F))|
Je= max(|name(P)|,|name(F)|) Ja= max(|table(P)|,|name(F)|)

In other words, candidate keys are classified using features concerning (a) how many distinct primary
key values occur in the candidate column, (b) how many elements in the candidate column occur in the
primary key column, (c) the similarity of the column names for the primary and candidate keys, and (d)
the similarity of the primary key table name to the candidate key column name. We trained our classifier
on a corpus of test data, including all examples in this article. Our classifier achieves an accuracy of 98.9%
using cross-validation tests. More details about our classification approach, including additional features

and evaluation methods, are provided in the appendix.

5.2 Linking Path Search

Given a linking graph and desired source and target fields (node table primary keys), Orion searches the
graph to identify valid linking paths. These paths can be translated into relational algebra statements (e.g.,
projections and joins) to create a network edge table.

Orion’s path-finding method (Algorithm 1) performs a breadth-first traversal starting from the source
field. The traversal algorithm allows repeated visits to a node, but greedily prunes the search at each step
by testing the validity of candidate path segments. For a given path segment path, we denote the most
recently added field by u, the previously added field by ¢, and a newly encountered candidate field by v. All

fields have a corresponding base field indicating the node type: primary key fields reference themselves,
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while foreign key fields reference a primary key. With these definitions in place, valid paths are defined by

the following conditions, which roughly correspond to the boolean variables a, b, ¢, d within Algorithm 1:

1. Excluding source and target fields, paths can not contain the same base more than twice.
2. The same base field can not occur three times consecutively unless u# and v are in the same table.

3. Three consecutive fields can not be from the same table, unless the third field is reached by a key

reference edge (R).

4. A field reached through a conjugate edge (C) can not be added to a path unless (a) t and u are in the

same table and (b) ¢ and v share the same base field, which differs from that of u.

The algorithm returns a set of valid linking paths with which an analyst can define a network model.
To simplify the results, the algorithm culls paths that are identical to a previously found path if reversed.
In addition, Orion sorts the returned paths such that shorter paths with less variation in base field types are

listed first.

5.3 Network Extraction

Once an analyst has selected a set of desired linking paths, Orion translates these paths into relational
algebra statements that when evaluated provide a network edge table. Figure 5 provides examples of input
queries and the resulting linking paths and relational algebra statements (using the data and linking graph
in Figure 4).

Mapping paths to relational algebra is straightforward. In most cases, each pair of fields (ignoring
source and target fields) maps to two columns of the same table, with adjacent pairs related by an equijoin
on the shared inner field. The special cases are conjugate edges, for which an encountered pair is instead
joined against itself, and “self-edges” within a table that result in an odd number of path elements (e.g.,
tree data with paths of the form 7.P SrrL&Tp).

When an analyst selects a network definition, Orion executes the resulting queries and constructs an
edge table with integer node indices (§3). Orion similarly turns filtering criteria specified in the user
interface into relational selection predicates that are incorporated into the queries. If an analyst selects

multiple linking paths, Orion will construct multiple edge tables. Orion then forms the union of these edge
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Algorithm 1 FindPaths(source, target)

maxQOccurrences <— source = target 73 : 1
paths < {}
queue <— new Queue([source])
while gueue is not empty do
path < dequeue(queue)
len < length(path)
t < len <2 ?null : previous(path)
u < current(path)
for all e € edges(u) do
VVIivEEAVF U
a < |{n € path : sameBase(n,v)}| > maxOccurrences
b < sameBase(t,u,v) A (len > 2V —sameTable(u,v))
c < type(e) # R ANsameTable(t,u,v)
d < type(e) = C N—(sameTable(t,u) \ sameBase(t,v))
if ~(aVbVcVd) then
newPath < append(copy(path),v)
if v £ target then
enqueue(queue,newPath)
else if reverse(newPath) ¢ paths then
paths < paths\J{newPath}
end if
end if
end for
end while

return path
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Operator  Description

Read Import a data table or network.
Write Export data table(s) or network.
Rename Rename a field, table, or network.
Key Set primary key status for a field.

Reference  Add a foreign key reference from one field to another.

Remove Drop a field, table, or network.

Derive Define a new field according to a user-defined function.
Rank Add sort indices ordered by field values.

Promote Extract field values to a new node table.

Link Extract a network defined by one or more linking paths.
Filter Filter nodes or edges of a network according to a predicate.

Subgraph  Extract subgraph within a given distance of a set of focus nodes.

Split Segment a network by field values (e.g., categories, time slices).

Rollup Create an aggregate graph according to node field values.

Stats Compute a given network statistic and store as a new field.

Layout Compute spatial coordinates for nodes using a layout algorithm (e.g., force-directed placement).

Table 1: The Orion Workflow Language.

tables; analysts can further specify aggregation functions in the Orion user interface to control if and how

multiple edge sets should be merged.

6 ORION WORKFLOW OPERATORS

In addition to transforming data, one goal of Orion is to enable the construction of editable and reusable
analysis workflows. These workflows are realized in a declarative language incorporating both relational
operators and network statistics. By mapping user interface actions into statements in this language, Orion
supports not only data manipulation and visualization, but can also export reusable scripts that keep a
record of data provenance. In this section we describe the operations supported by our language and how

they can be used to model and analyze network data.

Each Orion workflow task is an operator accepting one or more named parameters. These operators

modify a data set: a collection of named tables. A workflow is simply a sequence of tasks. Figure 6 shows
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an example workflow for the case study in §7.1. Orion externally represents workflows using a simple

XML format. Table 1 summarizes each of these operators.

6.1 Data Import and Export

Orion’s input / output operators read in data from different sources and write results in a variety of formats.
The read operator imports data tables from external sources such as delimited text files (e.g., comma- or
tab-separated values), relational databases, and GraphML or Dot (GraphViz) network files. Network files
are translated into tables, typically one node table and one edge table. For delimited text files, Orion infers
column data types based on their contents. The write operator writes either individual tables or extracted

networks to a database or files in these same formats.

6.2 Schema Modification

Orion includes a handful of operators for modifying table schemas. The rename operator renames tables or
individual columns. The key operator indicates that a column serves as a primary key, while the references
operator assigns foreign key relations. Foreign key relations are particularly important, as they are used as
the basis for determining feasible linking paths. While tables pulled from relational databases often have
the appropriate key relations defined in their schemas, data in common formats such as CSV regularly lack
this metadata. To add this metadata, our key finding algorithm (§5.1.1) generates a sequence of key and

references statements.

6.3 Table Transformation

To aid the creation of network models, Orion provides operators for manipulating single tables. The re-
move operator simply drops a column or table. The derive operator allows analysts to create new columns
by writing a user-defined function over existing columns. Orion currently accepts user-defined functions

as snippets of Java code that are dynamically compiled at run-time.

6.3.1 Ranking Table Rows

The rank operator adds a new column containing rank-ordered integer indices. Rank statements must
include sorting criteria: one or more fields to sort in ascending or descending order. The sort order

determines a set of non-repeating indices. Statements can also take group-by fields; each group is then
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rank-ordered separately. The rank operator can be used to create indices enabling nuanced join predicates

(e.g., the post_id field used in the scenario of §4.1).

6.3.2 Promoting Column Values to Node Tables

Tabular data often contains implicit linking relationships via values embedded in a column. For example,
a single table of research grant awards might contain fields for a principal investigator (PI), a co-PI, and
the institutions of each. From this data one may wish to form social networks of researchers and/or
institutions. To help model such networks explicitly, Orion provides the promote operator. Given one or
more field names, the promote operator first identifies and counts all distinct values in those columns and
then populates a new table with the schema (id, value,count). Values in the input table are replaced with
foreign key references to the new “promoted” table. This operation allows analysts to extract implicit node
types into explicit node tables. Returning to the grants example, an analyst might promote the PI and co-PI
columns to create a new node table for people; the original table now serves as a linking table defining a

network among people nodes.

6.4 Network Modeling

At the core of the Orion language are network creation operators.

6.4.1 Network Definition

Given a set of linking paths as input, the link operator extracts a network (edge table) according to the
process described in Section 5. All input linking paths must have the same starting and ending fields. If
multiple linking paths are provided, the link operator will construct a single edge table that is the union
of the per-path edge tables. The resulting table includes a path_id column indicating which linking path
generated a link. If an optional aggregation parameter is provided, the operator will generate a final edge
table by applying an aggregate function over a group-by of the source and target columns; the aggregate
values then become the edge weights.

The link operator also accepts optional projection and filtering parameters. Projection parameters
consist of node or linking table columns to include across joins (as if included in a SQL SELECT clause).

Filter parameters are name-value pairs of table names and predicate functions. Both single-table predicates

21



Online Submission ID: 0

(for filtering either node or linking tables) and two-table predicates (for join predicates on linked tables)
are accepted. The link operator also accepts boolean parameters for suppressing self-links in unipartite
graphs and for ensuring that only distinct edges are considered in linking tables. The latter enforces pre-

aggregation of linking tables.

6.4.2 Sub-Network Extraction

Once a network has been created, Orion provides operators for extracting sub-graphs. For example, an
analyst may want to compare time-slices of an evolving network or various ego-centric networks extracted
from a larger social graph. The filter operator creates a filtered edge table based on a set of edge and node

predicates. Edges are removed if a node predicate returns false for any incident node.

Given a set of “focus” nodes, the subgraph operator returns a subgraph containing all edges within a
specified minimum distance. Orion measures graph distance by counting hops or summing edge weights.
In the future, we plan to also support the degree-of-interest extraction method introduced by van Ham and

Perer [36].

Orion also provides iterators that enable repeated invocation of an operator over a sequence of param-
eter settings. Iterators are useful for performing batch operations, such as repeated filtering or subgraph
extraction. We use iterators to implement a split operator that can segment networks according to cate-
gorical or numerical fields. For numerical data columns, analysts can choose to split a network using a
sliding window (e.g., to create separate time slices of a network) or an anchored window (e.g., to show
the evolution of a network over time) while specifying the bounds of interest. Iterators also enable batch

statistics calculation (see §6.5).

6.4.3 Network Aggregation

At times an analyst will be more interested in the aggregate properties of a graph than in leaf-node details;
given a social network, she may wish to view the aggregate connections among genders or cities. The
rollup operator aggregates edges according to specified properties of the nodes (c.f., [38, 37]). The rollup

operator generates an aggregate edge table and node tables for the node attributes.
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Workflow w = new Workflow();

w.add (Tasks.read ("ohc") // load data file
.file("ohc.csv")
.type("csv"));

w.add (Tasks.promote ("users") // promote username field
.from("ohc™")
.select ("username"));

w.add (Tasks.promote ("forums") // promote forum field
.from("ohc™")
.select ("forum"));

w.add (Tasks.link ("cp") // create forum x forum network
.path("forums.id", "ohc.forum",

"ohc.username", "forums.id")

.distinct (true));

w.add (Tasks.stat ("cp") // calculate edge weight deviance
.field("dev")
.stat ("edgeWeightDeviance"));

Figure 6: An example Orion workflow definition for the online health case study in §7.1. Here the work-
flow is shown as Java code; workflows can also be persisted using a simple XML format.

6.5 Network Analysis

Orion additionally provides network analysis algorithms. The stats operator computes one or more statis-
tics of a network and stores the resulting values in the corresponding node or edge tables. The statistics
operator is modular, allowing user-defined functions to be added to the workflow language. Currently
these functions must be written in the Java programming language and conform to a provided interface
definition. Supported statistics include in-degree, out-degree, betweenness centrality, eigenvector central-
ity, clustering coefficient, edge weight asymmetry, edge weight deviance, community identification, and
linkage-based sorting.

While many of these metrics are common to social network analysis, a few deserve special mention.
The edge weight asymmetry and deviance measures are inspired by van Ham et al.’s Honeycomb [37]

system. The former is simply the logged ratio of edge weights between corresponding anti-parallel edges
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in a directed graph. The latter calculates the amount an edge weight deviates from the expected value if one
assumes a uniform random distribution of total weight across the cells of the adjacency matrix. Deviance
can help identify edges with unexpectedly strong or weak strengths, particularly in dense aggregated
networks.

Community identification is performed via a greedy hierarchical clustering optimizing Newman’s
modularity metric [29]. Linkage-based sorting provides an integer sort order of nodes that attempts to
minimize the distance among connected nodes. We approximate this objective by seriating the nodes
using the cluster tree constructed by the community identification algorithm (c.f., [39]). The resulting
ordering is particularly useful for visualization purposes, such as permuting the rows and columns of an
adjacency matrix diagram to reveal clusters (c.f., [16]).

The layout operator is similar to the stats operator, but instead computes spatial coordinates for subse-

quent layout in a visualization. This operator currently supports force-directed layout only.

6.6 Summary

In summary, the transformations supported by Orion are realized in a declarative workflow language.
Saved Orion sessions are simply XML-serialized versions of this workflow, and so can easily be edited or
reviewed directly in a text editor. While the Orion interface enables rapid specification of these workflows,
we have also found that programmatic use of the workflow language (as in Figure 6) has greatly aided data

analysis in our research groups.

7 CASE STUDIES

We now present a collection of case studies illustrating how Orion has been applied to conduct network

analyses in multiple domains.

7.1 Online Health Communities

The scenario in §4.1 introduced an analysis of online health communities. In addition to comparing the
social networks of individual forums, our collaborating analyst is also interested in exploring the con-
nections between communities. Might cross-posting behavior provide insights into the comorbidity of

medical conditions? We demonstrate such a scenario using the Orion user interface.
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Figure 7: Matrix view of connections between online health forums. Edges are weighted by the number
of distinct cross-posters. The cells are then colored according to edge weight deviance.

To assess such questions, the analyst generates a network in which the nodes correspond to discussion
forums and edge weights indicate the number of distinct users who have posted in both forums. To
construct this network with Orion, the analyst promotes both the username and forum fields to node tables.
The analyst then requests a network with forum nodes as both the source and target. Orion suggests the
desired result: linking forums by shared users.

The analyst then runs the edge weight deviance statistic to calculate the degree to which edge weights
vary from the expected value (assuming a uniform random distribution). The resulting matrix diagram is
shown in Figure 7, with cells colored by deviance.

By inspecting both this matrix view and the sorted edge table, the analyst has flagged a number of un-
expected connections. Some connections appear to indicate possible data errors; for example, the hearing

loss forum has unexpectedly strong connections to many other forums. Other strong connections indicate
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interesting co-occurrences (e.g., cold/flu and stress, ear/nose/throat problems and heart disease) or com-
mon misdiagnoses (e.g., lupus and lyme disease). Orion has enabled her to make these observations in a
matter of minutes. The analyst is now following up on these results, for example by correlating them with

external comorbidity data.

7.2 Electronic Medical Records

In another case study, Orion is used to model the progression of a disease using data from Electronic
Medical Records. The goal of constructing such networks is to allow medical experts to better understand
the onset of symptoms in patient populations, hopefully resulting in speedier diagnoses and treatments.
In this case study, a team consisting of a computer scientist (the analyst) and four medical experts (one
cardiologist, two medical scientists who were formerly emergency room doctors, and one epidemiologist)
construct a network from over 3.3 million clinical notes involving 50,000 patients over 7 years to model
the evolution of heart failure (HF).

The analyst begins by loading the data tables using the File menu in the Orion UI. The analyst imports
an EMR table, where each row corresponds to a clinical event for an associated patient. The EMR table
only contains IDs of events and patients, so the analyst also imports a symptomDefinitions table that
contains associated metadata, such as the symptomName and symptomDate. In this dataset, all dates are
aligned by the diagnosis of heart failure, so negative dates imply events before a patient was diagnosed
with HF and positive dates imply events after diagnosis. The analyst also imports an additional patient
metadata table, patientDefinitions, that contains the patientType, which defines whether its a case patient
with HF or a control patient without HF.

The analyst then promotes both the patientIDs and symptomlIDs fields to node tables. However, since
the symptom metadata is located in a separate table, the analyst creates a reference from the symptoms table
to the symptomsDefinitions table using Orion’s automatic key-finding algorithm. The analyst similarly
creates a reference between patients and the patientDefinitions table.

The analyst now wishes to create a network of symptoms when they co-occur among different patients.
The analyst also demands that the edges of this network have a weight equal to the number of patients that

experienced such a co-occurrence. To do this, the analyst requests a network with symptom nodes as
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Figure 8: Matrices of co-occurring symptoms extracted from electronic medical records of patients with

heart failure. The filtering constrains the symptoms to only those that appear prior to HF diagnosis.

both the source and the target, and selects the option to only count distinct patients when tabulating edge
weights. Orion then invokes its path-finding method (Algorithm 1) and presents the only path found:
[symptoms.id — EMR.symptomID — EMR.patient]ID — symptoms.id]. The analyst approves of this
path and generates the network. For each edge in the symptomNetwork, a new count field is automatically
created which allows the analyst to keep track of the number of unique patients who share the same co-

occurence of symptoms.

However, the analyst is only interested in how the symptoms co-occur up until the patient diagnosis,
and so filters the network to ensure that all date values are negative. The analyst then runs the linkage-based
order statistic to obtain a sort order for a matrix visualization that minimizes the distance among connected
nodes. The resulting networks (unfiltered and filtered) are then exported from Orion and visualized using

MatrixFlow [31], shown in Figure 8.
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Figure 9: Matrices of co-occurring symptoms, split by (a) anchored and (b) sliding windows of 3 month

intervals.

7.2.1 Temporal network analysis

Having generated an overview, the analyst now wants to understand how the co-occurrence network of
symptoms changes over time. Based on clinical background knowledge, the analyst wants to focus on 18
months leading up to the diagnosis of HF. Using Orion, analysts can model temporal networks by using the
Split operator to subdivide networks into time windows. The analysts chooses to split by symptomDate,
setting the lower bound to 18 months before diagnosis and the upper bound to the date of diagnosis. The
analyst performs two different types of splits using 3 month intervals: a binned network with sliding time
windows and a cumulative network with anchored time windows, as shown in Figure 9.

Ultimately, the analyst decides to generate separate networks for different patient cohorts. In this
dataset, there are three different types of patients: control patients who do not have HF, HF patients
with preserved ejection fraction (HFpEF) and HF patients with reduced ejection fraction (HFrEF). This is
particularly interesting to the analyst because there is currently a research debate about whether HFpEF
and HFrEF should be considered the same or different disease. The analyst then splits the network by the

patientType field. The three different patient cohorts are shown with anchored time windows in Figure 10.

Upon analyzing the networks generated using Orion, four medical experts confirmed novel temporal
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Figure 10: Matrices of co-occurring symptoms, split by an anchored time window and patient cohort.

patterns of the progression of heart disease. They found that Orion rapidly enabled data exploration in
ways that previously were prohibitively difficult; prior attempts required writing custom network model-
ing code for each new hypothesis. In fact, Orion’s provided features (e.g., splitting) sparked some of the
research questions that were explored. The experts are optimistic that such network analyses can even-
tually help clinicians make earlier diagnoses, due to the large variability in diagnoses among patients.
The ability to quickly compare and contrast different patient networks also provided novel evidence for
the HFpEF and HFrEF debate, as a similar temporal pattern is observed in both cohorts, which suggests
that despite the pathophysiological differences, both HF types seem to develop the same co-occurrence
patterns. The results of this analysis have led to a publication in a medical informatics conference [31], as

well as a pending publication in a medical journal.

7.2.2 Multivariate network analysis

Inspired by the results of analyzing the symptoms network, the medical experts became curious about

how symptoms interact with diagnoses, medications and lab tests. In response, the analyst creates a co-
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Figure 11: A network of the most commonly co-occurring clinical events extracted from electronic medi-

cal records of patients with heart disease.

occurrence network with the same approach described above, but instead uses an enhancedEMR table,
where each row corresponds to a clinical event for a specific patient (symptoms, diagnoses, medications,
or lab tests). Each event has eventType and eventDescription metadata. Akin to the technique above, the
analyst requests a network with event nodes as both the source and the target, and selects the option to
only count distinct patients when tabulating edge weights. As shown in Figure 11, the resulting network is
then exported from Orion and styled using D3 [5] for publication. The network was further filtered using
D3 to show only the most common event co-occurrences. All nodes in the image are either diagnoses
or symptoms. The other types of events (lab tests and medications) do not co-occur often enough to be

present in this graph.

Surprised by the domination of symptoms and diagnoses, the analyst wonders how certain types of
events co-occur with each other on the previous unfiltered network. To find out, the analyst uses Orion to
create an aggregate network, where nodes represent an eventType and edges are weighted with how many
times an eventType co-occurs with another eventType. By requesting a network with eventType nodes as

both the source and the target, Orion generates a rolled up aggregate network. In Figure 12, the network
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Figure 12: An aggregate network of clinical event types. The network was transformed using Orion’s

rollup operator, then exported and visualized with D3.

is rendered as a matrix where each cell is colored based on its edge count.

The medical experts are now in the process of making sense of the multivariate analysis in a clinical
context. The rapid ability to generate networks with temporal and multivariate features shows promise of
validating several features critical for disease diagnosis. The medical collaborators believe that Orion’s

expressiveness may help them gain a better understanding of heart disease.

7.3 Academic Production and Collaboration

We are also using Orion to explore academic production and collaboration networks; for example, §5.1
discusses data extracted from the ACM Digital Library. To inspect the career progress of computer sci-
entists, we use Orion to construct a social network based on co-publication. Using Orion’s subgraph
extraction facilities (Figure 13), we define social networks over increasing periods of time (e.g., first all
publications up to 2000, then 2001, etc). We then batch compute betweenness centrality scores for each
extracted network. As Orion enables easy data export, we subsequently loaded the data into Tableau for

further analysis, leading to the plot in Figure 14.
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support batch statistics calculation.
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Figure 14: Time-sliced betweenness centrality scores for researchers in the ACM digital library. Centrality

scores are normalized per year. The data was generated in Orion and then exported to Tableau.

Orion’s flexibility also enables assessment of other models. For example, we have constructed the net-
work of all researchers who have published in the same venue (by promoting and linking on the publication

venue) within the same year (by specifying a join predicate enforcing matching years).

The ACM publication data contributes to a larger analysis initiative with social scientists at the first
author’s university. The scientists are studying academic collaboration and have collected multiple data
sets indicating links among university faculty. In addition to publication databases, the data include de-
partment and PhD committee memberships and co-PI relations on grants. These heterogeneous edge sets

can be combined and weighted in any number of ways to form a collapsed network. We are using Orion’s
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Figure 15: Matrix diagrams resulting from an Orion analysis of GitHub, a hosting service for open-source
software. (a) Raw counts of follower links between cities, sorted by geographic proximity (column nodes
“follow” row nodes on GitHub). (b) Follower links colored and sorted by asymmetry. (c) Followed links

colored by deviance from expected value, sorted geographically.

edge aggregation features to create and compare network models built from heterogeneous linking data.

7.4 Software Development on GitHub

Finally, we have used Orion in collaboration with computer scientists studying global development pat-
terns in open-source software. The data under investigation comes from GitHub, a web service that hosts
open-source projects. Using the GitHub web API, the researchers have collected over 1,000,000 com-
mits and 500,000 explicit “follower” connections among roughly 50,000 users. In addition, each user’s
location has been geocoded according to a self-reported location string and then mapped to near-by major
metropolitan areas (see Heller et al. [15] for more details).

Using Orion, we can quickly generate and analyze networks extracted from this data. For example, we
have constructed social networks based on commit history: a link is included between two users A and B
if B makes a commit to the same repository immediately after A. We can specify this network in Orion by
linking users via a table of commits. We have as input two tables: one for users and another for commits.
The commit table includes the date, project name, and the user (as a foreign key). First we promote the
project (repository) name to its own table, then link users according to a shared repository. We limit links
to temporally adjacent commits by first applying a rank operation based on the commit date, and then
adding a join predicate that ensures that only adjacent ranks are included in the resulting network.

We can also construct networks of “who follows whom” by linking users using a table of extracted
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follower relations. By requesting the user location attribute as a node type (rather than the user id), we
construct an aggregated graph among major cities, with edge weights indicating the number of connec-
tions between users in those cities. We can then apply edge weight asymmetry and deviance statistics
to examine differences among various locales. Figure 15 shows selected matrix views from this analysis
(originally published in [15]). For example, in Fig. 15c¢ we see that Paris and Tokyo each have many
fewer incoming “followed” links than would be expected if links were assigned randomly, and that San
Francisco consistently receives a surplus of “followed” links. While these particular images have been
stylized for publication using Protovis [4], the underlying analysis can be performed completely within

Orion.

8 CONCLUSION AND FUTURE WORK

This paper introduces Orion, a system for interactive modeling, transformation, and visualization of net-
work data. By providing a unified model, workflow language, and graphical user interface for iterative
network manipulation, the construction and comparison of networks empower analysts to be more ex-
ploratory and flexible in their analysis. Through case studies involving online health communities, aca-
demic collaboration networks, and global software development, we demonstrate how Orion supports the
visual analysis of multidimensional heterogenous networks.

While our case studies illustrate how Orion can be applied to real-world analysis tasks, each study was
conducted in the context of a collaboration between the analysts and ourselves. A necessary next step is
to evaluate how analysts use Orion without external assistance. User studies with representative tasks and
participants would certainly help surface usability issues and inform iterative design. However, we believe
the most important test will come from analysts independently applying Orion in their own work.

As analysts gain the flexibility to create new models and transformations of network data with Orion,
a critical need arises for better methods to preview and compare the constructed networks. While Orion
provides capabilities to support these tasks, we believe that providing even more sophisticated visual and
statistical techniques to summarize the similarities, differences, trends, and outliers of the resulting net-
works is an area ripe for future research. Additionally, while Orion provides great power for analysts to

model networks that match their hypotheses, the vast number of possibilities to construct a network may
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seem daunting. An interactive visual representation of Orion’s linking graph may assist users in under-
standing and specifying network models. Future work might also provide users with proactive automatic

suggestions to help uncover networks models with interesting and meaningful patterns.
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APPENDIX: FOREIGN KEY IDENTIFICATION

To aid the construction of linking graphs, Orion includes facilities for automatically identifying foreign
keys. Given a primary key as input, Orion first identifies candidate foreign keys by finding all table
columns with a matching data type. It then scores each column using a logistic regression classifier. In

this section we discuss our training data, feature selection, and resulting classification performance.

Training Data: Multi-Table Database Corpus

To train our classifier, we first constructed an annotated corpus of multi-table databases. The corpus
consists of a collection of tables and corresponding primary and foreign key designations. We included all
the data sets discussed in this article, as well as other network and tree data sets. We collected additional
data from the web, such as the contents of the University of Washington XML data repository'. We wrote
a program which analyzes the structure of each XML file in this repository and extracts unique entities
(elements with multiple attributes) into their own relational table. The output is a set of data tables and
key relationships.

Our corpus comprises 9 data sets with a total of 50 data tables and 283 unique data columns. From
these, we extracted 467 feasible primary key / foreign key pairs by matching primary key columns with
all other columns of the same data type within a data set. We manually annotated each candidate key to

note if it is a true foreign key. Of the 467 candidates, 83 are foreign keys and 384 are not.

Thttp://www.cs.washington.edu/research/xmldatasets/www/repository.html
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Feature Coefficient
Intercept -23.737
_ |dist(P)\dist(F)|
fa="gmmr — -1.559
fp =1 — HERSG 19.187 *
fo = i tlaane(r)l g 405 v
_ |les(table(P),name(F))|
fd — max([table(P)],[name(F)[) 27.742 **
Jo*fe -30.809 *
Jo* fa -24.871 %

Jfia = name(P) = “id” Aname(F) = “id>  -33.532

Table 2: Logistic Regression Coefficients for a Foreign Key Classifier. Statistical significance: * : p <

0.05, xx: p <0.01, xxx: p <0.001

Foreign Key Classification

We used our annotated corpus to train a logistic regression classifier. We chose logistic regression due to
its interpretability, applicability to ranking in addition to classification and its good performance on our
data. We expect that a number of other classification approaches (e.g., Support Vector Machines) would
produce comparable results. We experimented with a variety of features and interaction effects. Here,
we present the model that provided the best classification performance while minimizing the AIC model
selection score, which balances model fit against the number of model parameters.

Table 2 presents our feature definitions and the resulting regression coefficients when trained on the
entirety of our corpus. Within our feature definitions, P corresponds to a primary key column and F
to a candidate foreign key column. We also use the following functions: dist returns a set of distinct
column values, /cs returns the longest common subsequence within two strings, name returns the name of
a column, and table returns the name of the table containing a column.

Our features provide normalized measures of the coverage of values between two columns and of
similarities among names. Feature f, counts how many distinct primary key values occur in the candidate
foreign key column. Feature f;, concerns how many elements in the candidate column occur in the primary
key column. Feature f. measures the similarity of the column names, while feature f; measures the

similarity of the primary key table name to the candidate key column name. The interaction terms f * f..
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and fp, * f; penalize candidates that have similar names to a primary key but do not provide an adequate
coverage of values. Finally, feature f;; discounts naming similarity when columns are simply named “id”,

a common occurrence in many database schema designs.

Performance

To test the performance of our classifier, we compared the predicted values of the model with ground truth
annotations using a cross-validation method. For each individual data set (table collection), we tested the
accuracy of a classifier trained using the other eight data sets. Thus in each round we tested on hold out
data not included in the training process.

Across all cross-validation folds, we find that we correctly classify 462 / 467 (98.9%) candidate keys.
Examining the five misclassifications, we see that one is a false positive and four are false negatives.
The false positive is caused by a significant (but misleading) degree of name similarity. For the false
negatives, there is little naming similarity and only partial coverage of primary key values by the foreign
key. As aresult, the regression score fails to cross the threshold for positive classification. However, when
ranking candidate foreign keys by their regression score, these false negatives are rated highly within their
respective data sets — just below any true positives. As a result, the Orion Ul can still surface these pairs
as top ranked suggestions, even though the classifier fails to correctly flag the candidates as true foreign

keys.
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