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Project Summary
CHS: Small: Interactive Machine Learning for Text Analysis

Jeffrey Heer
University of Washington

Text – including original documents, online correspondence and transcribed speech – is a fundamental
data type in a variety of research domains. Tasks requiring text analysis include identifying medical terms
in research papers or patient-authored text; finding linguistic markers of affect, politeness or leadership in
online discourse; tracking policies across pieces of legislation; and determining consumer sentiments about a
product from social media. Across these examples, analysis involves the recognition and/or classification of
phrases or textual categories: researchers iteratively develop or use pre-existing labeling schemas; annotate
terms, sentences or full documents; and train and apply statistical classifiers to analyze data at scale.

As automated text mining approaches improve, the process of text analysis remains dominated by human
effort and supervision. Researchers must collect and manage large text collections, select or develop coding
schemes, annotate a subset of the data (either directly or by training coders), identify predictive textual
features, tune algorithm parameters, and assess the results of applying automated methods to the full dataset.
This process does not proceed in a linear fashion, instead requiring iteration within and across phases, often
switching among tools in a manner that stymies provenance tracking and replication.

We propose to develop an integrated, interactive software system to support the process of classification-
oriented text analysis. We hypothesize that novel interfaces and supporting algorithms can reduce time and
effort and make text analysis methods more accessible to researchers, while retaining – and likely improving
– the quality of the resulting classifiers. We will develop an end-to-end system that includes management of
documents and metadata; a visual interface for integrated and iterative schema generation, text annotation
and model evaluation; and a runtime for managing and comparing multiple learned classifiers.

Core intellectual challenges include the design and evaluation of visual analysis and interactive machine
learning techniques, which enable domain experts who may lack training in statistical machine learning
to effectively analyze text data. We envision a “virtuous cycle” in which analysts formulate schemas and
provide annotations, visualizations facilitate understanding of data and models, and automated methods
generalize user input and suggest additional data and features for annotation. We aim to help users also track
their progress and replicate analyses. We hope to significantly enhance existing practices of text analysis.

Intellectual Merit: Our research will develop new technical contributions and experimental results. On
the technical front, we will investigate system architectures for mixed-initiative text classification; novel
user interfaces and visualizations for annotation and model evaluation; interactive techniques for improved
feature selection; active learning methods for adaptive sampling of instances and features to label; and
facilities for collaborative and crowdsourced labeling. We will conduct evaluations with domain scientists
and crowdsourced workers to assess how our methods affect the time and effort required for text analysis,
the quality of the resulting classifiers, and the potential biases introduced by automated methods.

Broader Impacts: Our work will lower barriers to entry and enable faster and higher-quality text analysis.
The resulting tools can positively impact disciplines that analyze text data. We will work hand-in-hand with
our collaborators in multiple domains (health & addiction studies, political science, psychology, sociology)
to substantiate these benefits. We will share our tools as open source software runnable as a web service,
and leverage our software platform in classroom teaching and undergraduate research.

Keywords: text analysis; data visualization; interactive machine learning; active learning; crowdsourcing.
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Project Description
1 Introduction

“[N]othing can substitute here for the flexibility of the informed human mind. Accordingly,
both approaches and techniques need to be structured so as to facilitate human involvement
and intervention... Some implications for effective data analysis are: (1) that it is essential to
have convenience of interaction of people and intermediate results and (2) that at all stages of
data analysis the nature and detail of output need to be matched to the capabilities of the people
who use it and want it.” – John W. Tukey & Martin B. Wilk, 1966 [124]

Though Tukey & Wilk voiced these sentiments nearly 50 years ago, they ring true today: to effectively
facilitate human involvement at all stages of data analysis is a grand challenge for our age. We seek to
address this challenge in the context of text analysis. Across many domains, particularly in the social sci-
ences, text is a primary data source for scholarly research. Tasks requiring text analysis include identifying
medical terms in research papers or patient-authored text [21, 78, 95, 132]; finding linguistic markers of af-
fect [17,41,125], politeness [31] or support-seeking [128] in online discourse; tracking reactions to political
events [15, 65] and predicting elections [125]; and determining consumer sentiments about products or cul-
tural artifacts [84, 115]. Across these examples, analysis involves the recognition and/or classification of
phrases or textual categories: researchers iteratively develop or use pre-existing labeling schemas; annotate
terms, sentences or full documents; and train and apply statistical classifiers to analyze data at scale.

The massive amount of text available to researchers now dwarfs their ability to read, comprehend and syn-
thesize the content. Accordingly, researchers are increasingly turning to visualization, natural language
processing (NLP) and machine learning (ML) methods to scale text analysis [101, 118]. Yet as automated
text mining approaches improve, the process of text analysis remains dominated by human effort and su-
pervision [26, 28]. Researchers must collect and manage large text collections, select or develop coding
schemes, annotate a subset of the data (either directly or by training coders), identify predictive textual fea-
tures, tune algorithm parameters, and assess the results of applying automated methods to the full dataset.
This process does not proceed in a linear fashion, instead requiring iteration within and across phases [60],
often switching among tools in a manner that stymies provenance tracking and replication.

Intellectual Merit: We envision a “virtuous cycle” in which analysts formulate schemas and provide anno-
tations, visualizations facilitate understanding of data and models, and automated methods generalize user
input and suggest additional data and features for annotation. We propose the following:

• Interactive System for Text Analysis: We will develop an end-to-end web-based system with which
researchers can more rapidly perform robust and replicable analyses of English text. We will provide
facilities for document and metadata management; interactive text annotation and classifier construction;
and export of the products of the analysis process, such as classifiers, annotated text and provenance
records. The system will also provide a platform for investigating a variety of research problems.
• Integrated Visual Coding and Validation: We will explore novel user interface designs that enable

analysts to author label schemas, annotate text and assess coverage and classification results in an inte-
grated, iterative manner. Research challenges include (1) structuring the labeling process to minimize
input effort and reduce error, (2) leveraging intermediate classifiers to augment annotation work, and (3)
visualizing data and models to assist sample selection, model performance and process convergence.
• Feature Selection and Refinement: Text classification relies on extracted features, including counts of

words and other linguistic markers. We will (1) develop methods for presenting and evaluating large
feature spaces, and (2) investigate the use of unsupervised learning methods (such as continuous word
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embedding models [82]) to help analysts augment their analyses with effective domain-specific features.
• Active and Weakly-Supervised Learning: In addition to interface design, active learning [90, 110]

– such as adaptive sampling of instances or features to label – can accelerate the annotation process
[35, 89, 106]. We will explore two forms of interactive learning: (1) preferential sampling of unlabeled
instances with high classifier uncertainty and (2) feature-based supervision that enable domain experts
to input salient terms, dictionaries or feature constraints enforced via model regularization [35, 39].
• Collaboration & Crowdsourcing: Analysts may need to involve multiple annotators. Putting issues

of data scale aside, having multiple annotators can reduce bias, evaluate agreement and provide more
robust results. When appropriate, crowdsourced workers can also be employed to accelerate and scale
the labeling process [78,113,115]. We plan to (1) develop a multi-user system with task assignment and
management methods to track contributors and assess inter-rater reliability, and (2) build a subsystem
for submitting jobs to crowdsourcing platforms such as Amazon’s Mechanical Turk and analyzing the
resulting labels, addressing research problems of generating task instructions and assessing label quality.

Broader Impacts: This proposal will enable faster and higher-quality text analysis while lowering barriers
to entry. If successful, our tools will enable domain experts who lack training in statistical machine learn-
ing to effectively analyze text data at scale. We will work hand-in-hand with our collaborators in multiple
domains (health & addiction studies, political science, psychology, sociology and studies of scientific col-
laboration) to substantiate these benefits. We will release our system as open source software, and leverage
our software platform in classroom teaching and undergraduate research.

Our previous research projects span model-driven text analytics [25–28, 80, 98]; state-of-the-art classifiers
for medical term identification [78] and sentiment analysis [115]; web-based collaborative analysis envi-
ronments [51, 55, 134]; methods for crowdsourced experiments and data analysis [42, 52, 69, 78, 133]; and
popular open-source systems for data transformation [54, 59, 61] and visualization (e.g., D3.js [16] and
Prefuse [53]). These experiences give us the necessary background skills to successfully conduct this effort.
We seek to bring together these areas of expertise to support the process of classification-oriented text anal-
ysis in a systematic, user-centered fashion. In the rest of this proposal, we first describe selected application
domains and related prior work. We then describe the research goals outlined above in greater detail.

2 Text Analysis Domains & Collaborating Researchers
To guide and ground our efforts, we are collaborating closely with domain experts in five text analysis areas
(see letters of commitment). We have existing collaborative relationships with each team, and (with the sole
exception of Intel) have proposal team members physically co-located at each institution.

Patient-Authored Medical Text (with Dr. Anna Lembke, School of Medicine, Stanford). As described
later, we have conducted prior research on analyzing patient-authored medical text from online support
forums [78] and have a data sharing agreement with MedHelp.org, the world’s largest online public health
forum. We are working with addiction specialist Dr. Lembke to analyze public posts describing substance
abuse behaviors often inaccessible to the professional medical community. Tasks include classifying drugs
of choice, phases of addiction, and support-seeking rationale (e.g., information or emotional support [128]).

Open Government Data (with Prof. John Wilkerson, Political Science, University of Washington). Prof.
Wilkerson is researching the 2007-08 U.S. financial crisis to identify actors and causes and analyze their
relationships. We have access to a large repository of data including transcripts from the Federal Reserve
and Financial Crisis Inquiry Commission, copies of major legislation, and hearings leading to the TARP and
Dodd-Frank bills. In addition to typical named entities (people and organizations), we seek to recognize
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collective stakeholders (e.g., home buyers, real estate agents), organizational actions (e.g., mark-to-market
accounting), and public sentiments (e.g., collective delusion on continued housing price increases).

Affect in Social Media (with Dr. Douglas Carmean & Dr. Margaret Morris, Intel Research). Our collabora-
tors are mining Twitter text to study emotional expression and arousal across language communities. Their
current analysis involves dictionary matches of LIWC terms [122] and an additional “arousal” category
that they have developed. While useful, this form of analysis requires constant review and revision to add
new terms and features (e.g., emoticons) from additional languages. The team is eager to apply statistical
methods, including our proposed feature augmentation technique (§6.2), for improved generalization.

Communication in Distributed Scientific Collaboration (with Prof. Cecilia Aragon, Human-Centered
Design & Engineering, University of Washington). Geographically distributed collaboration is increasingly
common, and understanding the expression of emotion in computer-mediated communications is crucial
to the study of team interactions and processes. Prof. Aragon is working to quantify affect (emotions)
expressed by physicists who collaborate remotely across the globe, based on chat logs with over a half
million messages [17]. Her team has applied LIWC [122] and found the results unsatisfying. They wish to
build a representative set of affect codes, identify predictive features, and classify the desired affects.

Tracking Theories and Methods in Academic Discourse (with Prof. Dan McFarland, Education & Soci-
ology, Stanford). Prof. McFarland is studying academic discourse across Ph.D. theses, including a corpus
of over 1M U.S. dissertations. A primary goal is to analyze the dissemination of theories and methods (e.g.,
statistical or computational techniques) across research communities. Our earlier collaborative work applied
topical analysis to track textual similarities among disciplines over time [28,80,98]. We have found that topic
models augmented with departmental affiliation metadata provide a useful but coarse-grained overview. We
now wish to conduct more fine-grained analyses capable of resolving labeled concepts.

3 Background & Motivation
We first describe related work in text analysis and interactive machine learning (more specific prior work is
included in later sections). We also present two examples from our own work that motivate this proposal.

3.1 Related Work: Text Analysis & Interactive Machine Learning
Whether through exhaustive manual coding or the combination of partial labeling and automated classifica-
tion, text analysis has been applied to a variety of domains. Examples include predicting elections [125],
measuring media response to terrorist threats [15], tracking Chinese censorship [65], determining gender
and language from tweets [8], analyzing personality from Facebook news feeds [104], detecting fake con-
sumer reviews [84], identifying spam webpages [88], and detecting sarcasm [41] or politeness [31]. Text
analysis is at times performed simply by counting the frequency of terms that match pre-defined dictionaries
for a category of interest (e.g., for positive or negative sentiment, sexual content, swear words, etc). Exam-
ple systems and corresponding dictionaries include Linguistic Inquiry and Word Count (LIWC) [122] and
the General Inquirer [118]. By generalizing classification rules from a set of provided examples, statistical
machine learning methods provide an attractive alternative to the inherent scalability limits of exhaustive an-
notation and the brittleness of dictionary techniques. Most machine learning formulations assume that (1) a
set of label classes are given and (2) a set of examples belonging to each class are provided, as demonstrated
by the use of benchmark datasets [91, 99, 126] and evaluation contests [85, 119] to drive research.

However, in many real world applications, the process of analysis includes determining a set of labels and
then labeling the data. Analysts may not know the appropriate number or specificity of labels at the start of
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their analysis [70,79]. In some cases, the investigative goal is to evaluate the fit of an existing schema to ac-
tual data. Consequently, analysts need to construct an independent set of codes [92]. In other cases, analysts
may explore a corpus to determine what codes can be extracted from the text, before deciding whether the
corpus is relevant to their investigation [45]. Acquiring additional data [9, 46] may improve performance,
but is often overlooked as an option in tool development. Existing efforts typically address only individual
components of the process (e.g., interfaces for labeling data [13, 17], studies of the reliability of human
coding [73], and topic modeling to aid human coding [101]) without providing analysts an integrated and
interactive system to assist with iterative label formation and annotation.

Text classification performance also depends heavily on feature selection, converting unstructured textual
content into numerical measures. Text features typically consist of a large set of empirically-determined
linguistic markers (e.g., words, substrings of words, part-of-speech tags, capitalization) supplemented with
a small set of hand-crafted features. While the former can provide statistics across many types of text,
authors of top-performing teams in recent semantic evaluation contests [10, 85] report that the latter con-
tribute significantly to their results. Custom-built features can be especially effective in the analysis of short
or domain-specific text, such as the detection of emoticons in social media [11, 103], word shortening to
signify dialects [37], or repeated letter sequences to indicate emotional valence [17]. Applying a manually-
optimized lexicon can improve classifier performance as much as an improved inference algorithm [36].
Designing custom features, however, can be time consuming [131], error-prone [64], and inaccessible to
users who may be unaware of the statistical properties of high-quality discriminative features.

Research on interactive machine learning seeks to effectively integrate ML methods into interactive systems.
Much of the work-to-date focuses on specific end-user applications, such as entity resolution [62], metric
learning for image search [2,3,38], network event triage [5], and social group generation for content sharing
[4]. The Jigsaw system [117] provides interactive visualizations of the output of existing black-box entity
recognizers, but does not support labeling or model building. In contrast, we will develop a general text
analysis pipeline involving code formation, annotation, classifier evaluation and feature diagnostics. A few
interactive tools [89, 106, 109] combine labeling and learning, providing a simple annotation interface and
facilities for training classifiers. However, these systems do not support other critical parts of the process
such as determining class labels, evaluating the resulting classifiers, and tuning classifier performance.

Other efforts support the general application of ML methods. The popular Weka [48] framework provides
a library of algorithms and facilities for conducting experiments to compare models via cross-validation.
Mühlbacher and Piringer [83] demonstrate how an integrated visual workbench can accelerate the design and
validation of regression models for univariate prediction. The Gestalt system [93] provides an environment
for software engineers to both implement and evaluate classifiers, including the use of visualizations to
diagnose errors (e.g., confusion matrices linked to source data). These features were found to significantly
improve developers’ ability to find and fix bugs in machine learning systems. The EnsembleMatrix [120]
system demonstrates how human assessment of visualized classifier errors can elicit feedback that leads to
more accurate ensembles built of multiple classifiers. We similarly seek to create an interactive system for
application and assessment of classifiers, but for domain researchers performing text analysis tasks.

3.2 Example: Topical Analysis of Academic Discourse
In prior research, we have developed tools and methods for supporting large-scale topical analysis of doc-
ument collections, with a focus on academic text. Our research began with a concrete analysis question in
computational social science: can we assess the flow of ideas across academic disciplines, as reflected in
the texts they produce? In collaboration with NLP and social science researchers, we developed models and
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Figure 1: Visual text analysis of academic publications. (a) Left: Similarity between Stanford departments based on published
theses. Petroleum Engineering is centered; radial distances convey textual similarity to the other departments. (b) Center: Depart-
ments viewed using LDA topic similarity, focused on the English department. We see that the humanities have been clustered far
too aggressively. (c) Right: Termite matrix visualization of term-topic distributions for InfoVis research papers learned by LDA.

interactive visualizations to explore similarities between academic disciplines over time: first using over 15
years of Stanford dissertations [28] and later expanding to over 1 million U.S. dissertations [80].

We initially envisioned an interface backed by existing NLP methods, such as similarity among tf-idf or
LDA (latent Dirichlet allocation [14]) topic vectors. However, we quickly arrived at a visualization that
revealed shortcomings in these models: the visualizations laid bare dubious similarities and highly sensitive
model parameters (see Figure 1a-b). In turn, we developed new models that better reflect expert opinions of
departmental similarity. Through an iterative design process, we formulated an asymmetric “word borrow-
ing” measure that leverages the machinery of Labeled LDA [97], a supervised topic modeling method. This
measure better matched the judgments of domain experts (professors) as they assessed departmental similar-
ities. Our final visualization has been used by a varied audience of university administrators and the general
public, including coverage in a number of design and science venues (e.g., Discover Magazine). Informed
by this experience and other text visualization efforts (e.g., [19, 29, 43, 117, 129]), we have developed a set
of design guidelines for the integrated development of statistical models and interactive visualizations [28].

We next investigated how to make topic models more interpretable and relevant to real-world analysis.
Reviewing the use of topic models in practice (e.g., [44,47,87,121]), we identified numerous bottlenecks in
their application, which despite the unsupervised nature of the algorithms, is dominated by interpretation,
parameter tuning and language model modification by people. In response, we developed Termite (Figure
1c), a novel visualization system for assessing topic model output [26]. This work introduced a term saliency
measure for identifying probable yet distinctive terms, and a term seriation algorithm that arranges terms to
reveal groupings of related words and preserve phrases to aid rapid scanning. Termite has been released as
open-source software and is now in use by a community of data scientists and machine learning researchers.

While Termite enables visual assessment of topic model output, we wished to scale model assessment to
thousands of models. This led to the development of a human-centered diagnostics model for evaluating
inferred topics [25]. We first conducted an experiment in which domain experts articulated their own mental
models of topics in a research domain. The collected data allows us to compare “expert-constructed” topic
models to those produced by automatic methods. We can then measure the correspondence between a set
of latent topics and a set of reference concepts to quantify four types of topical misalignment: junk, fused,
missing and repeated topics. We have applied this method to analyze thousands of topic models, informing
choices of model parameters, inference algorithms, and intrinsic measures of topical quality.

Though topic models usefully identify recurring themes, they are too coarse to resolve specific entities of
interest, such as research methods referenced in academic text. We are now shifting our focus to fine-grained
classification tasks. Analogous to our topic modeling work, we seek to facilitate an analysis processes with
significant human involvement: text codification, labeling, classifier construction and assessment.
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ADEPT: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
Dictionary: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
MetaMap: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 

OBA: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
TerMINE: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 

 
ADEPT: last summer i was at home with my daughter who is now 2 

Dictionary: last summer i was at home with my daughter who is now 2 
MetaMap: last summer i was at home with my daughter who is now 2 

OBA: last summer i was at home with my daughter who is now 2 
TerMINE: last summer i was at home with my daughter who is now 2 

 

 
 
 
 
 
 
 

 
 
 
 
 

 

ADEPT: in my case the woman my husband had an affair with reassured him twice she had no stds 
Dictionary: in my case the woman my husband had an affair with reassured him twice she had no stds 
MetaMap: in my case the woman my husband had an affair with reassured him twice she had no stds 

OBA: in my case the woman my husband had an affair with reassured him twice she had no stds 
TerMINE: in my case the woman my husband had an affair with reassured him twice she had no stds 

ADEPT: i had a chest xray done and they said there was something in my lung 
Dictionary: i had a chest xray done and they said there was something in my lung 
MetaMap: i had a chest xray done and they said there was something in my lung 

OBA: i had a chest xray done and they said there was something in my lung 
TerMINE: i had a chest xray done and they said there was something in my lung 

ADEPT: mgmt retail sales not overweight good almost great posture 
Dictionary: mgmt retail sales not overweight good almost great posture 
MetaMap: mgmt retail sales not overweight good almost great posture 

OBA: mgmt retail sales not overweight good almost great posture 
TerMINE: mgmt retail sales not overweight good almost great posture 
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ADEPT  OBA 
pain  have 

arthritis  pain 
symptoms  doctor 

joints  arthritis 
knees  like 

feet  help 
hands  time 

swelling  years 
neck  symptoms 
knee  right 

fingers  did 
ankles  work 

legs  blood 
tests  joint 
joint  good 

rheumatologist  does 
diagnosed  need 

swollen  months 
meds  joints 

disease  test 
surgery  knee 

treatment  day 
leg  started 

shoulder  ago 
spine  try 

doctor  is a 
inflammation  tests 

wrists  better 
test  left 

stiffness  hope 
painful  long 

diagnosis  year 
arms  disease 

toes  bad 
fatigue  rheumatologist 

shoulders  diagnosed 
joint pain  here 

wrist  days 
bone  hands 

muscles  old 
arm  sure 

osteoarthritis  weeks 
foot  knees 
hip  doctors 

medication  normal 
negative  cause 
positive  lot 

skin  got 
cold  make 

Figure 2: Comparison of terms identified as medically-relevant by different models. (a) Left: comparison of five models (classified
terms shown in black), including our CRF-based ADEPT model. OBA and MetaMap runs use the SNOMED CT ontology. (b)
Right: Term rankings for ADEPT and OBA on Arthritis forum data. Terms occurring in both lists are connected by a line.

3.3 Example: Extracting Medical Terms from Patient-Authored Text
Our proposal is motivated by our ongoing work developing classifiers for patient-authored medical text.
Online health-seeking behavior is growing rapidly: 59% of U.S. adults looked for health information online
in the past year, and 35% attempted to diagnose a health condition online [94]. One result of this trend is the
accumulation of patient-authored text (PAT) in the form of blog posts, online health forum discussions and
email. Analysis of online health behaviors can lead to new medical insights and assist tasks such as tracking
disease trends [18, 22] and discovering previously unknown links among conditions and/or treatments [21,
130,132]. However, PAT is difficult to analyze due to lexical, semantic and conceptual differences from text
authored by medical experts, limiting the utility of existing tools such as MetaMap [7] and OBA [58].

A data-sharing agreement with MedHelp (www.medhelp.org), the world’s largest online health forum,
gives us access to hundreds of thousands of patient-authored discussion posts, covering roughly 200 topics.
An initial challenge is to extract medically-relevant terms (such as conditions and treatments) for further
analysis. However, medical experts (doctors, nurses) have limited time, making it difficult to get copious
labeled data. In response, we have investigated how to direct crowds of non-experts (workers on Amazon’s
Mechanical Turk) to label medically-relevant terms in PAT with accuracy comparable to annotations we
collected from registered nurses. Achieving consistent labeling required several iterations of the task prompt
and examples, as well as experimentation to determine optimal voting schemes. For example, asking users to
only tag words/phrases that they thought doctors would find interesting mitigated numerous inconsistencies.
We then used over 10,000 crowd-labeled sentences to train a conditional random field (CRF) classifier. Our
model widely outperforms prior state-of-the-art tools for medical term extraction (F1-score of 77.7% versus
OBA’s 47.2%, MetaMap’s 39.1% and a dictionary baseline of 38.7%). Our annotation method and results
were recently published in the Journal of the American Medical Informatics Association (JAMIA) [78].

In ongoing work, we are investigating how to use weak supervision as an alternative to term-level anno-
tation. Given existing dictionaries of conditions and treatments, can we bootstrap effective, generalized
classifiers? Lexico-syntactic pattern learning [50], an effective but less-popular technique for term extrac-
tion, outperforms existing MetaMap and OBA tools, as well as a CRF trained using dictionary matches as
positive examples. We are able to discover several novel terms not in existing dictionaries or ontologies.

In collaboration with addiction specialist Dr. Anna Lembke, we are now focusing on patient-authored text
regarding substance abuse, which documents abuse behaviors and detoxing strategies otherwise inaccessible
to medical professionals. After extensive open coding to determine medically-relevant concepts, we have
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had initial success training a logistic regression classifier for drug of choice (F1=81.4%). These labels are
highly context sensitive, as substances (e.g., Xanax, Methadone) may serve either as helpful treatments
or as abused substances. We are now exploring document-level logistic regression and CRF models for
identifying information vs. emotional support seeking and phase of addiction (e.g., using, quitting, etc).

Across these activities, developing custom classifiers has proven time-consuming and labor-intensive. La-
beling data is not only tedious, it requires careful analysis and iteration to ensure agreement among anno-
tators, involving modification of the labeling rubric and reassessment of prior labels. Similarly, authoring
effective prompts and examples for crowdsourced workers required much iteration. Experimenting with
models and features also has consumed significant effort. For the substance abuse data, hand-engineered
features based on observed patterns have contributed substantial improvements to classifier accuracy. There
is little support for the overall process of analysis: each of the above phases requires switching among differ-
ent tools and manual record keeping of the results across numerous iterations (e.g., labeling disagreements,
features assessed, classifier errors). Interactive tools that integrate data profiling, annotation, model training
and assessment can vastly accelerate development while also recording provenance and enabling replication.
Moreover, we would like to empower our collaborators to conduct such analyses on their own.

4 An End-to-End Interactive Text Analysis System
Our goal is to develop an interactive system with which domain experts can conduct, evaluate and publish
state-of-the-art text analyses. We will provide integrated support for the process of text analysis. Our end-
to-end system will provide usable tools for collaborating domain scientists, enable empirical study of the
text analysis process, and alleviate the accessibility, overhead and provenance-disrupting costs of current
practices involving disparate tools. We believe such a system is timely: not only are scientists increasingly
interested in scalable text analysis methods, we are at an opportune point in time to leverage developments
in visualization tools, active and constraint-based learning, and crowdsourcing systems. We intend for our
system to provide a test-bed framework for the research activities described in this proposal as well as for
additional future work. Figure 3 shows a basic schematic of the text analysis workflow of our proposed
system. Many of the components are discussed in detail in subsequent sections. Here, we briefly describe
aspects which require engineering effort but not necessarily new research.

One critical piece of infrastructure is document and annotation management: we will provide support for
importing text documents and metadata. Example inputs include ASCII, HTML, or PDF files, relational ta-
bles with text fields, and external metadata such as dictionaries, ontologies and term resolution maps. Upon
ingest, we will perform optional segmentation (e.g., by sentence), text processing (e.g., tokenization, stem-
ming) and feature extraction (e.g., capitalization status, word-grams, part-of-speech tagging). Following
existing language toolkits [12, 116], we will manage extensible annotations for documents and terms.

Another aspect is classifier and experiment management. We will initially focus on the use of logistic
regression for classification and conditional random field models for sequence labeling. However, we will
design the system with appropriate interfaces to enable the extension to additional classifiers (e.g., random
decision forests, support vector machines, ensemble methods) in the future. We will also include runtime
support for applying classifiers, exporting results, and evaluating them via cross-validation.
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Figure 4: Interface mockup with label management, annotation and visualization. Annotation is currently focused on a single
binary label (“Medical”). Hovering over the term “xray” triggers selection previews: the dark blue region is labeled upon single
click, the full blue region (a noun clause) upon double click. Visualizations show dimensionality reduction of terms (left) and error
analysis of current classifier accuracy vs. term frequency (right); users can lasso regions to sample or batch label instances.

We will implement a two-tier system: a server-side component for text management and analysis, and a
client-side component for visualization and interaction. We plan to write the server-side component in Java,
using well-established tools such as the Stanford CoreNLP framework [116] and the Apache Lucene [6]
search engine. Our research team has used both extensively in prior work. We will also use a relational
database for persistence and querying of extracted features and metadata, as well as event logging and user
session management. While backend scalability is not the primary focus of this proposal, as needed we will
work with collaborator Carlos Guestrin (see letter of commitment) and his group’s GraphLab system [74,75]
for distributed, large-scale machine learning. The client-side interface will be an HTML5 single-page web
application, with visualizations built using the D3.js (Data-Driven Documents) [16] library created by our
research lab. The two tiers will communicate using a web services API, facilitating reuse of our server by
other client systems. The API will include logging facilities at the input and application event levels both to
record provenance for replicability and to enable analysis of usage data.

4.1 Summary of Tasks and Goals
• End-to-end system: We will build an integrated system for importing text documents, performing an-

notation, training classifiers and evaluating the results in an iterative loop. The system, consisting of a
server and web client, will provide a platform for the research efforts discussed in the following sections.
• Text and metadata management: Our system will support import, segmentation, feature extraction,

indexing and annotation management. The server will act as a data source for client interfaces.
• Publishing results: The system will support export of learned classifiers, labeled text data and evalua-

tion results to enable both publication and dissemination of results.
• Provenance & replication: The system’s logging architecture will enable review and reapplication of

user annotations to support replication and reuse on new or evolving data sets.

5 Integrated Visual Coding and Validation
At the heart of our proposed system is a user interface for authoring label schemas, annotating text data
(either documents or individual terms) with those labels and then using the annotations to train and evaluate
classifiers. We propose to combine these processes within an integrated user experience. For example, our
system should support open coding through evolving label schemas, accelerate annotation to reduce tedium,
and facilitate validation throughout the analysis process. Figure 4 contains a mockup of one early-stage
design idea for combining label schematization, rapid annotation and data visualization. We will explore
multiple alternative designs and evaluate them in an iterative design process. Here, we discuss some of the
research and design challenges we intend to investigate. In subsequent sections, we will go into further
details regarding feature selection (§6) and active learning (§7) components.
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5.1 Annotation Acceleration
Our interface will enable analysts to annotate either text segments or terms with class labels. To accelerate
this process, we will investigate multiple strategies for accelerating annotation actions and reducing errors.

Text selection: In addition to keyboard shortcuts, we will explore efficient text selection methods. We will
analyze usage data for recurring selection patterns. For example, part-of-speech tags might guide multi-click
selections in which the first click selects a term, and the second click selects an encompassing noun phrase.

One-class-at-a-time annotation: Deciding among multiple class labels may require increased decision times
or significant context-switching on behalf of the user [20]. We will experiment with annotation strategies that
consider only a single label at a time, treated as a binary annotation. Prior work has found significant benefits
for such “column-oriented” approaches in form entry applications [23], reducing input effort and increasing
overall data quality. We hypothesize this strategy will prove helpful for term annotation in particular; and
useful for parallelization and task simplification when crowdsourcing annotations (§8).

Reduce annotation to confirmation: Our system can progressively train classifiers as users produce annota-
tions; alternatively, application of dictionaries or feature-space annotations can provide initial, albeit crude,
labels. We will explore the utility of applying such intermediate classifiers to turn annotation tasks into
one-click (or one-keystroke) confirmation tasks. If a document or term is labeled correctly, the user might
take no action, and only disconfirm inaccurate labels (or vice versa). We will investigate if such an approach
is generally useful or limited to tasks such as validation of labels with high classifier confidence (§7).

Batch annotation: We will explore approaches for annotating multiple instances simultaneously by auto-
matic clustering of similar instances and selecting documents and feature space regions within data visual-
izations. For example, one might associate specific words, dictionaries or features with a given class label.

5.2 Data and Process Validation
Our system will train classifiers as users label data, both to drive active learning (§7) and to support valida-
tion throughout the analysis process. Classifiers are typically evaluated using measures such as precision,
recall and F1 score (their harmonic mean). While valuable, these measures have limitations: they do not
reflect upstream errors such as annotator mislabeling or provide diagnostic information for improving a
classifier. In isolation, these measures do not establish either lower or upper performance bounds. What if
the annotations cannot be predicted by the available features? To aid human-in-the-loop analysis, we will
investigate interaction and visualization techniques to aid labeling and validation.

Text data visualization: We will investigate visualization methods for viewing instances of input text data
(e.g., documents or terms) in the context of extracted features and provided labels. For example, visual-
izations of how instances distribute across features or related statistics (e.g., corpus term frequency, Figure
4) may help guide feature selection and sample coverage. We will also explore the use of dimensionality
reduction methods [105, 127] to plot feature-space representations of documents or terms (as in Figure 4).
Such views can reveal clusters of similar instances. We can further explore techniques for labeling regions
(or user selections) in the projected view by dominant features contributing to instance similarity. As an-
notations are collected, instances may be correspondingly colored to assess label-feature correlations. As
classifiers are trained, we can rank features by their current contribution to a model (e.g., coefficients from
logistic regression). While useful in isolation, such visualizations are especially powerful in combination.
We will support common interaction techniques such as linked selection (i.e., “brushing and linking”) and
details-on-demand (e.g., retrieving source text for selected data points) to facilitate exploratory analysis.
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Schema validation and refactoring: To assess label schemas we will visualize correlations among labels
and annotators. Inter-rater agreement statistics can provide a baseline for classifier evaluation. Visualizing
systematic patterns of disagreement can inform schema design and instructions. For individual annotators,
comparing highly-similar or intentionally duplicated instances may aid assessment. To facilitate evolving
schemas, we will identify labels with high error rates or poor discrimination under current classifiers, and
support user interface operations to merge or split labels (splitting may be assisted by a combination feature-
space clustering and active re-labeling), and to retrain classifiers on a reduced subset of labels.

Process assessment and error analysis: To assess current classifier performance we can plot statistics (e.g.,
cross-validated accuracy, precision, recall, or F1) over increasing sample sizes. Such plots can help assess
the rate of classifier improvement. Are additional labels likely to further improve performance? As appro-
priate, assessment can include comparison of multiple classification algorithms and/or parameter settings.
We will also incorporate visualizations for fine-grained exploration of current classifier performance. For
example, confusion matrices [93,120] can reveal common misclassification patterns among multiple labels,
while plotting classifier performance against predictors such as frequency (see Figure 4) can help assess if
misclassification may be due to insufficient examples of rare instances.

5.3 Summary of Tasks and Goals
• Integrated annotation and validation: Design novel interfaces that integrate schema authoring, anno-

tation and classifier evaluation to facilitate iterative, human-in-the-loop analysis.
• Annotation acceleration: Design to reduce input effort and error: augment selection, explore single-

class annotation strategies, supplant labeling with confirmation and investigate batch annotation.
• Data and process validation: Visualize text data according to extracted features and supplied labels.

Support label schema modification, including splitting and merging of existing codes. Design classifier
performance and diagnostic plots to assess progress and convergence.

6 Feature Selection and Refinement
Text classification requires extracting linguistic features from unstructured text, which then serve as input
data to learning algorithms [49]. Classifier performance depends heavily on whether the extracted features
are sufficiently expressive with respect to the text corpus and sufficiently discriminative with respect to
the user-supplied schema. Our system will include components to help users manage, author and evaluate
effective textual features specific to their analyses. We will investigate the design of visualizations and
interfaces to support feature exploration and to evaluate the contribution of features.

6.1 Feature Management and Assessment
Our system will include several classes of features, along with tools to help users evaluate and refine the
feature space. Following current best practices, we will automatically extract empirically successful features
such as the counts of words, n-grams, and character n-grams, as well as statistics derived from part-of-speech
tagging and common named entity types. Our system will also provide user interfaces to manage manually-
crafted dictionaries, a common way for users to express custom vocabularies relevant to their schema.

In many classification tasks, the number of labeled instances is smaller than the number of features. As a
result, the ability to discriminate most instances may be attributed to multiple features, and over-fitting is a
concern. The decision to include or exclude a feature often falls on the analyst who must assess whether a
feature is expressive or is over-fitting the training data. As mentioned in §5.2, we will design visualizations
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to help users explore the space of features and to reveal patterns such as features that fire consistently. While
visualization techniques exist for visualizing dozens or more continuous dimensions (e.g., parallel coordi-
nates [56]), feature visualization involves a larger space of 10,000+ dimensions that are typically binary or
discrete. We will integrate feature visualization with other schema- and document-based visualizations to
help users determine correlation between features, original text, and annotations. We will also examine cor-
responding user interactions to support feature exploration. Given thousands of features, turning individual
features on and off is infeasible on the whole. We will provide support such as ranking, grouping, filtering,
and re-weighting to help users assess feature contributions. We will explore hierarchical organizations of
features to help users manage groups of features at once.

6.2 Unsupervised Feature Learning and Refinement
An emerging line of research applies unsupervised techniques, such as deep learning [40, 77, 82, 115] or
topic models [14], to improve domain-specific classification tasks. We will investigate the use of continuous
word embedding and latent topics – automatically generated from a reference text corpus – as classifier
features. While these word representations can improve classifier performance [77], users are often left
with a take-it-or-leave-it decision, with few options to assess or refine these features. We will investigate
multiple forms of support for incorporating such features. First, we will provide tools to help users identify
and label unsupervised dimensions (such as latent topics) relevant to a task. For example, our prior work on
topic models [25, 26] addressed how to visualize latent topics and align them with interpretable reference
concepts. Second, we will provide tools to help users quickly augment lexicons, either to create improved
dictionaries or form groups of semantically-related terms. In recent unpublished work, we have found
that given a set of related seed terms, we can identify concept-specific axes (suitable for use as a classifier
feature) within word embedding models. A user provides a dictionary or example terms, and we learn a word
vector model subspace corresponding to a semantic category containing those terms (e.g., emotion words or
country names). By subsequently identifying other terms in this learned space, we can automatically extend
or adapt text analysis resources such as LIWC dictionaries. By propagating annotations from given terms to
nearby terms in the vector space, we might also better amplify feature-space annotations (§7).

6.3 Summary of Tasks and Goals
• Feature management & assessment: Design visualizations to help analysts track and assess their ex-

ploration of the feature space. Develop interactions to help analysts effectively refine features.
• Unsupervised feature learning and refinement: Combine unsupervised feature learning with end-user

refinement, so that analysts can more easily author effective domain-specific features.

7 Active and Weakly-Supervised Learning
A key goal of this proposal is to reduce tedium in supervising learning systems and provide interactive
insight into their construction. Supervised learning has enabled major improvements to the accuracy and
robustness of document analysis and information extraction. However, a primary obstacle is the limited
availability of domain-specific expert-labeled data, which can require significant time and labor. Active and
weak supervision methods [34, 39, 90, 110] provide an efficient alternative for creating accurate classifiers.

We plan to start with two common machine learning methods: logistic regression (which treats each in-
stance as independent) and conditional random fields (which also model transition probabilities for label
sequences). Both are widely-used and amenable to the feature-based supervision methods described be-
low [34,39]. Going forward, we will consider expanding to other classifiers, such as random decision forests,

15



support vector machines, or deep learning methods. Our initial implementation will use batch sampling and
model updates; as needed, we will investigate improved interactivity through online learning methods. On
these tasks we will collaborate closely with our faculty colleague and machine learning expert Prof. Carlos
Guestrin (see included letter of commitment).

7.1 Active Learning to Sample Unlabeled Examples
Our learning process will interleave data exploration by an analyst, instance labeling and constraint au-
thoring. To seed the process, the analyst can label an initial set of examples and/or features for each
category or field. Our system will then use the current predictions of the model to assess which features
are likely to reduce uncertainty about its predictions using expected information gain and its approxima-
tions [35, 81, 107, 112]. For example, a common approach is to sample instances with the the highest
uncertainty or which lie closest to current classifier decision boundaries [110].

To optimize the use of an analyst’s time and attention, selected examples should be both informative and
diverse. Nearly redundant features and examples which dominate large-scale data will simply drown out the
signal. To determine an appropriate initial sample, we will investigate alternatives to uniform random sam-
pling. For example, hybrid active learning [76] first clusters instances in an unsupervised fashion and then
uses the clusters to perform stratified sampling. We will experiment with augmenting this approach with an-
alyst input through selection of desired features or clusters in overview visualizations, and use visualizations
to select and label multiple instances simultaneously to perform batch active learning [108].

7.2 Feature-Based Supervision to Incorporate Domain Knowledge
Traditional forms of active learning sample unlabeled instances believed to be most informative for improv-
ing a model. However, labeling large numbers of examples may be inefficient, especially when an analyst
possesses valuable domain knowledge about the feature space. Early work in this area applies boosting to
features believed to be more informative [96], but does not associate features with specific classes. More
recent work uses feature-space annotations (e.g., indicating specific words that are associated with a given
class label) to adjust model priors [106, 109] or constrain inference [33–35, 39].

We propose to incorporate Ganchev et al.’s posterior regularization [39] framework to enable feature-based
weak supervision. Posterior regularization incorporates partial supervision for latent variable models using
moment constraints on model posterior distributions. For example, suppose we want to learn how to extract
not just the polarity of a product review, but more specific aspects. In restaurant reviews, we might want to
identify comments about food, service, and ambiance [114, 123]. Chain-structured models, such as CRFs,
are the tools of choice for such tasks, where each word is associated with a variable corresponding to the field
type (e.g., food, service, ambiance). In addition to choosing words indicative of each field, an analyst may
specify that food descriptions typically come before service and ambiance, and often constitute over half the
words in a review. In general, an analyst might specify a conjunction of such “features” that refer to states
and roughly constrain their proportion (expectation under the model). Posterior regularization framework
incorporates such constraints into model estimation without changing its structure or the complexity of
inference. The learning algorithm resembles Expectation Maximization (EM), but involves an additional
projection step which enforces constraints. Our interface will allow analysts to select features, annotate
them to produce constraints, and see examples that these features impact most.

Browsing of constraints at interactive speeds will be enabled by approximate, incremental re-training of
the model. Recent work on stratified sampling [34] has shown promising results in approximating feature
relevance by using small, well chosen subsets of the data. For some features, the effect on predictions can
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be seen even using a very small subset of examples, but others require the entire data. Posterior regulariza-
tion inherits properties of the EM algorithm that allow incremental and approximate updates [39, 86]. Our
interface will allow the user to see the approximate results using a small, local subset of the data, while
progressively more accurate results are computed in the background. Thus, the analyst can quickly modify
the model if the approximate results do not seem promising.

7.3 Summary of Tasks and Goals
• Selecting informative and diverse examples or features: Incorporate active learning methods for

sampling promising and non-redundant examples and feature constraints for analysts to evaluate.
• Constraint-based supervision: Design simple and effective visual interface and process for expressing

constraints, which are then enforced via posterior regularization.
• Fast evaluation of the impact of changes: Construct approximations of constraint impacts for interac-

tive model building, enabled by progressive model-refining in the background.

8 Collaborative & Crowdsourced Labeling
To annotate large unlabeled data sets, collaborative, and more recently crowdsourced, annotation procedures
are common. Accordingly, our system must include support for integrating the contributions of multiple
annotators. We will include a user model to track who is using the system and their annotations and actions.
Our sampling procedures can use this information to request a set of redundant annotations to assess inter-
rater reliability or evaluate the performance of assistants. We will also provide flexible aggregation methods
(e.g., voting thresholds) to determine how to handle conflicting judgments.

8.1 Crowdsourcing Annotation Tasks
Crowdsourcing platforms, particularly Amazon’s Mechanical Turk [57], have become increasingly popular
for user studies [52,66], text annotation [78,113]), and even performing complex activities such as explana-
tory [133] and taxonomic [24] data analysis. By farming out annotation tasks to a pool of hundreds or
even thousands of workers, researchers can scale labeling with dramatically improved time and cost. Still,
ensuring high quality responses presents a serious challenge. Crowdworkers may misinterpret a prompt or
task, exhibit varying levels of effort, or outright scam by rapidly producing inauthentic responses. Many
studies engage crowdworkers to annotate documents on general topics such as movie reviews [115] or news
articles [106, 109]; recruiting or training crowdworkers with domain expertise, however, remains difficult.

To assist such efforts, we will research methods for reliably eliciting and integrating high-quality crowd-
sourced labels in text analysis workflows. Prior crowdsourcing research has developed programming frame-
works to support task allocation and adaptive jobs [1, 72]; tools for authoring complex, multi-phase crowd
workflows [67,68,71]; and visualization tools for inspecting worker activity [32,102]. We intend to provide
more targeted support for guiding and evaluating text annotation tasks: we will provide facilities to submit
jobs to Mechanical Turk, which in turn will direct crowdsourced workers to a version of our annotation
interface. Our system will log worker actions, collect annotations and make the results accessible through
existing visualization and collaboration facilities. After first eliciting judgments from a domain analyst, the
system will have “ground-truth” labels with which to evaluate the quality of worker responses and determine
appropriate aggregation schemes (e.g., corroborative vs. majority voting). Users will then be able to selec-
tively include crowdsourced annotations in their analysis pipeline. Going forward, we envision our system
facilitating the development and evaluation of more elaborate crowd management schemes (e.g., [30, 63]).
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8.2 Semi-Automated Task Instruction
Providing understandable, unambiguous instructions is critical to facilitating high-quality annotations. In
our own work we successfully employed workers on Mechanical Turk to label medically relevant terms
in over 10,000 sentences [78], but doing so required multiple iterations of instruction design in which we
clarified the nature of “medically relevant” (e.g., “what terms would a doctor be interested in”) and presented
suitably diverse, informative examples. Similarly, our prior work on crowdsourcing explanations for patterns
in data [133] first required extensive validation of different task design strategies. Using active learning
methods (§7), we can partially automate the process of instruction formation by suggesting diverse examples
to include in worker instructions. To expedite convergence, we can also allow users to submit jobs with
various prompts and analyze the resulting labels before running larger-scale annotation jobs.

8.3 Summary of Tasks and Goals
• Collaboration support: Our system will track and aggregate contributions from multiple users.
• Crowdsourced labeling: We will develop facilities for submitting annotation tasks to Mechanical Turk,

visualizing worker activity and evaluating the responses.
• Instruction generation: We will research new methods to assist the generation and evaluation of task

instructions to facilitate higher-quality responses.

9 Evaluation
In addition to ongoing usability studies, we will evaluate different configurations of our system through
controlled experiments and long-term deployments with crowdsourced workers and domain researchers.

9.1 Controlled Experiments
To assess our system we will conduct a series of controlled experiments on real-world analysis tasks through-
out the lifecycle of the project. With but a few exceptions [100, 106, 109], evaluations of active learning
systems for text analysis use simulated user input drawn from pre-labeled data. Moreover, they assume that
users are oracles with perfect accuracy. In contrast, we will ask subjects to interactively construct text clas-
sifiers and compare the results across different system configurations. We will draw on existing benchmark
data sets from the text mining literature as well as data from our own prior work on patient-authored medi-
cal text. We will run initial experiments in person with collaborating research teams and their students. We
will then conduct larger-scale experiments by recruiting crowdsourced workers as participants [52, 66]. In
addition to scaling the participant pool, this strategy will allow us to compare domain expert and non-expert
users and also compare the relative contributions of active learning methods and crowdsourced annotation.

Independent factors that we can manipulate include: (1) classification unit (document vs. term), (2) number
of label classes, (3) labeling strategy (parallel vs. serial consideration of classes), (4) available visualizations,
and (5) active learning support (random sampling vs. uncertainty sampling vs. feature constraints). Given
the large space of possible experiments, we will conduct a series of accretive experiments, rather than a
full-factorial design. Dependent variables of interest include classifier performance (precision, recall, F1-
score, accuracy), time on task, and the number and type of samples or features annotated. We will also
conduct error analyses, in part to look for systematic biases that may result from the above manipulations.
For example, do active learning methods result in different patterns of misclassification?
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9.2 Longitudinal Case Studies
We will also conduct long-term case studies [111] with our collaborators (§2). We will make our system
available to collaborators through a hosted web service which we will maintain, enabling interaction and
event logging for usage analysis. We will schedule regular meetings with our collaborators to interview
them on their experiences (when appropriate using usage data as an elicitation prompt), demonstrate new
features, receive feedback and prioritize future efforts. In addition, we will solicit feedback from, and
provide support for, external researchers who download and use open source releases of our software.

9.3 Summary of Tasks and Goals
• Controlled experiments: We will conduct controlled experiments with both domain experts and crowd-

sourced workers to systematically assess our design decisions on classifier and user performance.
• Longitudinal case studies: Through long-term deployments with collaborating researchers we will

assess tool usage and utility, with the goal of facilitating novel research results across varied domains.

10 Research Timeline
We will develop our system using a phased approach: we will start by scaffolding an end-to-end system,
then refine it with more functionality. Doing so, we can explore multiple research questions in parallel, then
integrate successful results. This strategy allows us to deploy and gain user feedback early in the process to
adaptively prioritize the research. The research team will consist of PI Heer, Senior Personnel Jason Chuang,
multiple PhD students (e.g., Diana MacLean, Jeff Snyder), undergraduate researchers and our collaborators.
Year 1 effort will focus on an initial system supporting text ingestion, feature extraction, annotation man-
agement and classification support (logistic regression, CRF) on the server, and an application scaffolding
and annotation interface for the web client (All, §4-5). We will deploy the system with our research collab-
orators and roll out new features as they mature. In parallel, we will investigate multiple model assessment
visualizations (All, §5), feature augmentation methods (Chuang, §6) and active learning support (Snyder,
§7). Moving forward into year 2, we plan to develop crowdsourcing and task generation support (MacLean,
§8). We will further refine each research component, initiate controlled experiments (§9) and integrate new
features with periodic software releases. In year 3 we will continue to refine and integrate additional features
in response to our ongoing experiments and collaborator feedback. At this point, we will further package
and document the system such that our open source release is usable by a larger community of researchers.

11 Results from Prior NSF Funding
PI Jeffrey Heer is an Associate Professor of Computer Science & Engineering at the University of Washing-
ton, and previously an Assistant Professor of Computer Science at Stanford University (2009–13). He has
received two prior collaborative NSF grants: IIS-1017745 “HCC: Small: Graphical Preception Revisited:
Developing and Validating Design Guidelines for Data Visualization” ($250k, 2010–13) and CCF-0964173
“DIC: Medium: Scalable, Social Data Analysis” ($333k, 2010–14). These awards have led to over a dozen
papers in the top venues in Human-Computer Interaction and Information Visualization (CHI, UIST, Info-
Vis, VAST & EuroVis), including best paper or honorable mention awards in each of these conferences.
NSF support for his work on interactive data transformation (CCF-0964173) led to founding Trifacta Inc.
(with Joe Hellerstein & Sean Kandel), which has raised over $16M in venture capital. These NSF awards
do not overlap with this proposal. Heer is also a Faculty Participant on NSF-1258485 “IGERT-CIF21: Big
Data U: A Program for Integrated Multidisciplinary Education & Research for Big Data Science”, led by PI
Carlos Guestrin. The current proposal is complementary to the educational aims of the IGERT.
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Data Management Plan
We expect this project to generate or collect multiple types of data: source code, text data and associated
metadata, derived classifier parameters and classification results, and logged usage data from evaluations.
Our plan is to make the source code publicly available to other researchers and practitioners. Text and
derived data will be shared only when legally and ethically permissible, in accordance with copyright law,
the wishes of third-party data providers and IRB policies. For the purposes of public demonstration, we will
use text data available in the public domain.

Data Preservation: All project data and code will be stored securely using facilities provided by the Uni-
versity of Washington’s Computer Science & Engineering department. The primary backup system is disk
based and utilizes the ZFS file system. The system performs snapshots of data partitions and efficient repli-
cation of data to an offsite location on a dedicated 10 Gigabit link. In addition, the department uses the
UWIT/eScience hosted tape archive service for catastrophic disaster recovery.

Data Security: All sensitive data – including proprietary text and experimental data – will be kept in
centralized storage that is securely maintained by professional staff. Collected experimental data will be
anonymized, and stored stripped of personally identifying information.

Data Coordination: Project code and test data will be accessed through Git repositories to facilitate coor-
dination between project members.

Data Dissemination: All code developed as part of this project will be publicly distributed under the terms
of a BSD Open Source license. Any scholarly publications for this project will likewise be made publicly
available free of charge. Primary distribution will be through the Interactive Data Lab website (http:
//idl.cs.washington.edu) and via GitHub.com, a popular service for open source collaboration.
As applicable, we will also place project data into repositories that are maintained by various publishers.
For example, papers published in ACM venues will include project data and code as supplemental materials
to be archived in the ACM Digital Library.
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Post-Doc Mentoring Plan
Post-doctoral scholars supported on this project will work closely with the PI and his collaborators, who have
experience mentoring postdocs. Postdocs will gain valuable career experience through this apprenticeship
and mentoring which will include the following components.

Recruitment and Orientation. Postdocs will be recruited through an open recruiting process that will in-
clude students of under-represented backgrounds. We will discuss mutual expectations for (a) the amount of
independence the Postdoctoral Researcher will have, (b) interaction with other team members, (c) produc-
tivity including the importance of scientific publications, (d) work habits and (e) documentation of research
methodologies and experimental details so that the work can be continued by other researchers in the future.

Stimulating and Supportive Environment. The PI is a member of several interdisciplinary research groups
at the University of Washington, including the Interactive Data Lab, the Design-Use-Build (DUB) HCI
group, at the eScience Institute. The postdoc will have the opportunity to interact with faculty in all these
affiliated groups as well as other groups on the campus. Postdocs at Washington will regularly interact with
collaborating faculty at other institutions. This interaction will enhance the postdocs experiences and also
benefit the coordination of our project.

Career Counseling. The PI has successfully placed postdocs and students in highly sought after, intellectu-
ally challenging jobs, including successful outcomes at both industrial research and faculty positions at peer
institutions.

Grant Proposals and Publications. An important part of the mentoring plan is to give the postdoc ex-
perience in writing technical publications and grant proposals so they learn to successfully present their
research and obtain funding to pursue their own research agenda as independent researchers. The PI will
ensure that the postdocs take the lead on writing relevant papers and are involved in grant proposals (includ-
ing this one!), planning the proposed research, supervising student researchers, considering budgetary and
other management issues in the grant writing process, and following responsible professional practices. We
have requested funding to send the postdocs to workshops and conferences, both to present research results
and to network with other researchers.

Teaching and Mentoring Skills. Postdocs will be involved in teaching graduate courses and possibly also
in undergraduate courses (through guest lectures). Several graduate and undergraduate classes taught by
the PI are based largely on projects. These classes will provide opportunities for the postdocs to define
projects and mentor students working on them. The postdocs will also assist the PI in advising graduate
students, particularly those early in their careers, so that she/he receives training in providing new students
with problems that best fit their interests and abilities. The PI has already demonstrated initial success
in mentoring postdocs, preparing them for an academic or industry career, and broadening their areas of
research activity beyond their Ph.D. topics.
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Biographical Sketch: Jeffrey Heer
Associate Professor, Computer Science & Engineering

University of Washington
URL: http://jheer.org

PROFESSIONAL PREPARATION:
Jun 2001 University of California, Berkeley B.S., Electrical Engineering & Computer Science

Honors Program Breadth Area: Cognitive Science
Dec 2004 University of California, Berkeley M.S., Computer Science

Dec 2008 University of California, Berkeley Ph.D., Computer Science
Dissertation: Supporting Asynchronous Collaboration for Interactive Visualization

APPOINTMENTS:
2013–Present University of Washington

Associate Professor, Computer Science & Engineering Department
2012–Present Trifacta Inc.

Co-Founder and Chief Experience Officer (CXO)
2009–2013 Stanford University

Assistant Professor, Computer Science Department

FIVE MOST RELEVANT PUBLICATIONS:
1. Identifying Medical Terms in Patient-Authored Text: A Scalable, Crowdsourcing-Based Approach. Di-
ana MacLean, Jeffrey Heer. Journal of the American Medical Informatics Association, 2013.
2. Interpretation & Trust: Designing Model-Driven Visualizations for Text Analysis. Jason Chuang, Daniel
Ramage, Chris Manning, Jeffrey Heer. Proc. ACM Human Factors in Computing Systems (CHI), 2012.
3. Termite: Visualization Techniques for Assessing Textual Topic Models, Jason Chuang, Christopher D.
Manning, Jeffrey Heer. Proc. Advanced Visual Interfaces (AVI), 2012.
4. Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment. Jason Chuang, Sonal
Gupta, Christopher D. Manning, Jeffrey Heer. Proc. Intl Conf. on Machine Learning (ICML), 2013.
5. D3: Data-Driven Documents. Michael Bostock, Vadim Ogievetsky, Jeffrey Heer. IEEE Trans. Visualiza-
tion & Comp. Graphics (Proc. InfoVis’11), 2011.

FIVE OTHER PUBLICATIONS:
1. Enterprise Data Analysis and Visualization: An Interview Study. Sean Kandel, Andreas Paepcke, Joseph
M. Hellerstein, Jeffrey Heer. Proc. IEEE Visual Analytics Science & Technology (VAST), 2012. Best Paper
Honorable Mention
2. “Without the Clutter of Unimportant Words”: Descriptive Keyphrases for Text Visualization. Jason
Chuang, Christopher D. Manning, Jeffrey Heer. ACM Transactions on Computer-Human Interaction, 19(3),
pp. 1-29, 2012.
3. The Efficacy of Human Post-Editing for Language Translation. Spence Green, Jeffrey Heer, Christopher
D. Manning. Proc. ACM Human Factors in Computing Systems (CHI), 2013. Best Paper Award
4. Strategies for Crowdsourcing Social Data Analysis. Wesley Willett, Jeffrey Heer, Maneesh Agrawala.
Proc. ACM Human Factors in Computing Systems (CHI), 2012.
5. Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Jeffrey
Heer, Michael Bostock. Proc. ACM Human Factors in Computing Systems (CHI), pp. 203-212, 2010. Best
Paper Nominee
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EDUCATIONAL ACTIVITIES:
1. Visualization Courses. Developed and taught classes on Visualization at Stanford (2009-12) and UC
Berkeley (2005-06). Developed special Visualization module for Social Science Methods course (2009-11).
Developed new course on Research Topics in Interactive Data Analysis (2011).
2. Human-Computer Interaction Courses. Developed course on Social Software (2010). Re-developed and
taught the classes Human-Computer Interaction Research (2009) and Interaction Design Studio (2011-13).
3. External course development. Co-organized half-day course on Visualization and Social Data Analysis
at VLDB 2009. Co-organized half-day course on Computation and Journalism at SIGGRAPH 2008. Co-
organizing half-day course on Visualization with D3 at InfoVis 2012.
4. Service. Participant in CHIME workshop at ACM CHI 2010 to promote computer science careers for stu-
dents from historically disadvantaged backgrounds. Advisor in IEEE VisWeek 2010 Doctoral Colloquium.

SYNERGISTIC ACTIVITIES:
1. Developed Prefuse, Flare, Protovis and D3.js visualization tools, used across academia and industry by
thousands of developers and millions of end users. D3.js is the 5th most “starred” project on GitHub.com.
2. Workshop organizer for Social Data Analysis workshops at ACM CHI 2008 and ACM CSCW 2010,
perception workshop at CHI 2013, and workshop on language learning and visualization at ACL 2014.
3. Invited speaker to discuss recent trends in visualization and data analysis at the Conference on Innovative
Data Systems Research (CIDR) 2009, ACM SIGMOD 2009, IBM NPUC 2010, HCIC 2010, Microsoft
Faculty Summit 2010, NICAR 2011, The Economist Ideas Economy 2011, ASA Joint Statistical Meeting
2011, WikiSym 2011, DataEdge 2013, HCIC 2013 and Gordon Research Conference 2013.

COLLABORATORS:
Maneesh Agrawala (Berkeley), Cecilia Aragon (Washington), Magda Balazinska (Washington), Serafim
Batzoglou (Stanford), Jeff Baumes (Kitware), Gill Bejerano (Stanford), Michael Bernstein (Stanford), Atul
Butte (Stanford), Stuart Card (Stanford), Douglas Carmean (Intel), Bill Cleveland (Purdue), Jean-Daniel
Fekete (INRIA), Li Fei-Fei (Stanford), James Fogarty (Washington), Emily Fox (Washington), Carlos
Guestrin (Washington), Sonal Gupta (Stanford), Spence Green (Stanford), Pat Hanrahan (Stanford), Marti
Hearst (Berkeley), Joseph Hellerstein (Berkeley), Bill Howe (Washington), Amy Jang (Google), Ashley
Jin (Stanford), Dan Jurafsky (Stanford), Jessie Kennedy (Edinburgh Napier University), Scott Klemmer
(UCSD), Monica Lam (Stanford), James Landay (Cornell Tech), Anna Lembke (Stanford), Jure Leskovec
(Stanford), Jock Mackinlay (Tableau), Chris Manning (Stanford), Dan McFarland (Stanford), Miriah Meyer
(Utah), Margaret Morris (Intel), Andreas Paepcke (Stanford), Adam Perer (IBM), Hanspeter Pfister (Har-
vard), Catherine Plaisant (U. Maryland), Dan Ramage (Google), Nathalie Riche (Microsoft), Will Schroeder
(Kitware), Ben Shneiderman (U. Maryland), Arend Sidow (Stanford), John Stasko (Georgia Tech), Chris
Stolte (Tableau), Maureen Stone (Tableau), Mike Stonebraker (MIT), Frank van Ham (IBM), Fernanda
Viégas (Google), Martin Wattenberg (Google), Chris Weaver (Univ. of Oklahoma), Wesley Willett (IN-
RIA), John D. Wilkerson (Washington), Terry Winograd (Stanford)

ADVISORS: Maneesh Agrawala (PhD, Berkeley), James A. Landay (MS, Berkeley)

DOCTORAL & POST-DOCTORAL ADVISEES:
Michael Bostock (Stanford PhD), Jason Chuang (Stanford PhD, UW Post-Doc), Cagatay Demiralp (Stan-
ford Post-Doc), Sanjay Kairam (Stanford PhD), Sean Kandel (Stanford PhD), Zhicheng “Leo” Liu (Stan-
ford Post-Doc), Diana MacLean (Stanford PhD), Arvind Satyanarayan (Stanford PhD), Jeffrey Snyder (UW
PhD), Kanit Wongsuphasawat (UW PhD)
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Biographical Sketch: Jason Chuang
Post-Doctoral Researcher, Computer Science & Engineering

University of Washington
URL: http://jason.chuang.ca

PROFESSIONAL PREPARATION:
May 2002 University of British Columbia

Bachelor of Science in Mathematics

June 2005 Stanford University
Master of Science in Scientific Computing and Computational Mathematics

April 2013 Stanford University
Doctor of Philosophy in Computer Science
Dissertation Topic: Designing Visual Text Analysis Methods to Support Sensemaking and
Modeling

APPOINTMENTS:

2013–Present University of Washington
Post-Doctoral Researcher, Computer Science & Engineering

FIVE MOST RELEVANT PUBLICATIONS:
1. “Topic Model Diagnostics: Assessing Domain Relevance via Topical Alignment” by Jason Chuang, Sonal
Gupta, Christopher D. Manning, and Jeffrey Heer. Proc. International Conference on Machine Learning
(ICML). Atlanta, Georgia, 2013.
2. “Recursive Models for Semantic Compositionality Over a Sentiment Treebank” by Richard Socher, Alex
Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. Proc.
Conference on Empirical Methods in National Language Processing (EMNLP). Seattle, Washington, 2013.
3. “Interpretation and Trust: Designing Model-Driven Visualizations for Text Analysis” by Jason Chuang,
Daniel Ramage, Christopher D. Manning, and Jeffrey Heer. Proc. ACM Conference on Human Factors in
Computing Systems (CHI). Austin, Texas, 2012.
4. “Termite: Visualization Techniques for Assessing Textual Topic Models” by Jason Chuang, Christopher
D. Manning, and Jeffrey Heer. Proc. International Working Conference on Advanced Visual Interfaces
(AVI). Capri Island, Italy, 2012.
5. “‘Without the Clutter of Unimportant Words’: Descriptive Keyphrases for Text Visualization” by Jason
Chuang, Christopher D. Manning, and Jeffrey Heer. ACM Transactions on Computer-Human Interaction
(TOCHI), 19 (3), pp. 1-29, October 2012.

FIVE OTHER PUBLICATIONS:
1. “Differentiating Language Usage through Topic Models” by Daniel A. McFarland, Daniel Ramage, Jason
Chuang, Jeffrey Heer, Christopher D. Manning, and Daniel Jurafsky. Poetics: Special Issue on Topic Models
and the Cultural Sciences, 41 (6). December 2013.
2. “A Probabilistic Model of the Categorical Association between Colors” by Jason Chuang, Maureen Stone,
and Pat Hanrahan. Proc. Color Imaging Conference (CIC). Portland, Oregon, 2008.
3. “RNA Sequencing Reveals Diverse and Dynamic Repertoire of the Xenopus Tropicalis Transcriptome
Over Development” by Meng How Tan, Kin Fai Au, Arielle L. Yablonovitch, Andrea E. Wills, Jason
Chuang, Julie C. Baker, Wing Hung Wong, and Jin Billy Li. Genome Research, 23 (1), pp. 201-216.
January 2013.
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4. “Document Exploration with Topic Modeling: Designing Interactive Visualizations to Support Effective
Analysis Workflows” by Jason Chuang, Yuening Hu, Ashley Jin, John D. Wilkerson, Daniel A. McFarland,
Christopher D. Manning, and Jeffrey Heer. NIPS Workshop on Topic Models. Lake Tahoe, Nevada, 2013.
5. “Topic Modeling for the Social Sciences” by Daniel Ramage, Evan Rosen, Jason Chuang, Christopher D.
Manning, and Daniel A. McFarland. NIPS Workshop on Applications for Topic Models. Vancouver, Canada,
2009.

EDUCATIONAL ACTIVITIES:
1. Developed and taught a unit on text analysis and visualization at the Stanford Computational Social Sci-
ence Workshop (Summer 2013)
2. Re-developed and taught lectures on color and text visualizations for the Stanford Visualization Class
(Winter 2009, Fall 2011).
SYNERGISTIC ACTIVITIES:

1. Co-organizing a full-day workshop on Interactive Language Learning, Visualization, and Interfaces at
ACL 2014
COLLABORATORS:

Jeffrey Heer (Stanford), Christopher D. Manning (Stanford), Daniel A. McFarland (Stanford), John D. Wilk-
erson (Univ. of Washington), Cecilia Aragon (Univ. of Washington), Pat Hanrahan (Stanford), Maureen
Stone (StoneSoup Consulting), Daniel Jurafsky (Stanford), Andrew Y. Ng (Stanford), Christopher Potts
(Stanford), Julie C. Baker (Stanford), Wing Hung Wong (Stanford), Jin Billy Li (Stanford), Geoffrey J.
Gordon (CMU), Robert Rohling (Univ. of British Columbia), Septimiu E. Salcudean (Univ. of British
Columbia), Martin Wattenberg (Google), Fernanda Viégas (Google), Holger Winnemöller (Adobe), Gary
Bradski (Intel), Daniel Ramage (Stanford), Sonal Gupta (Stanford), Spence Green (Stanford), Mengqiu
Wang (Stanford), Katie Kuksenok (Univ. of Washington), Richard Socher (Stanford), Alex Perelygin (Stan-
ford), Jean Y. Wu (Stanford), Rebecca Weiss (Stanford), Ashley Jin (Stanford), Evan Rosen (Stanford),
Meng How Tan (Stanford), Kin Fai Au (Stanford), Arielle L. Yablonovitch (Stanford), Andrea E. Wills
(Stanford), Chih-Han Yu (Stanford), Brian Gerkey (Stanford), Stephen Okazawa (Univ. of British Columbia),
Richelle Ebrahimi (Univ. of British Columbia), Yuening Hu (Univ. of Maryland, College Park)

PH.D. ADVISOR:
Jeffrey Heer (Stanford) and Christopher D. Manning (Stanford)
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Facilities, Equipment, and Other Resources
University of Washington Computer Science and Engineering Department

General Resources
The Department maintains a wide variety of state-of-the-art computing facilities for research and instruc-
tional use, housed in the Paul G. Allen Center for Computer Science & Engineering. The Computer Science
Laboratory coordinates the acquisition, maintenance, and operation of the computing equipment and net-
work services. General-purpose research computing is provided by over 900 Windows and Unix-based
workstations and servers, located in laboratories, machine rooms and offices. The back-end infrastructure
is comprised of general-purpose compute, file, web, mail and print servers, operating as a well-integrated
Linux and Windows 7 environment. In addition, around a dozen compute clusters are used by a range
of research projects. Departmental networking utilizes 1 and 10 gigabit Ethernet connections to servers
and desktop machines, and a dual-band wireless network provides 802.11b/g/n connectivity throughout the
building and in surrounding exterior areas. Several large plasma screens and a 56” HDTV provide high-
definition video display for networking and graphics research and for video conferencing.

Research Resources
Research in computer systems (including architecture, networking, operating systems, and distributed sys-
tems) involves a wide and constantly updated variety of hardware, software, and networks. Current hardware
includes high-performance Intel multicore platforms, a 200-node Intel cluster with several tens of terabytes
of networked storage, a networking testbed cluster, and PC workstations. Our facilities include Linux,
FreeBSD, and Windows systems, and our clusters enjoy 1 and 10 gigabit switched Ethernet connectivity
and an Abilene network feed. In addition, the Systems lab provides a common workspace for operating
systems, networking, and architecture students, and features Windows workstations, a video projector, and
floor-to-ceiling whiteboards.

Research in VLSI, digital hardware, and embedded systems is supported by a set of PC workstations and
multiprocessor compute servers. A large collection of both commercial and university computer-aided de-
sign tools form the core of the design environment providing capabilities for the design of CMOS VLSI
chips, FPGA and microprocessor-based systems, and printed-circuit boards. A variety of specialized equip-
ment for the prototyping, debugging, and testing of microelectronic systems is also available and is housed
within the Hardware and Embedded Systems Research Laboratory. These resources are utilized by re-
search projects involved in the design of configurable computing architectures, devices to support ubiquitous
and invisible computing, embedded systems, neurally-inspired computing and learning devices. Additional
equipment and facilities are available in the W.T. Baxter Computer Engineering Laboratory, which is used
for graduate and undergraduate courses including VLSI and embedded system design.

Research in graphics, image processing, and user interfaces, centered in the Graphics and Imaging Labo-
ratories, utilizes a set of high-end graphics workstations, a multiprocessor compute server, and a variety of
special-purpose devices, including a real-time motion capture system, digital cameras (still and video), a
computer-controlled lighting grid, a desktop Cyberware 3D laser scanner, video projectors for shape cap-
ture, and rotational and translational motion control platforms. Most of the lighting and imaging hardware
resides in a special-purpose scanning and imaging laboratory, which is ideal for experiments that require
controlled illumination. The motion capture system resides in a large studio with ample space to capture
running, walking, and jumping motions. The main lab spaces contain an array of workstations and an au-
dio/video hardware suite with non-linear digital video editing capabilities. The workstations in the main
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labs are also used as development stations for experimental teaching software in graphics and vision.

Research in robotics is carried out in the Robotics and State Estimation Laboratory, which is equipped with
several mobile robots, including one RWI B21r robot, three ActiveMedia Pioneer robots, nine ActiveMedi-
aAmigoBots, and nine Sony AIBO robots. All robots utilize wireless networking to communicate with each
other and the lab PCs running Linux. The B21 robot and all three Pioneer robots are equipped with SICK
laser range-finders.

Research in data management is supported by a combination of laptops, desktops, and a machine-cluster
all running a suite of software systems. The current hardware configuration for the cluster includes over 50
high-performance, Intel multicore servers with several tens of terabytes of storage and hundreds of gigabytes
of RAM in total. The machines are configured with either Windows or Linux and run several state-of-the art
database management systems including SQL Server, Oracle, DB2, and Hadoop. In addition, the Database
lab provides a common workspace for students, and features Windows and Linux workstations, a video
projector, and floor-to-ceiling whiteboards.

Many other research groups utilize equipment located in a set of research laboratories, plus about a dozen
compute clusters with a total of around 2400 cores. Additional information can be found in the web pages
for individual research projects, at http://cs.washington.edu/research.

Instructional Resources
Instructional computing is provided through laboratories and back-end services operated within the depart-
ment. These include three general use laboratories with 75 Intel-based PCs running Windows 7 and Linux.
Additional back-end resources are provided by Intel-based compute, web, database, and file servers, in an
integrated Linux/Windows infrastructure.

The department also operates four special-purpose laboratories containing approximately 100 Intel Pen-
tium PCs. To support digital system design courses, the Baxter Computer Engineering Laboratory and the
Embedded Systems Project Laboratory, with over fifty Pentium workstations for design entry and simula-
tion along with Tektronix logic analyzers, digital oscilloscopes and other test equipment. Capstone courses
utilize the Capstone Computing Lab, containing 11 Intel quad-core workstations, and often specialized
equipment to fit the needs of the course. The Laboratory for Animation Arts includes 22 Intel PCs and dig-
ital video production equipment, and is used for teaching interdisciplinary courses in computer animation.
The Special Projects Lab contains 20 Intel quad-core workstations, and is used to teach capstone courses
in operating systems and other courses requiring specialized equipment or dedicated access. The SPL runs
different systems and software at different times, depending on course needs.
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