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ABSTRACT 
Visualization is touted for its capacity to leverage human visual performance, enabling users to 
effectively perceive patterns in data. This capacity helps users to more rapidly conduct 
exploratory analysis, form hypotheses, make insights, and communicate analysis findings. 
While most discussions of visualization focus on the data display, this article emphasizes 
visualization’s second design component: interactive user controls to iteratively pose questions 
and then review, share and discuss the results. We propose a taxonomy of interactive dynamics 
for successful visual analytics systems. This taxonomy has three high-level categories: (1) data 
& view specification, (2) view manipulation, and (3) analysis process & provenance. Our 
taxonomy covers issues such as visualization creation, query widgets, direct manipulation, 
multi-view coordination, analysis history and collaboration. The taxonomy is intended to assist 
reasoning about interactive analysis tools by designers, researchers, professional analysts, 
procurement officers, educators and students. Validating and evolving this taxonomy is a 
community project that proceeds by feedback, critique and refinement. 
 
1. INTRODUCTION 
The increasing scale and availability of digital data provides an extraordinary resource for 
informing public policy, scientific discovery, business strategy and even our personal lives. But 
for such data to be most valuable, users must be able to make sense of it: to pursue questions, 
uncover patterns of interest, and identify (and potentially correct) errors. In concert with data 
management systems and statistical algorithms, analysis requires contextualized human 
judgments regarding the domain-specific significance of the clusters, trends, and outliers 
discovered in data. 
 
Visualization provides a powerful means of facilitating sense-making. By mapping data 
attributes to visual properties such as position, size, shape and color, visualization designers 
leverage perceptual skills to help users discern and interpret patterns within data 
\cite{card:readings}. However, a single image typically provides answers to at best a handful of 
questions. Instead, visual analysis typically progresses in an iterative process of view creation, 
exploration, and refinement. Meaningful analysis consists of a dialogue: a conversation 
involving both people and data. Confusing widgets, complex dialog boxes, hidden operations, 
incomprehensible displays or slow response times can limit the range and depth of topics 
considered, and may curtail thorough deliberation and introduce errors. To be most effective, 
visual analytics tools must support the fluent and flexible use of visualizations at rates resonant 
with the pace of human thought. 
 
The goal of this article is to assist designers, researchers, professional analysts, procurement 
officers, educators and students in evaluating and creating visual analysis tools. We present a 
taxonomy of interactive dynamics that contribute to successful analytic dialogues. The 
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taxonomy consists of twelve task types grouped into three high-level categories: (1) data & view 
specification (visualize, filter, sort & derive), (2) view manipulation (select, navigate, coordinate 
& organize), and (3) analysis process & provenance (record, annotate, share & guide). These 
categories incorporate the critical tasks that enable iterative visual analysis, including 
visualization creation, interactive querying, multi-view coordination, history and collaboration. 
Validating and evolving this taxonomy is a community project that proceeds by feedback, 
critique and refinement. 
 

 
 

Table {tab-taxonomy}: A Taxonomy of Interactive Dynamics for Visual Analysis. 
 
Our focus on interactive elements presumes a basic familiarity with visualization design. The 
merits and frailties of bar charts, scatter plots, timelines and node-link diagrams, and of the 
visual encoding decisions that underlie such graphics, are certainly a central concern. However, 
we will largely pass over them here. A number of articles and books address these topics in 
great detail \cite{card:readings, cleveland:elements, few:now, tufte:visual} and we recommend 
them to the interested reader. 
 
Within each branch of the taxonomy we describe example systems that exhibit useful interaction 
techniques. To be clear, these examples do not constitute an exhaustive survey; rather, each is 
intended to concretely convey the nature and diversity of interactive operations. Throughout the 
article we adopt the term “analyst” to refer to someone making use of visual analysis tools. We 
do not mean to imply a specific person or role. Our notion of analyst encompasses anyone 
seeking to understand data: traditional analysts investigating financial markets or terrorist 
networks, scientists uncovering new insights about their data, journalists piecing together a 
story, and people tracking various facets of their lives, including their blood pressure, money 
spent, electricity used, or miles traveled. 
 
2. DATA & VIEW SPECIFICATION 
To enable analysts to explore large data sets involving varied data types (e.g., multivariate, 
geospatial, textual, temporal, networked), flexible visual analysis tools must provide appropriate 
controls for specifying the data and views of interest. These controls enable analysts to 
selectively visualize the data, to filter out unrelated information to focus on relevant items, and 
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to sort information to expose patterns. Analysts also need to derive new data from the input 
data, such as normalized values, statistical summaries, and aggregates. 
 
2.1 Visualize 
Perhaps the most fundamental operation in visual analysis is to specify a visualization of data: 
analysts must indicate which data are to be shown and how they should be depicted. 
Historically, this process required custom programming of a specific visualization component. 
Within user interfaces, such visualization “widgets” are often presented in a chart typology, a 
palette of available visualization templates (bar charts, scatter plots, map views, etc.) into which 
analysts can slot their data. This method of interaction will be immediately familiar to users of 
spreadsheet programs: users pick a chart type and assign data variables to visual aspects such 
as the X/Y axes and the size or color of visualized marks. A chart typology has the benefits of 
simplicity and familiarity, but it also limits the types of possible visualizations and makes it 
cumbersome to try out different visualizations of the same data. 
 
Some visualization system designers have explored alternative approaches. Classic scientific 
visualization systems \cite{abram:df} and more recent platforms for artistic expression 
\cite{bestiario:impure} use a data flow graph, in which the visualization process is deconstructed 
into a set of finer-grained operators for data import, transformation, layout, coloring, etc. 
Analysts interactively chain these operators together to construct novel displays. Through 
flexible combinations of operators, data flow models can enable a larger space of visualization 
designs. However, data flow systems require more input effort than chart typologies and may be 
limited by the set of available operators. In many cases, novel designs require analysts with 
programming expertise to develop new "building blocks" for the system. 
 
Other systems are based on formal grammars for visualization construction. These grammars 
constitute high-level languages for succinctly describing how data should be mapped to visual 
features. By combining a handful of such statements, analysts can construct complex, 
customized visualizations with a high-degree of design control. This approach is used by a 
number of popular data visualization frameworks, such as Wilkinson's Grammar of Graphics 
\cite{wilkinson:gg}, ggplot2 for R \cite{wickham:ggplot2}, and Protovis for HTML5 
\cite{bostock:pv}. However, each of the above requires at least minimal programming ability. 
Tableau \cite{tableau} (née Polaris \cite{stolte:polaris}) provides an example of visualization 
specification by drag-and-drop operations: analysts place data variables on "shelves" 
corresponding to visual encodings such as spatial position, size, shape, and color (see Figure 
{fig-tableau}). The visual specification is then translated into an underlying formal grammar that 
determines both the visualization design and corresponding queries to a database. This 
approach leverages the expressiveness of formal grammars while avoiding the need for 
programming. Another advantage is that formal grammars can be augmented with automated 
design facilities: a system can generate multiple visualization suggestions from a partial 
specification \cite{mackinlay:apt, mackinlay:showme, roth:sage}. While both fluent and 
expressive, users of systems based on formal grammars need to understand the underlying 
generative model, imposing a steeper learning curve than the more familiar chart typology. 
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Figure {fig-tableau}: Visual encoding via drag-and-drop actions in Tableau \cite{tableau}. Analysts 
incrementally build up visualizations by mapping data variables to display properties such as position, size, color, and 
label text. 
 
Fortunately, these methods are not mutually exclusive. Analysts can apply a data flow system or 
formal grammar to define new components to include within a chart typology, leveraging the 
improved expressiveness of the former and the ease-of-use of the latter. Going forward, novel 
interfaces for visualization specification are still needed. Formal grammars that use graphical 
marks (e.g., rectangles, lines, plotting symbols, etc.) as their basic primitives provide a 
conceptual model compatible with interactive design tools. New tools requiring little to no 
programming might place custom visualization design in the hands of broader audiences. 
 
2.2 Filter 
Filtering of data values is intrinsic to the visualization process, as analysts rarely visualize the 
entirety of a data set at once. Instead, analysts construct a variety of visualizations for selected 
data dimensions. Given an overview of selected dimensions, analysts then often want to shift 
their focus among different data subsets, for example to examine different time slices or isolate 
specific categories of values. 
 
Designers have devised a variety of interaction techniques to limit the number of elements in a 
display. Analysts might directly select (e.g., “lasso”) elements in a display and then highlight or 
exclude them; we discuss these forms of direct view manipulation in section 3.1. Another option 
is to use a suite of auxiliary controls, or dynamic query widgets \cite{shneiderman:dq}, for 
controlling element visibility (see Figures {fig-dqwidgets}, {fig-dqhistogram} and {fig-map}). The 
choice of appropriate widget is largely determined by the underlying data type. Categorical or 
ordinal data can be filtered using simple radio buttons or checkboxes (when the number of 
distinct elements is small), or scrollable lists, hierarchies, and search boxes with autocomplete 
(when the number of distinct elements is large, or contains arbitrary text). Ordinal, quantitative 
and temporal data can also be filtered using a standard slider (for a single threshold value) or a 
range slider (for specifying multiple end points). When coupled with real-time updates to the 
visualization, these widgets allow rapid and reversible exploration of data subsets. Query 



5 |  
 
 

controls can be further augmented with visualizations of their own: Figure {fig-dqhistogram} 
shows a range slider augmented with a histogram of underlying values. 
 

 
 

Figure {fig-dqwidgets}: Examples of dynamic query filter widgets. Left: Spotfire provides a variety of controls for 
filtering visualized data: checkboxes and radio buttons filter categorical variables, while range sliders filter numerical 
values. Right: Google Hotel Search provides widgets for geographic, date, and price ranges. 
 

 
 

Figure {fig-dqhistogram}: Histogram Sliders in NodeXL. Selection widgets can be augmented with small 
visualizations showing the distributions of queried data attributes. 
 
Expert analysts also benefit from more advanced functionality. For instance, a search box might 
support sophisticated query mechanisms, ranging in complexity from simple keyword search, to 
regular expression matching, to a full-fledged structured query language. While these additional 
mechanisms may not support rapid, incremental exploration as fluently as graphical widgets, 
they provide a means for expressing more nuanced criteria. Filtering also interacts with other 
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operations: filtering widgets may operate over data sorted in a user-specified manner (sec. 2.3), 
or users might create derived values (sec. 2.4) and filter based on the results. 
 
2.3 Sort 
Ordering (or sorting) is another fundamental operation within a visualization. A proper ordering 
can effectively surface trends and clusters of values \cite{becker:trellis, yi:role} or organize the 
data according to familiar unit of analysis (days of the weeks, financial quarters, etc.). The most 
common method of ordering is to sort records according to the value of one or more variables. 
Sorting controls can be simple choices in a toolbar or clicks on the header of a table to produce 
ascending or descending sorts for numerical or textual values. Sometimes specialized sort 
orders, such as weekday or month names are necessary to reveal important patterns. 
 
Ordering becomes more complicated in the case of multiple view displays, in which both entire 
plots and the values they contain may be sorted to reveal patterns or anomalies. Sorting values 
consistently across plots (for example, by their marginal mean or median values) can reveal 
patterns while facilitating comparison among plots. 
 
Some data types (e.g., multivariate tables, networks) do not always lend themselves to simple 
sorting by value. Such data may require more sophisticated seriation methods 
\cite{hahsler:seriation, wilkinson:gg, wilkinson:heatmap} that attempt to minimize a distance 
measure among elements. The goal is to effectively reveal underlying structure (e.g., clustering) 
within the data. An example is shown in Figure {fig-sortmatrix}, a matrix-based visualization of a 
social network. On the left, the raw order of data values exposes little structure; re-ordering the 
rows and columns to place connected actors in close proximity reveals underlying clusters of 
communities. 
 

 
 

Figure {fig-sortmatrix}: Reorderable Matrices. Left: A matrix plot of a social network conveys little structure when 
the rows and columns (representing people) are sorted alphabetically. Center: Interactively re-ordering the matrix by 
node degree reveals more structure. Right: Permuting the matrix by network connectivity reveals community clusters. 
 
2.4 Derive 
As an analysis proceeds in iterative cycles, users may find that the input data is insufficient: 
variables may need to be transformed, or new attributes derived from existing values. Common 
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cases include normalization or log transforms to enable more effective value comparisons. 
Derived measures are often used to summarize the input data, ranging from descriptive 
statistics (mean, median, variance) to model fitting (regression curves) and data transformation 
(group-by aggregation such as counts or summations). While analysts can derive new values 
prior to importing data for visual analysis, the overhead of moving between tools stymies fluid, 
iterative exploration. As a result, visual analytics tools should include facilities for deriving new 
data from input data. Often this functionality is provided via a calculation language, similar to 
those found in spreadsheets or database query languages. Beyond these basic functions, 
hypothesis testing methods (t-tests, ANOVA) can amplify the benefits of smooth integration of 
statistics and visualization. 
 
Looking forward, improved derivation methods present a promising frontier for visual analytics 
research. How can visual tools support flexible construction of more advanced models or 
derived values? Using programming-by-demonstration methods, analysts might annotate 
patterns (e.g., of network intrusion events \cite{xiao:hr}) from which the system can generalize 
pattern recognition rules. Or, visual tools might automatically fit applicable statistical models to 
the data based on the current visualization state. For example, the nesting of variables within 
common “pivot” displays could be mapped to the structure of a linear model. More principled 
frameworks that wed visualization to modeling and forecasting are still emerging. 
 
3. VIEW MANIPULATION 
Once analysts have created a visualization through data and view specification actions, they 
should be able to manipulate the view to highlight patterns, investigate hypotheses and drill-
down for more details. Analysts must be able to select elements or data regions to highlight, 
filter, or operate on them. Large information spaces may require analysts to scroll, pan, zoom 
and otherwise navigate the view to examine both high-level patterns and fine-grained details. 
Multiple, linked visualizations often provide clearer insights into multi-dimensional data than 
isolated views. Analysis tools must be able to coordinate multiple views so that selection and 
filtering operations apply to all displays at once and organize the resulting dashboards and 
work spaces. 
 
3.1 Select 
Pointing to an item or region of interest is common in everyday communication because it 
indicates the subject of conversation and action. In the physical world, people coordinate their 
gestures, gaze, and speech to indicate salient elements. For example, different hand gestures 
can communicate angle (oriented flat hand), height (horizontal flat hand), intervals (thumb and 
index finger in “C” shape), groupings (circling a region), and forces (accelerating fist) 
\cite{hill:deixis}. In visual analysis, reference (or selection) remains of critical importance, but is 
realized through a more limited set of actions, such as clicking or lassoing items of interest. 
 
Common forms of selection within visualizations include mouse hover, mouse click, region 
selections (e.g., rectangular and elliptical regions, or free-form “lassos”), and area cursors (e.g., 
"brushes" \cite{becker:brushing} or dynamic selectors such as the bubble cursor 
\cite{grossman:bubble}, which selects the element currently closest to the mouse pointer). 
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These selections often determine a set of objects to be manipulated, enabling highlighting, 
annotation, filtering, or details-on-demand. Note that interactive selection is closely related to 
filtering (sec 2.2): selections can be used to identify items to remove from the display. The 
context of interaction must also be taken into account when choosing a selection method. For 
instance, responding to hover events to provide details-on-demand is inappropriate when using 
touch-based input on a tablet or mobile phone. 
 

 
 

Figure {fig-timesearcher}: Querying Time-Series by Slope in TimeSearcher \cite{hochheiser:timesearcher}. 
An angular selection tool specifies a target slope (rate of change) and tolerance for a collection of stock prices. All 
time series with a similar slope over the queried time range are selected; shaded regions show envelopes of 
minimum and maximum values. The widget operates directly on the visualization: dragging the widget from left to 
right interactively queries other time windows. 
 

 
 

Figure {fig-parallel}: Selection Queries in Parallel Coordinates. Parallel coordinates plot multidimensional data as 
line segments among parallel axes. Here, an analyst has dragged along the axes to create interactive selections that 
highlight automobiles with low weight and high mileage. 
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Selections can also vary in terms of their expressive power. Most interfaces support selections 
of a collection of items. While this approach is easy to implement, it does not allow analysts to 
specify higher-level criteria. A more powerful, albeit more complex, approach is to support 
selections as queries over the data \cite{heer:gensel}. Maintaining query structure increases the 
expressiveness of visualization applications. For instance, rather than directly select the 
contained elements, drawing a rectangle in a chart may specify a range query over the data 
variables represented by the X- and Y-axes. The resulting selection criteria can then be saved 
and applied to dynamic data (updating elements may enter or exit a query region) or to a 
completely different visualization. Examples include querying stock price changes in 
TimeSearcher \cite{hochheiser:timesearcher} (Figure \ref{fig-timesearcher}) and attribute ranges 
in parallel coordinates displays \cite{inselberg:parallel} (Figure \cite{fig-parallel}). 
 

 
 

Figure {fig-ink}: Perceptual Interpretation of Ink Annotations \cite{kong:ink}. Matching input strokes (black) to a 
time-series segmentation model enables rapid annotation of perceptually-salient regions such as spans, peaks, and 
slopes. 
 
Designing more expressive selection methods remains an active area of research. For example, 
researchers have proposed methods to map mouse gestures over a time-series visualization to 
select perceptually salient data regions such as peaks, valleys and slopes \cite{kong:ink} (see 
Figure {fig-ink}) or to query complex patterns of temporal variation \cite{holz:relax}. Initial 
selections can also be used as a starting point for more complex selections, as analysts might 
click a representative object and then formulate a broader selection based on the object’s 
properties (e.g., “select all items blue like this one”) \cite{heer:gensel}. Of course, selection need 
not be limited to the mouse and keyboard: input modalities such as touch, gesture and speech 
might enable new, effective forms of selection. 
 
3.2 Navigate 
How analysts navigate a visualization is in part determined by where they start. One common 
pattern of navigation adheres to the widely-cited visual information seeking mantra: “Overview 
first, zoom and filter, then details-on-demand” \cite{shneiderman:eyes}. Analysts may begin by 
taking a broad view of the data, including assessment of prominent clusters, outliers and also 
potential data quality issues. These orienting actions can then be followed by more specific, 
detailed investigations of data subsets. A common example is geographic maps: an overview 
might show an overall territory, followed by zooming into regions of interest (Figure {fig-map}). 
 
Of course, starting with an expansive overview is not always advisable. A legal analyst 
researching for an upcoming trial may be wise to forego an overview of the entire history of U.S. 
court decisions. Instead, the analyst might start with the legal decisions most relevant to the 
current case, perhaps determined by keyword search, and expand her investigation to other, 
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cited decisions. This form of navigation can be summarized as “Search, show context, expand 
on demand” \cite{vanham:doi}. 
 

 
 

Figure {fig-map}: Zoomable Map from CrimeSpotting.org. This map depicts criminal activity by time and region, 
and currently shows all crimes committed after dark during the last week of October 2011. Dynamic query widgets 
enable filtering by time-of-day (left), date span (bottom), and type of crime (right). Pan (drag) and zoom (buttons and 
scroll wheel) controls enable view navigation. As an analyst zooms in on the map, the circular crime markers gain 
detailed labels -- a form of semantic zooming. 
 
In either case, visualizations often function as "viewports" onto an information space. Analysts 
need to manipulate these viewports to navigate the space. Common examples include scrolling 
or panning a display via scroll bars or mouse drag, and zooming among different levels using a 
zoom slider or scroll wheel (Figure {fig-map}). Zooming need not follow a strict geometric 
metaphor: semantic zooming \cite{bederson:padpp} methods can modify both the amount of 
information shown and how it is displayed as analysts move among levels of detail (Figure {fig-
datelens}). Additionally, dynamic query widgets, such as range sliders for the X and Y axes of a 
scatter plot, can filter the visible data range and thus provide a form of zooming within a chart. 
 

 
 

Figure {fig-datelens}: DateLens Focus+Context Calendar \cite{datelens}. As analysts navigate from months to 
days to hours, the display magnifies selected regions. Semantic zooming reveals more details within focal regions. 
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To further aid navigation, researchers have developed a variety of focus plus context methods. 
These “bifocal” views \cite{spence:bifocal} provide a detailed view of a high interest data region 
while retaining surrounding context to help keep analysts oriented.  A second key idea is the 
use of overview and detail displays. For example, a geographic visualization might include a 
large zoomed-in map (the detail), while a smaller, zoomed-out map includes a rectangle 
showing the position of the zoomed-in view within the broader terrain (the overview). In this 
case, the detail view provides the focus, and the overview provides context. The benefits are 
highest when the zoom factor (ratio of overview to detail view) is 5-20 \cite{zoom:factor}. When 
larger zoom factors are needed, intermediate overviews may also be helpful. 
 
A different approach is to use distortion or magnification techniques that transform the entire 
display region such that contextual regions are demagnified. A simple example is the MacOS X 
dock, which uses 1D fisheye distortion to show common applications; more sophisticated 
methods employ distortion in multiple dimensions. While often visually intriguing, complex 
distortion methods have yet to prove their worth in real-world applications: viewers can become 
disoriented by non-linear distortions and show no significant performance improvement over 
simpler methods such as zooming \cite{nekrasovski:nav}. 
 

 
 

Figure {fig-doitree}: Degree-of-Interest Tree of a taxonomy with 600k elements \cite{heer:doi}. A model of the 
analyst's current interest filters the display to the most relevant elements. Low-interest elements are elided but still 
accessible through aggregate representations. The interest estimates update as an analyst explores the taxonomy, 
initiating animated transitions between different views of the data. 
 
In addition to manipulating display space, focus plus context methods can be applied directly to 
the data itself. The goal is to identify which data elements are currently of high interest (focus), 
which are of high importance regardless of the current focus (context), and which can safely be 
removed from view. Degree-of-Interest (DOI) functions \cite{furnas:followup, heer:doi, 
vanham:doi} calculate scores for information content based both on general importance (e.g., 
top-level categories within a hierarchy, or nodes with high centrality in a graph) and current 
interest (e.g., as indicated by mouse clicks, search queries, or proximity to other high interest 
elements). The distribution of DOI scores can then be used to selectively control the visibility of 
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elements based on the current view size and context of interaction, as in Figure {fig-doitree}. As 
analysts click on or search for different elements, the DOI scores dynamically update to reveal 
relevant unseen data or hide irrelevant detail. 
 
Visualizations can provide cues to assist analysts' decisions of where and how to navigate. The 
controls for view manipulation have often been invisible, such as zooming/panning by mouse 
movement. Improved strategies facilitate discovery by analysts, and provide visible indication of 
settings in legends or other ways, such as scroll bar positions, that provide informative 
feedback. An important challenge is to show selected items, even when they are not in view. 
For example, the results of a text search that are not currently in view might be shown by 
markers in the scroll bar \cite{zellweger:lights} or the periphery of the display 
\cite{baudisch:halo, gustafson:wedge}. 
 
3.3 Coordinate 
Many analysis problems require coordinated multiple views that enable analysts to see their 
data from different perspectives. A public policy analyst studying educational attainment might 
produce a bar chart of people's ages, a map of locations, a textual list with education history, 
and a scatter plot showing income vs. education. By selecting a single item or a group in one 
view, analysts might see related details or highlighted items in the other views. This powerful 
approach to exploring multivariate data also enables drilling down into subgroups, marking sets, 
and exporting selections. 
 

 
 

Figure {fig-multiples}: Small Multiples Display. The visualization shows employment figures by economic sector in 
the state of Minnesota. The repetition of the chart form supports comparison among sectors. Plotting all the data in 
one chart would otherwise clutter and obscure individual trends. Selecting a point in time in one view highlights the 
corresponding point in all other views.  
 
Multi-view displays can facilitate comparison. For example, Tufte \cite{tufte:visual} advocates 
the use of small multiples: a collection of visualizations placed in close spatial proximity and 
typically using the same measures and scales. As in Figure {fig-multiples}, these small 
multiples, also called trellis plots, enable rapid comparison of different data dimensions or time-
slices. Alternatively, multiple view displays can use a variety of visualization types -- such as 
histograms, scatter plots, maps, or network diagrams -- to show different projections of a 
multidimensional data set (Figures {fig-improvise} and {fig-brushing}). Though comparing 
multiple visualizations requires viewers to orchestrate their attention and mentally integrate 
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patterns among views, this process is often more effective than cluttering a single visualization 
with too many dimensions.  
 

 
 

Figure {fig-improvise}: Multiple coordinated views in Improvise \cite{weaver:improvise}. An analyst constructs 
a complex patchwork of interlinked tables, plots and maps to analyze the outcomes of elections in Michigan. 
Annotations indicate how selected data elements correspond between visualization views. 
 
Multi-view displays may be comprised of diverse components.Accompanying elements such as 
legends, histogram sliders, and scroll bars with highlighting markers can all provide multiple 
views onto the data. Automatically generated legends and axes are important for providing 
accurate annotations for analysts and meaningful explanations when visualizations are shared. 
Legends and axes can also become control panels for changing color palettes, marker 
attributes, variable ranges or provenance information \cite{riche:legends}. 
 
Multi-view displays can also enable interactive exploration across views. Brushing and linking is 
the process of selecting ("brushing") elements in one display to highlight (or hide) corresponding 
data in the other views \cite{becker:brushing}. Each visualization can thus serve as an input 
channel for revealing patterns across a data set (Figure \ref{fig-brushing}). Linked selection 
enables rich, multidimensional reasoning by allowing analysts to assess how patterns in one 
view project onto the others. Analysts may wish to coordinate views in variety of ways 
\cite{north:snap, weaver:improvise}: selecting elements in one view might highlight matching 
records in other views, or instead provide filtering criteria to remove information from the other 
displays. Linked navigation provides an additional form of coordination: scrolling or zooming one 
view can simultaneously manipulate other views. 
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Figure {fig-brushing}: Brushing and linking of baseball statistics in GGobi. As analysts make selections in one 
plot, the corresponding elements highlight in the others. Left: selecting high income players (top-right plot) shows little 
dependence on career length or fielding ability, but correlates with hitting performance. Right: selecting the cluster of 
players who make more assists that put-outs (middle-left plot) reveals a strong dependence on position. 
 
Future studies of how analysts construct multi-view displays and specify coordination behaviors 
(e.g., highlighting, filtering) could provide designers with an understanding of how to build more 
effective tools. In addition, if designers ensure that rich multi-view displays stay understandable, 
analysts are more likely to make compelling insights. Newcomers to an analysis, or even 
seasoned analysts simply returning from a coffee break, may become confused by the number 
of views and the potentially complicated set of coordinated queries between them. Visual 
analytics systems that provide access to coordination settings and replay the history of view 
construction can enhance understanding. 
 
3.4 Organize 
When analysts make use of multiple views they face the corresponding challenge of managing 
a collection of visualizations. As in traditional window-based interfaces, analysts may wish to 
open, close, maximize, and layout different components. As purely manual window manipulation 
can be tedious, well-designed visual analytics tools simplify the organization of visualization 
views, legends, and interactive controls. For example, a human resources dataset may show a 
scatter plot of salary by years of experience, plus a bar chart showing 10 age groups, and a 
treemap with 7 corporate sites, each with 10-30 job titles. These three visualizations might give 
a large area for the scatter plot, with the bar chart and treemap to the right side stacked one 
above the other.  A control panel with sliders, check boxes, radio buttons, and a search box 
could be on the far right, with a details-on-demand window and annotation box across the 
bottom. This tiled approach allows analysts with sufficiently large displays to see all the 
information and selectors at once, minimizing distracting scrolling or window operations, while 
enabling them to concentrate on extracting and reporting insights. The coordination across 
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windows means that slider movements or check box selections will cause all views to update, 
allowing rapid exploration of just the employees at certain sites or specific job titles. 
 
Typical systems allow analysts to add views, such as a second scatter plot, in ways that make 
modest changes to the existing window organization. An alternative approach is to add a new 
tab which contains the second scatter plot, so analysts can switch between the first and second 
set of windows.  A common feature is to add trellised views, so multiple visualizations can be 
created at once, for example separate bar charts showing age distributions for each of the 7 
corporate sites. 
 
More advanced systems might aid this process through automated support \cite{bell:space, 
kandogan:ew} that enables multiple windows to be opened/closed as a group and lays them out 
in orderly ways. Useful methods include standard scatter plot matrices (showing all pairs of 
scatter plots) or custom generation of related views of interest (e.g., of data variables correlated 
to the visualized attributes). Desirable features are automatic (re)sizing as views are added or 
removed and layout routines to place related views in spatial proximity. 
 
As larger and multiple displays become more common, layout organization tools will become 
decisive factors in creating effective user experiences. Similarly, the demand for tablet and 
smartphone visualizations will promote innovation in layout organizations that are compact and 
reconfigurable by simple gestures. Zooming, panning, flipping, and sequencing strategies will 
also improve analyst experiences and facilitate effective presentations to others. 
 
4. PROCESS & PROVENANCE 
Visual analytics is not limited to the generation and manipulation of visualizations -- it involves a 
process of iterative data exploration and interpretation. As a result, visual analytics tools that 
provide facilities for scaffolding the analysis process will be more widely adopted. Tools should 
preserve analytic provenance by keeping a record of analyst actions and insights so that the 
history of work can be reviewed and refined. Textual logs of activity have benefits, but visual 
overviews of activity can be more compact and comprehensible. If analysts can annotate 
patterns, outliers and views of interest, they can document their observations, questions and 
hypotheses. In a networked environment, analysts should be empowered to share results and 
discuss with colleagues, coordinate the work of multiple groups, or support processes that may 
take weeks and months. Moreover, analysis tools can explicitly guide novices through common 
analysis tasks, provide progress indicators for experts, or lead viewers through an analysis 
story. 
 
4.1 Record 
When analyzing data with visualizations, users regularly traverse the space of views in an 
iterative fashion. Exploratory analysis may result in a number of hypotheses, leading to multiple 
rounds of question and answer. Analysts can generate unexpected questions that may be 
investigated immediately or revisited later. After conducting analysis, analysts may need to 
review, summarize, and communicate their findings, often in the form of reports or 
presentations. 
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Figure {fig-history}: Visual Analysis History \cite{heer:history}. A “comic strip” display retraces the steps taken in 
a visual analysis of business operations data. 
 

 
 

Figure {fig-branching}: Behavior Graph of Branching Analysis \cite{heer:history}. Reading the graph in a 
snake-like fashion (first left-to-right, then right-to-left) reveals patterns of iterative exploration, branching, and 
backtracking in an analysis. 
 
To support iterative analysis, visual analysis tools can record and visualize analysts’ interaction 
histories. At a minimum, applications should provide basic undo and redo support. While low-
level input such as mouse and keyboard events are easy to capture, histories become much 
more valuable when they record high-level semantic actions. By modeling the space of user 
actions (e.g., view specifications, sorting, filtering, zooming, etc.), richer logs can be constructed 
and visualized \cite{derthick:history, heer:history, jankun:model, scheiddeger:prov}. Common 
visual representations of analytic actions include both chronological ("timeline") and sequential 
("comic strip") views (Figure \ref{fig-history}). As shown in Figure \ref{fig-branching}, visual 
histories also reveal the hierarchical patterns of branching histories. Techniques for "chunking" 
related actions together can further reduce clutter \cite{kurlander:history, heer:history}. 
 
Visual histories can support a range of interactions. First, histories provide a convenient 
mechanism to revisit prior analysis states and resume incomplete explorations. Adding 
metadata such as comments, tags or ratings to states can facilitate later review and sharing. 
Interactive histories can also capture a repeatable sequence of operations that can be named 
and saved as a reusable macro. This powerful feature enables analysts who are dealing with 
many similar datasets to automate their efforts. Histories might spur sharing: analysts can 
export selected analysis trails to external media, ranging from screenshots to interactive 
presentations. Finally, histories also provide a means to study analysts and model analytic 
processes \cite{jankun:model, scheiddeger:prov}. 
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4.2 Annotate 
The goal of visual analysis is to generate new insights from data. Often this goal requires that 
interactive visualizations serve not only as data exploration tools, but also as a means for 
recording, organizing, and communicating insights gained during exploration. One option is to 
allow textual annotation of states within a visual history. More expressive annotations are 
possible through direct interaction with the view, using the selection techniques discussed in 
sec. 3.1. Analysts may wish to "point" to specific elements or regions within a visualization and 
associate these annotations with explanatory text or links to other views \cite{heer:voyagers}. 
 

 
 

Figure {fig-annotate}: Annotated Visualizations. Left: Freeform graphical annotations of occupational data. The 
top annotation highlights a gender reversal among bank tellers using color-coded ellipses; the bottom annotation 
expresses confusion regarding the erratic percentage of religious workers. Right: Data-aware annotations. In the top 
charts, selection queries anchor annotations of crime data. The bottom chart shows annotations transferred across a 
change in visual encodings: the selected geographic range is now conveyed using histogram sliders. 
 
Freeform graphical annotations provide one expressive form of pointing \cite{heer:voyagers}, 
shown on the left side of Figure {fig-annotate}. Drawing a circle around a cluster of items or 
pointing an arrow at a peak in a graph can direct the attention of viewers. The angle or color of 
the arrow or shape of the hand-drawn circle may communicate emotional cues or add 
emphasis. Although such drawings allow a high degree of expression, they lack an explicit tie to 
the underlying data. Freeform annotations implemented as vector graphics can persist over 
geometric transformations such as panning and zooming, but if they are not "data-aware" they 
may become meaningless in the face of operations such as filtering or aggregation. 
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Annotations can be made data-aware when realized as selections (see the right side of Figure 
{fig-annotate}). These selections can be represented by a set of selected elements, a 
declarative query, or both \cite{heer:gensel}. Data-aware annotations allow a pointing intention 
to be reapplied to different views of the same data, enabling reuse of references across different 
choices of visual encodings. Data-aware annotations may also enable analysts to search for all 
commentary or visualizations that reference a particular data item. As data-aware annotations 
are machine-readable, they might also be used to export selected data or aggregated to identify 
data subsets of high interest. 
 
4.3 Share 
Researchers in visual analytics often focus on the perceptual and cognitive processes of a 
single analyst. In practice, real-world analysis is also a social process that may involve multiple 
interpretations, discussion, and dissemination of results \cite{heer:voyagers, ibm:manyeyes}. 
The implication is clear: to fully support the analysis life-cycle, visual analytics tools should 
support social interaction. At minimum, tools must be able to export views (png, jpg, ppt, etc.) or 
data subsets (csv, json, xls, etc.) for sharing and revisitation. An important capability is to export 
the settings for the control panels, so other analysts can see the same visualization.  Figure {fig-
senseus} shows one example of a collaborative visual analysis tool incorporating view sharing, 
annotation and discussion. 
 

 
 

Figure {fig-senseus}: Collaborative Visual Analysis in Sense.us \cite{heer:voyagers}. Counter-clockwise: (a) An 
interactive visualization, with a graphical annotation for the currently selected comment. The visualization is a stacked 
time-series visualization of the U.S. labor force, broken down by gender. Here the percentage of the work force in 
military jobs is shown. (b) A set of graphical annotation tools. (c) A bookmark trail of saved views. (d) Text-entry field 
for adding comments. Bookmarks can be dragged onto the text field to link views to a comment. (e) Comments 
attached to the current view. (f) Shareable URL for the current application state. The URL is updated automatically as 
the visualization state changes. 
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A simple but effective aid to collaboration is view sharing via application bookmarking: a visual 
analytics system should be able to model and export its internal state \cite{heer:voyagers, 
ibm:manyeyes}. Unlike a static screenshot, bookmarking enables analysts to take up an 
exploration where their collaborators left off. View sharing often takes the form of a URL or 
similar identifier that allows a collaborator to quickly navigate to a view of interest. Seeing an 
identical view provides collaborators with a common ground for discussion. Annotation methods 
can be applied within such views to further collaboration. One challenge for effective view 
sharing concerns how to handle dynamic data: should a bookmarked view maintain a snapshot 
to historical data, provide access to the most current data, or both? 
 
Another method of sharing and dissemination is to publish a visualization. Commercial tools 
such as Spotfire and Tableau can publish visualization dashboards as interactive web pages. 
These web-based components provide a subset of interactive functionality (e.g., selection, 
search, and drill-down) to enable some amount of follow-up analysis. Services such as IBM’s 
Many-Eyes \cite{ibm:manyeyes} can be used to embed visualization applets in external web 
sites. Publishing is particularly important for reaching larger audiences. However, while 
publishing is a necessary condition for broad sharing, it may not be sufficient by itself for 
engaging viewers \cite{heer:cva}. Visualizations embedded within a blog or discussion forum 
can reach an established audience and may foster discussion more effectively than a 
centralized site \cite{danis:place}. 
 
Other collaborative concerns depend on the context of use. Are collaborators working 
synchronously (same time) or asynchronously (different time)? Are they co-located (same 
place) or distributed (different place)? Each of these configurations may require specialized 
strategies that consider the division of work, access control, presence indicators, and activity 
awareness \cite{heer:cva, heer:voyagers, isenberg:esv}. 
 
4.4 Guide 
The exploration process is well understood for some traditional domains. For example, a very 
simple workflow might remove incomplete data items, sort, select high value items, and report 
on these selections. However, analysts may need to develop new strategies that are formalized 
to guide newcomers and provide progress indicators to experts. Visual analysis systems can 
incorporate guided analytics to lead analysts through workflows for common tasks. 
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Figure {fig-socialaction}: Systematic yet flexible analysis in SocialAction \cite{perer:syf}. The panel on the left 
suggests common steps to structure social network analysis and provides progress indicators. 
 
Some processes are clearly linear, but many visual analytics tasks require richer systematic yet 
flexible processes that allow analysts to take excursions while keeping track of what they have 
done.  For example, SocialAction \cite{perer:syf} organizes social network analysis into a 
sequence of activities (e.g., rank nodes, plot nodes, find communities); the system allows 
analysts to selectively skip steps if they please and keeps a record of which steps have been 
completed (see Figure {fig-socialaction}). In a related vein, experts often develop visualizations 
that are used by less knowledgeable team members, in much the same way that spreadsheet 
macros enable specialists to encode accounting or business practices for others. More research 
is needed to identify effective visual analytics processes and enable expert analysts to author 
reusable workflows. 
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Figure {fig-nytimes}: Data storytelling by the New York Times. Through staging and annotations, this interactive 
graphic guides the reader through decades of budget predictions while also permitting interactive exploration. 
 
In recent years, journalists have been experimenting with different forms of narrative 
visualization \cite{segel:narrative} by structuring interactive graphics to tell stories with data. 
Visualizations from the New York Times, Washington Post, the Guardian, and other news 
sources often lead the viewer step-by-step through a linear narrative, guided by supporting text 
and annotations (see Figure {fig-nytimes}). At a story's conclusion, the visualizations provide 
interactive controls for further exploration. These narrative structures both communicate key 
observations from the data and cleverly provide a tacit tutorial of the available interactions by 
animating each component along with the story. By the time the presentation opens up for 
freeform exploration, the viewers have already seen demonstrations of the interactive controls. 
These and other forms of narrative visualization provide wonderful examples of how guided 
analytics can be used to disseminate data-driven stories to a general audience. 
 
5. CONCLUSION 
We hope the above taxonomy and discussion will help advance visual analytics on multiple 
fronts. For students and newcomers to the field, the taxonomy provides an orienting, high-level 
introduction to the interactive concerns at the heart of successful visual analysis. We encourage 
interested readers to consult the systems, books and research papers referenced in this article 
to develop a deeper understanding of these concerns. For developers, the taxonomy can 
function as a “check list” of elements to consider when creating new analysis tools. For 
researchers, the taxonomy helps to highlight critical areas that would benefit from further 
investigation, including new methods for visualization specification without programming, a 
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deeper marriage of visualization and statistical algorithms, selection and annotation techniques 
that leverage data semantics, and effective approaches to guided analytics. 
 
Of course, by attempting to provide an abstracted picture of a domain, taxonomies may be 
incomplete. In some cases, we have separately categorized aspects that are closely related. 
Dynamic query widgets enabling data specification often serve as a means of view navigation. 
Selection techniques are also central to effective annotation schemes.  
 
In other instances, we have selectively omitted material. First, we do not go into great depth 
regarding implementation details. Supporting real-time interactivity often requires careful 
attention to system design, especially for large data sets. While popular platforms for large data 
analysis such as MapReduce \cite{mapreduce} achieve adequate throughput, high latency and 
lack of online processing limit fluent interaction. The demands of truly interactive analysis pose 
important research challenges for the designers of analysis platforms, ranging from low-latency 
architectures to intelligent sampling and aggregation methods (c.f., \cite{keim:vda}). 
 
Our taxonomy is also somewhat sparing in its discussion of the current frontier of visual 
analytics research. For example, how to best incorporate (semi-)automated statistical methods 
within a visualization environment is a central challenge. Our discussion of derived data only 
scratches the surface. A related concern is the task of data wrangling \cite{wrangling}: 
reformatting, cleaning and integrating data sets so that they are amenable to visual analysis. 
Incorrect or improperly structured data diverts the attention and energy of trained analysts and 
presents a significant barrier to newcomers. As data cleaning requires nuanced human 
judgment based on domain knowledge (“is this outlier an error or a discovery?”), data wrangling 
is a necessarily interactive process combining statistical methods, visualization, and interaction 
techniques. This topic deserves a deeper treatment than we can provide within our compact 
taxonomy.  
 
The above concerns represent active areas of research, and we expect our characterization of 
the field to evolve in the years to come. Validating and evolving this framework is a community 
project that can proceed through feedback, critique and refinement by visual analytics 
researchers and practitioners. We invite the insights and commentary of the visualization, 
statistics, database and HCI communities, and eagerly anticipate the continued flowering of 
improved tools for making sense of the wealth of data that surrounds us. 
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