
Project Description
1 Introduction

“[N]othing can substitute here for the flexibility of the informed human mind. Accordingly,
both approaches and techniques need to be structured so as to facilitate human involvement
and intervention... Some implications for effective data analysis are: (1) that it is essential to
have convenience of interaction of people and intermediate results and (2) that at all stages of
data analysis the nature and detail of output need to be matched to the capabilities of the people
who use it and want it.” – John W. Tukey & Martin B. Wilk, 1966 [124]

Though Tukey & Wilk voiced these sentiments nearly 50 years ago, they ring true today: to effectively
facilitate human involvement at all stages of data analysis is a grand challenge for our age. We seek to
address this challenge in the context of text analysis. Across many domains, particularly in the social sci-
ences, text is a primary data source for scholarly research. Tasks requiring text analysis include identifying
medical terms in research papers or patient-authored text [21, 78, 95, 132]; finding linguistic markers of af-
fect [17,41,125], politeness [31] or support-seeking [128] in online discourse; tracking reactions to political
events [15, 65] and predicting elections [125]; and determining consumer sentiments about products or cul-
tural artifacts [84, 115]. Across these examples, analysis involves the recognition and/or classification of
phrases or textual categories: researchers iteratively develop or use pre-existing labeling schemas; annotate
terms, sentences or full documents; and train and apply statistical classifiers to analyze data at scale.

The massive amount of text available to researchers now dwarfs their ability to read, comprehend and syn-
thesize the content. Accordingly, researchers are increasingly turning to visualization, natural language
processing (NLP) and machine learning (ML) methods to scale text analysis [101, 118]. Yet as automated
text mining approaches improve, the process of text analysis remains dominated by human effort and su-
pervision [26, 28]. Researchers must collect and manage large text collections, select or develop coding
schemes, annotate a subset of the data (either directly or by training coders), identify predictive textual fea-
tures, tune algorithm parameters, and assess the results of applying automated methods to the full dataset.
This process does not proceed in a linear fashion, instead requiring iteration within and across phases [60],
often switching among tools in a manner that stymies provenance tracking and replication.

Intellectual Merit: We envision a “virtuous cycle” in which analysts formulate schemas and provide anno-
tations, visualizations facilitate understanding of data and models, and automated methods generalize user
input and suggest additional data and features for annotation. We propose the following:

• Interactive System for Text Analysis: We will develop an end-to-end web-based system with which
researchers can more rapidly perform robust and replicable analyses of English text. We will provide
facilities for document and metadata management; interactive text annotation and classifier construction;
and export of the products of the analysis process, such as classifiers, annotated text and provenance
records. The system will also provide a platform for investigating a variety of research problems.

• Integrated Visual Coding and Validation: We will explore novel user interface designs that enable
analysts to author label schemas, annotate text and assess coverage and classification results in an inte-
grated, iterative manner. Research challenges include (1) structuring the labeling process to minimize
input effort and reduce error, (2) leveraging intermediate classifiers to augment annotation work, and (3)
visualizing data and models to assist sample selection, model performance and process convergence.

• Feature Selection and Refinement: Text classification relies on extracted features, including counts of
words and other linguistic markers. We will (1) develop methods for presenting and evaluating large
feature spaces, and (2) investigate the use of unsupervised learning methods (such as continuous word



embedding models [82]) to help analysts augment their analyses with effective domain-specific features.
• Active and Weakly-Supervised Learning: In addition to interface design, active learning [90, 110]

– such as adaptive sampling of instances or features to label – can accelerate the annotation process
[35, 89, 106]. We will explore two forms of interactive learning: (1) preferential sampling of unlabeled
instances with high classifier uncertainty and (2) feature-based supervision that enable domain experts
to input salient terms, dictionaries or feature constraints enforced via model regularization [35, 39].

• Collaboration & Crowdsourcing: Analysts may need to involve multiple annotators. Putting issues
of data scale aside, having multiple annotators can reduce bias, evaluate agreement and provide more
robust results. When appropriate, crowdsourced workers can also be employed to accelerate and scale
the labeling process [78,113,115]. We plan to (1) develop a multi-user system with task assignment and
management methods to track contributors and assess inter-rater reliability, and (2) build a subsystem
for submitting jobs to crowdsourcing platforms such as Amazon’s Mechanical Turk and analyzing the
resulting labels, addressing research problems of generating task instructions and assessing label quality.

Broader Impacts: This proposal will enable faster and higher-quality text analysis while lowering barriers
to entry. If successful, our tools will enable domain experts who lack training in statistical machine learn-
ing to effectively analyze text data at scale. We will work hand-in-hand with our collaborators in multiple
domains (health & addiction studies, political science, psychology, sociology and studies of scientific col-
laboration) to substantiate these benefits. We will release our system as open source software, and leverage
our software platform in classroom teaching and undergraduate research.

Our previous research projects span model-driven text analytics [25–28, 80, 98]; state-of-the-art classifiers
for medical term identification [78] and sentiment analysis [115]; web-based collaborative analysis envi-
ronments [51, 55, 134]; methods for crowdsourced experiments and data analysis [42, 52, 69, 78, 133]; and
popular open-source systems for data transformation [54, 59, 61] and visualization (e.g., D3.js [16] and
Prefuse [53]). These experiences give us the necessary background skills to successfully conduct this effort.
We seek to bring together these areas of expertise to support the process of classification-oriented text anal-
ysis in a systematic, user-centered fashion. In the rest of this proposal, we first describe selected application
domains and related prior work. We then describe the research goals outlined above in greater detail.

2 Text Analysis Domains & Collaborating Researchers
To guide and ground our efforts, we are collaborating closely with domain experts in five text analysis areas
(see letters of commitment). We have existing collaborative relationships with each team, and (with the sole
exception of Intel) have proposal team members physically co-located at each institution.

Patient-Authored Medical Text (with Dr. Anna Lembke, School of Medicine, Stanford). As described
later, we have conducted prior research on analyzing patient-authored medical text from online support
forums [78] and have a data sharing agreement with MedHelp.org, the world’s largest online public health
forum. We are working with addiction specialist Dr. Lembke to analyze public posts describing substance
abuse behaviors often inaccessible to the professional medical community. Tasks include classifying drugs
of choice, phases of addiction, and support-seeking rationale (e.g., information or emotional support [128]).

Open Government Data (with Prof. John Wilkerson, Political Science, University of Washington). Prof.
Wilkerson is researching the 2007-08 U.S. financial crisis to identify actors and causes and analyze their
relationships. We have access to a large repository of data including transcripts from the Federal Reserve
and Financial Crisis Inquiry Commission, copies of major legislation, and hearings leading to the TARP and
Dodd-Frank bills. In addition to typical named entities (people and organizations), we seek to recognize



collective stakeholders (e.g., home buyers, real estate agents), organizational actions (e.g., mark-to-market
accounting), and public sentiments (e.g., collective delusion on continued housing price increases).

Affect in Social Media (with Dr. Douglas Carmean & Dr. Margaret Morris, Intel Research). Our collabora-
tors are mining Twitter text to study emotional expression and arousal across language communities. Their
current analysis involves dictionary matches of LIWC terms [122] and an additional “arousal” category
that they have developed. While useful, this form of analysis requires constant review and revision to add
new terms and features (e.g., emoticons) from additional languages. The team is eager to apply statistical
methods, including our proposed feature augmentation technique (§6.2), for improved generalization.

Communication in Distributed Scientific Collaboration (with Prof. Cecilia Aragon, Human-Centered
Design & Engineering, University of Washington). Geographically distributed collaboration is increasingly
common, and understanding the expression of emotion in computer-mediated communications is crucial
to the study of team interactions and processes. Prof. Aragon is working to quantify affect (emotions)
expressed by physicists who collaborate remotely across the globe, based on chat logs with over a half
million messages [17]. Her team has applied LIWC [122] and found the results unsatisfying. They wish to
build a representative set of affect codes, identify predictive features, and classify the desired affects.

Tracking Theories and Methods in Academic Discourse (with Prof. Dan McFarland, Education & Soci-
ology, Stanford). Prof. McFarland is studying academic discourse across Ph.D. theses, including a corpus
of over 1M U.S. dissertations. A primary goal is to analyze the dissemination of theories and methods (e.g.,
statistical or computational techniques) across research communities. Our earlier collaborative work applied
topical analysis to track textual similarities among disciplines over time [28,80,98]. We have found that topic
models augmented with departmental affiliation metadata provide a useful but coarse-grained overview. We
now wish to conduct more fine-grained analyses capable of resolving labeled concepts.

3 Background & Motivation
We first describe related work in text analysis and interactive machine learning (more specific prior work is
included in later sections). We also present two examples from our own work that motivate this proposal.

3.1 Related Work: Text Analysis & Interactive Machine Learning
Whether through exhaustive manual coding or the combination of partial labeling and automated classifica-
tion, text analysis has been applied to a variety of domains. Examples include predicting elections [125],
measuring media response to terrorist threats [15], tracking Chinese censorship [65], determining gender
and language from tweets [8], analyzing personality from Facebook news feeds [104], detecting fake con-
sumer reviews [84], identifying spam webpages [88], and detecting sarcasm [41] or politeness [31]. Text
analysis is at times performed simply by counting the frequency of terms that match pre-defined dictionaries
for a category of interest (e.g., for positive or negative sentiment, sexual content, swear words, etc). Exam-
ple systems and corresponding dictionaries include Linguistic Inquiry and Word Count (LIWC) [122] and
the General Inquirer [118]. By generalizing classification rules from a set of provided examples, statistical
machine learning methods provide an attractive alternative to the inherent scalability limits of exhaustive an-
notation and the brittleness of dictionary techniques. Most machine learning formulations assume that (1) a
set of label classes are given and (2) a set of examples belonging to each class are provided, as demonstrated
by the use of benchmark datasets [91, 99, 126] and evaluation contests [85, 119] to drive research.

However, in many real world applications, the process of analysis includes determining a set of labels and
then labeling the data. Analysts may not know the appropriate number or specificity of labels at the start of



their analysis [70,79]. In some cases, the investigative goal is to evaluate the fit of an existing schema to ac-
tual data. Consequently, analysts need to construct an independent set of codes [92]. In other cases, analysts
may explore a corpus to determine what codes can be extracted from the text, before deciding whether the
corpus is relevant to their investigation [45]. Acquiring additional data [9, 46] may improve performance,
but is often overlooked as an option in tool development. Existing efforts typically address only individual
components of the process (e.g., interfaces for labeling data [13, 17], studies of the reliability of human
coding [73], and topic modeling to aid human coding [101]) without providing analysts an integrated and
interactive system to assist with iterative label formation and annotation.

Text classification performance also depends heavily on feature selection, converting unstructured textual
content into numerical measures. Text features typically consist of a large set of empirically-determined
linguistic markers (e.g., words, substrings of words, part-of-speech tags, capitalization) supplemented with
a small set of hand-crafted features. While the former can provide statistics across many types of text,
authors of top-performing teams in recent semantic evaluation contests [10, 85] report that the latter con-
tribute significantly to their results. Custom-built features can be especially effective in the analysis of short
or domain-specific text, such as the detection of emoticons in social media [11, 103], word shortening to
signify dialects [37], or repeated letter sequences to indicate emotional valence [17]. Applying a manually-
optimized lexicon can improve classifier performance as much as an improved inference algorithm [36].
Designing custom features, however, can be time consuming [131], error-prone [64], and inaccessible to
users who may be unaware of the statistical properties of high-quality discriminative features.

Research on interactive machine learning seeks to effectively integrate ML methods into interactive systems.
Much of the work-to-date focuses on specific end-user applications, such as entity resolution [62], metric
learning for image search [2,3,38], network event triage [5], and social group generation for content sharing
[4]. The Jigsaw system [117] provides interactive visualizations of the output of existing black-box entity
recognizers, but does not support labeling or model building. In contrast, we will develop a general text
analysis pipeline involving code formation, annotation, classifier evaluation and feature diagnostics. A few
interactive tools [89, 106, 109] combine labeling and learning, providing a simple annotation interface and
facilities for training classifiers. However, these systems do not support other critical parts of the process
such as determining class labels, evaluating the resulting classifiers, and tuning classifier performance.

Other efforts support the general application of ML methods. The popular Weka [48] framework provides
a library of algorithms and facilities for conducting experiments to compare models via cross-validation.
Mühlbacher and Piringer [83] demonstrate how an integrated visual workbench can accelerate the design and
validation of regression models for univariate prediction. The Gestalt system [93] provides an environment
for software engineers to both implement and evaluate classifiers, including the use of visualizations to
diagnose errors (e.g., confusion matrices linked to source data). These features were found to significantly
improve developers’ ability to find and fix bugs in machine learning systems. The EnsembleMatrix [120]
system demonstrates how human assessment of visualized classifier errors can elicit feedback that leads to
more accurate ensembles built of multiple classifiers. We similarly seek to create an interactive system for
application and assessment of classifiers, but for domain researchers performing text analysis tasks.

3.2 Example: Topical Analysis of Academic Discourse
In prior research, we have developed tools and methods for supporting large-scale topical analysis of doc-
ument collections, with a focus on academic text. Our research began with a concrete analysis question in
computational social science: can we assess the flow of ideas across academic disciplines, as reflected in
the texts they produce? In collaboration with NLP and social science researchers, we developed models and



Figure 1: Visual text analysis of academic publications. (a) Left: Similarity between Stanford departments based on published
theses. Petroleum Engineering is centered; radial distances convey textual similarity to the other departments. (b) Center: Depart-
ments viewed using LDA topic similarity, focused on the English department. We see that the humanities have been clustered far
too aggressively. (c) Right: Termite matrix visualization of term-topic distributions for InfoVis research papers learned by LDA.

interactive visualizations to explore similarities between academic disciplines over time: first using over 15
years of Stanford dissertations [28] and later expanding to over 1 million U.S. dissertations [80].

We initially envisioned an interface backed by existing NLP methods, such as similarity among tf-idf or
LDA (latent Dirichlet allocation [14]) topic vectors. However, we quickly arrived at a visualization that
revealed shortcomings in these models: the visualizations laid bare dubious similarities and highly sensitive
model parameters (see Figure 1a-b). In turn, we developed new models that better reflect expert opinions of
departmental similarity. Through an iterative design process, we formulated an asymmetric “word borrow-
ing” measure that leverages the machinery of Labeled LDA [97], a supervised topic modeling method. This
measure better matched the judgments of domain experts (professors) as they assessed departmental similar-
ities. Our final visualization has been used by a varied audience of university administrators and the general
public, including coverage in a number of design and science venues (e.g., Discover Magazine). Informed
by this experience and other text visualization efforts (e.g., [19, 29, 43, 117, 129]), we have developed a set
of design guidelines for the integrated development of statistical models and interactive visualizations [28].

We next investigated how to make topic models more interpretable and relevant to real-world analysis.
Reviewing the use of topic models in practice (e.g., [44,47,87,121]), we identified numerous bottlenecks in
their application, which despite the unsupervised nature of the algorithms, is dominated by interpretation,
parameter tuning and language model modification by people. In response, we developed Termite (Figure
1c), a novel visualization system for assessing topic model output [26]. This work introduced a term saliency
measure for identifying probable yet distinctive terms, and a term seriation algorithm that arranges terms to
reveal groupings of related words and preserve phrases to aid rapid scanning. Termite has been released as
open-source software and is now in use by a community of data scientists and machine learning researchers.

While Termite enables visual assessment of topic model output, we wished to scale model assessment to
thousands of models. This led to the development of a human-centered diagnostics model for evaluating
inferred topics [25]. We first conducted an experiment in which domain experts articulated their own mental
models of topics in a research domain. The collected data allows us to compare “expert-constructed” topic
models to those produced by automatic methods. We can then measure the correspondence between a set
of latent topics and a set of reference concepts to quantify four types of topical misalignment: junk, fused,
missing and repeated topics. We have applied this method to analyze thousands of topic models, informing
choices of model parameters, inference algorithms, and intrinsic measures of topical quality.

Though topic models usefully identify recurring themes, they are too coarse to resolve specific entities of
interest, such as research methods referenced in academic text. We are now shifting our focus to fine-grained
classification tasks. Analogous to our topic modeling work, we seek to facilitate an analysis processes with
significant human involvement: text codification, labeling, classifier construction and assessment.



 
 

ADEPT: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
Dictionary: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
MetaMap: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 

OBA: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 
TerMINE: it says proliferative ductal hyperplasia without atypia and non-proliferative duct ecstasia without carcinoma 

 
ADEPT: last summer i was at home with my daughter who is now 2 

Dictionary: last summer i was at home with my daughter who is now 2 
MetaMap: last summer i was at home with my daughter who is now 2 

OBA: last summer i was at home with my daughter who is now 2 
TerMINE: last summer i was at home with my daughter who is now 2 

 

 
 
 
 
 
 
 

 
 
 
 
 

 

ADEPT: in my case the woman my husband had an affair with reassured him twice she had no stds 
Dictionary: in my case the woman my husband had an affair with reassured him twice she had no stds 
MetaMap: in my case the woman my husband had an affair with reassured him twice she had no stds 

OBA: in my case the woman my husband had an affair with reassured him twice she had no stds 
TerMINE: in my case the woman my husband had an affair with reassured him twice she had no stds 

ADEPT: i had a chest xray done and they said there was something in my lung 
Dictionary: i had a chest xray done and they said there was something in my lung 
MetaMap: i had a chest xray done and they said there was something in my lung 

OBA: i had a chest xray done and they said there was something in my lung 
TerMINE: i had a chest xray done and they said there was something in my lung 

ADEPT: mgmt retail sales not overweight good almost great posture 
Dictionary: mgmt retail sales not overweight good almost great posture 
MetaMap: mgmt retail sales not overweight good almost great posture 

OBA: mgmt retail sales not overweight good almost great posture 
TerMINE: mgmt retail sales not overweight good almost great posture 
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Figure 2: Comparison of terms identified as medically-relevant by different models. (a) Left: comparison of five models (classified
terms shown in black), including our CRF-based ADEPT model. OBA and MetaMap runs use the SNOMED CT ontology. (b)
Right: Term rankings for ADEPT and OBA on Arthritis forum data. Terms occurring in both lists are connected by a line.

3.3 Example: Extracting Medical Terms from Patient-Authored Text
Our proposal is motivated by our ongoing work developing classifiers for patient-authored medical text.
Online health-seeking behavior is growing rapidly: 59% of U.S. adults looked for health information online
in the past year, and 35% attempted to diagnose a health condition online [94]. One result of this trend is the
accumulation of patient-authored text (PAT) in the form of blog posts, online health forum discussions and
email. Analysis of online health behaviors can lead to new medical insights and assist tasks such as tracking
disease trends [18, 22] and discovering previously unknown links among conditions and/or treatments [21,
130,132]. However, PAT is difficult to analyze due to lexical, semantic and conceptual differences from text
authored by medical experts, limiting the utility of existing tools such as MetaMap [7] and OBA [58].

A data-sharing agreement with MedHelp (www.medhelp.org), the world’s largest online health forum,
gives us access to hundreds of thousands of patient-authored discussion posts, covering roughly 200 topics.
An initial challenge is to extract medically-relevant terms (such as conditions and treatments) for further
analysis. However, medical experts (doctors, nurses) have limited time, making it difficult to get copious
labeled data. In response, we have investigated how to direct crowds of non-experts (workers on Amazon’s
Mechanical Turk) to label medically-relevant terms in PAT with accuracy comparable to annotations we
collected from registered nurses. Achieving consistent labeling required several iterations of the task prompt
and examples, as well as experimentation to determine optimal voting schemes. For example, asking users to
only tag words/phrases that they thought doctors would find interesting mitigated numerous inconsistencies.
We then used over 10,000 crowd-labeled sentences to train a conditional random field (CRF) classifier. Our
model widely outperforms prior state-of-the-art tools for medical term extraction (F1-score of 77.7% versus
OBA’s 47.2%, MetaMap’s 39.1% and a dictionary baseline of 38.7%). Our annotation method and results
were recently published in the Journal of the American Medical Informatics Association (JAMIA) [78].

In ongoing work, we are investigating how to use weak supervision as an alternative to term-level anno-
tation. Given existing dictionaries of conditions and treatments, can we bootstrap effective, generalized
classifiers? Lexico-syntactic pattern learning [50], an effective but less-popular technique for term extrac-
tion, outperforms existing MetaMap and OBA tools, as well as a CRF trained using dictionary matches as
positive examples. We are able to discover several novel terms not in existing dictionaries or ontologies.

In collaboration with addiction specialist Dr. Anna Lembke, we are now focusing on patient-authored text
regarding substance abuse, which documents abuse behaviors and detoxing strategies otherwise inaccessible
to medical professionals. After extensive open coding to determine medically-relevant concepts, we have
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Figure 3: Proposed interactive text analysis workflow.

had initial success training a logistic regression classifier for drug of choice (F1=81.4%). These labels are
highly context sensitive, as substances (e.g., Xanax, Methadone) may serve either as helpful treatments
or as abused substances. We are now exploring document-level logistic regression and CRF models for
identifying information vs. emotional support seeking and phase of addiction (e.g., using, quitting, etc).

Across these activities, developing custom classifiers has proven time-consuming and labor-intensive. La-
beling data is not only tedious, it requires careful analysis and iteration to ensure agreement among anno-
tators, involving modification of the labeling rubric and reassessment of prior labels. Similarly, authoring
effective prompts and examples for crowdsourced workers required much iteration. Experimenting with
models and features also has consumed significant effort. For the substance abuse data, hand-engineered
features based on observed patterns have contributed substantial improvements to classifier accuracy. There
is little support for the overall process of analysis: each of the above phases requires switching among differ-
ent tools and manual record keeping of the results across numerous iterations (e.g., labeling disagreements,
features assessed, classifier errors). Interactive tools that integrate data profiling, annotation, model training
and assessment can vastly accelerate development while also recording provenance and enabling replication.
Moreover, we would like to empower our collaborators to conduct such analyses on their own.

4 An End-to-End Interactive Text Analysis System
Our goal is to develop an interactive system with which domain experts can conduct, evaluate and publish
state-of-the-art text analyses. We will provide integrated support for the process of text analysis. Our end-
to-end system will provide usable tools for collaborating domain scientists, enable empirical study of the
text analysis process, and alleviate the accessibility, overhead and provenance-disrupting costs of current
practices involving disparate tools. We believe such a system is timely: not only are scientists increasingly
interested in scalable text analysis methods, we are at an opportune point in time to leverage developments
in visualization tools, active and constraint-based learning, and crowdsourcing systems. We intend for our
system to provide a test-bed framework for the research activities described in this proposal as well as for
additional future work. Figure 3 shows a basic schematic of the text analysis workflow of our proposed
system. Many of the components are discussed in detail in subsequent sections. Here, we briefly describe
aspects which require engineering effort but not necessarily new research.

One critical piece of infrastructure is document and annotation management: we will provide support for
importing text documents and metadata. Example inputs include ASCII, HTML, or PDF files, relational ta-
bles with text fields, and external metadata such as dictionaries, ontologies and term resolution maps. Upon
ingest, we will perform optional segmentation (e.g., by sentence), text processing (e.g., tokenization, stem-
ming) and feature extraction (e.g., capitalization status, word-grams, part-of-speech tagging). Following
existing language toolkits [12, 116], we will manage extensible annotations for documents and terms.

Another aspect is classifier and experiment management. We will initially focus on the use of logistic
regression for classification and conditional random field models for sequence labeling. However, we will
design the system with appropriate interfaces to enable the extension to additional classifiers (e.g., random
decision forests, support vector machines, ensemble methods) in the future. We will also include runtime
support for applying classifiers, exporting results, and evaluating them via cross-validation.
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Figure 4: Interface mockup with label management, annotation and visualization. Annotation is currently focused on a single
binary label (“Medical”). Hovering over the term “xray” triggers selection previews: the dark blue region is labeled upon single
click, the full blue region (a noun clause) upon double click. Visualizations show dimensionality reduction of terms (left) and error
analysis of current classifier accuracy vs. term frequency (right); users can lasso regions to sample or batch label instances.

We will implement a two-tier system: a server-side component for text management and analysis, and a
client-side component for visualization and interaction. We plan to write the server-side component in Java,
using well-established tools such as the Stanford CoreNLP framework [116] and the Apache Lucene [6]
search engine. Our research team has used both extensively in prior work. We will also use a relational
database for persistence and querying of extracted features and metadata, as well as event logging and user
session management. While backend scalability is not the primary focus of this proposal, as needed we will
work with collaborator Carlos Guestrin (see letter of commitment) and his group’s GraphLab system [74,75]
for distributed, large-scale machine learning. The client-side interface will be an HTML5 single-page web
application, with visualizations built using the D3.js (Data-Driven Documents) [16] library created by our
research lab. The two tiers will communicate using a web services API, facilitating reuse of our server by
other client systems. The API will include logging facilities at the input and application event levels both to
record provenance for replicability and to enable analysis of usage data.

4.1 Summary of Tasks and Goals
• End-to-end system: We will build an integrated system for importing text documents, performing an-

notation, training classifiers and evaluating the results in an iterative loop. The system, consisting of a
server and web client, will provide a platform for the research efforts discussed in the following sections.

• Text and metadata management: Our system will support import, segmentation, feature extraction,
indexing and annotation management. The server will act as a data source for client interfaces.

• Publishing results: The system will support export of learned classifiers, labeled text data and evalua-
tion results to enable both publication and dissemination of results.

• Provenance & replication: The system’s logging architecture will enable review and reapplication of
user annotations to support replication and reuse on new or evolving data sets.

5 Integrated Visual Coding and Validation
At the heart of our proposed system is a user interface for authoring label schemas, annotating text data
(either documents or individual terms) with those labels and then using the annotations to train and evaluate
classifiers. We propose to combine these processes within an integrated user experience. For example, our
system should support open coding through evolving label schemas, accelerate annotation to reduce tedium,
and facilitate validation throughout the analysis process. Figure 4 contains a mockup of one early-stage
design idea for combining label schematization, rapid annotation and data visualization. We will explore
multiple alternative designs and evaluate them in an iterative design process. Here, we discuss some of the
research and design challenges we intend to investigate. In subsequent sections, we will go into further
details regarding feature selection (§6) and active learning (§7) components.



5.1 Annotation Acceleration
Our interface will enable analysts to annotate either text segments or terms with class labels. To accelerate
this process, we will investigate multiple strategies for accelerating annotation actions and reducing errors.

Text selection: In addition to keyboard shortcuts, we will explore efficient text selection methods. We will
analyze usage data for recurring selection patterns. For example, part-of-speech tags might guide multi-click
selections in which the first click selects a term, and the second click selects an encompassing noun phrase.

One-class-at-a-time annotation: Deciding among multiple class labels may require increased decision times
or significant context-switching on behalf of the user [20]. We will experiment with annotation strategies that
consider only a single label at a time, treated as a binary annotation. Prior work has found significant benefits
for such “column-oriented” approaches in form entry applications [23], reducing input effort and increasing
overall data quality. We hypothesize this strategy will prove helpful for term annotation in particular; and
useful for parallelization and task simplification when crowdsourcing annotations (§8).

Reduce annotation to confirmation: Our system can progressively train classifiers as users produce annota-
tions; alternatively, application of dictionaries or feature-space annotations can provide initial, albeit crude,
labels. We will explore the utility of applying such intermediate classifiers to turn annotation tasks into
one-click (or one-keystroke) confirmation tasks. If a document or term is labeled correctly, the user might
take no action, and only disconfirm inaccurate labels (or vice versa). We will investigate if such an approach
is generally useful or limited to tasks such as validation of labels with high classifier confidence (§7).

Batch annotation: We will explore approaches for annotating multiple instances simultaneously by auto-
matic clustering of similar instances and selecting documents and feature space regions within data visual-
izations. For example, one might associate specific words, dictionaries or features with a given class label.

5.2 Data and Process Validation
Our system will train classifiers as users label data, both to drive active learning (§7) and to support valida-
tion throughout the analysis process. Classifiers are typically evaluated using measures such as precision,
recall and F1 score (their harmonic mean). While valuable, these measures have limitations: they do not
reflect upstream errors such as annotator mislabeling or provide diagnostic information for improving a
classifier. In isolation, these measures do not establish either lower or upper performance bounds. What if
the annotations cannot be predicted by the available features? To aid human-in-the-loop analysis, we will
investigate interaction and visualization techniques to aid labeling and validation.

Text data visualization: We will investigate visualization methods for viewing instances of input text data
(e.g., documents or terms) in the context of extracted features and provided labels. For example, visual-
izations of how instances distribute across features or related statistics (e.g., corpus term frequency, Figure
4) may help guide feature selection and sample coverage. We will also explore the use of dimensionality
reduction methods [105, 127] to plot feature-space representations of documents or terms (as in Figure 4).
Such views can reveal clusters of similar instances. We can further explore techniques for labeling regions
(or user selections) in the projected view by dominant features contributing to instance similarity. As an-
notations are collected, instances may be correspondingly colored to assess label-feature correlations. As
classifiers are trained, we can rank features by their current contribution to a model (e.g., coefficients from
logistic regression). While useful in isolation, such visualizations are especially powerful in combination.
We will support common interaction techniques such as linked selection (i.e., “brushing and linking”) and
details-on-demand (e.g., retrieving source text for selected data points) to facilitate exploratory analysis.



Schema validation and refactoring: To assess label schemas we will visualize correlations among labels
and annotators. Inter-rater agreement statistics can provide a baseline for classifier evaluation. Visualizing
systematic patterns of disagreement can inform schema design and instructions. For individual annotators,
comparing highly-similar or intentionally duplicated instances may aid assessment. To facilitate evolving
schemas, we will identify labels with high error rates or poor discrimination under current classifiers, and
support user interface operations to merge or split labels (splitting may be assisted by a combination feature-
space clustering and active re-labeling), and to retrain classifiers on a reduced subset of labels.

Process assessment and error analysis: To assess current classifier performance we can plot statistics (e.g.,
cross-validated accuracy, precision, recall, or F1) over increasing sample sizes. Such plots can help assess
the rate of classifier improvement. Are additional labels likely to further improve performance? As appro-
priate, assessment can include comparison of multiple classification algorithms and/or parameter settings.
We will also incorporate visualizations for fine-grained exploration of current classifier performance. For
example, confusion matrices [93,120] can reveal common misclassification patterns among multiple labels,
while plotting classifier performance against predictors such as frequency (see Figure 4) can help assess if
misclassification may be due to insufficient examples of rare instances.

5.3 Summary of Tasks and Goals
• Integrated annotation and validation: Design novel interfaces that integrate schema authoring, anno-

tation and classifier evaluation to facilitate iterative, human-in-the-loop analysis.
• Annotation acceleration: Design to reduce input effort and error: augment selection, explore single-

class annotation strategies, supplant labeling with confirmation and investigate batch annotation.
• Data and process validation: Visualize text data according to extracted features and supplied labels.

Support label schema modification, including splitting and merging of existing codes. Design classifier
performance and diagnostic plots to assess progress and convergence.

6 Feature Selection and Refinement
Text classification requires extracting linguistic features from unstructured text, which then serve as input
data to learning algorithms [49]. Classifier performance depends heavily on whether the extracted features
are sufficiently expressive with respect to the text corpus and sufficiently discriminative with respect to
the user-supplied schema. Our system will include components to help users manage, author and evaluate
effective textual features specific to their analyses. We will investigate the design of visualizations and
interfaces to support feature exploration and to evaluate the contribution of features.

6.1 Feature Management and Assessment
Our system will include several classes of features, along with tools to help users evaluate and refine the
feature space. Following current best practices, we will automatically extract empirically successful features
such as the counts of words, n-grams, and character n-grams, as well as statistics derived from part-of-speech
tagging and common named entity types. Our system will also provide user interfaces to manage manually-
crafted dictionaries, a common way for users to express custom vocabularies relevant to their schema.

In many classification tasks, the number of labeled instances is smaller than the number of features. As a
result, the ability to discriminate most instances may be attributed to multiple features, and over-fitting is a
concern. The decision to include or exclude a feature often falls on the analyst who must assess whether a
feature is expressive or is over-fitting the training data. As mentioned in §5.2, we will design visualizations



to help users explore the space of features and to reveal patterns such as features that fire consistently. While
visualization techniques exist for visualizing dozens or more continuous dimensions (e.g., parallel coordi-
nates [56]), feature visualization involves a larger space of 10,000+ dimensions that are typically binary or
discrete. We will integrate feature visualization with other schema- and document-based visualizations to
help users determine correlation between features, original text, and annotations. We will also examine cor-
responding user interactions to support feature exploration. Given thousands of features, turning individual
features on and off is infeasible on the whole. We will provide support such as ranking, grouping, filtering,
and re-weighting to help users assess feature contributions. We will explore hierarchical organizations of
features to help users manage groups of features at once.

6.2 Unsupervised Feature Learning and Refinement
An emerging line of research applies unsupervised techniques, such as deep learning [40, 77, 82, 115] or
topic models [14], to improve domain-specific classification tasks. We will investigate the use of continuous
word embedding and latent topics – automatically generated from a reference text corpus – as classifier
features. While these word representations can improve classifier performance [77], users are often left
with a take-it-or-leave-it decision, with few options to assess or refine these features. We will investigate
multiple forms of support for incorporating such features. First, we will provide tools to help users identify
and label unsupervised dimensions (such as latent topics) relevant to a task. For example, our prior work on
topic models [25, 26] addressed how to visualize latent topics and align them with interpretable reference
concepts. Second, we will provide tools to help users quickly augment lexicons, either to create improved
dictionaries or form groups of semantically-related terms. In recent unpublished work, we have found
that given a set of related seed terms, we can identify concept-specific axes (suitable for use as a classifier
feature) within word embedding models. A user provides a dictionary or example terms, and we learn a word
vector model subspace corresponding to a semantic category containing those terms (e.g., emotion words or
country names). By subsequently identifying other terms in this learned space, we can automatically extend
or adapt text analysis resources such as LIWC dictionaries. By propagating annotations from given terms to
nearby terms in the vector space, we might also better amplify feature-space annotations (§7).

6.3 Summary of Tasks and Goals
• Feature management & assessment: Design visualizations to help analysts track and assess their ex-

ploration of the feature space. Develop interactions to help analysts effectively refine features.
• Unsupervised feature learning and refinement: Combine unsupervised feature learning with end-user

refinement, so that analysts can more easily author effective domain-specific features.

7 Active and Weakly-Supervised Learning
A key goal of this proposal is to reduce tedium in supervising learning systems and provide interactive
insight into their construction. Supervised learning has enabled major improvements to the accuracy and
robustness of document analysis and information extraction. However, a primary obstacle is the limited
availability of domain-specific expert-labeled data, which can require significant time and labor. Active and
weak supervision methods [34, 39, 90, 110] provide an efficient alternative for creating accurate classifiers.

We plan to start with two common machine learning methods: logistic regression (which treats each in-
stance as independent) and conditional random fields (which also model transition probabilities for label
sequences). Both are widely-used and amenable to the feature-based supervision methods described be-
low [34,39]. Going forward, we will consider expanding to other classifiers, such as random decision forests,



support vector machines, or deep learning methods. Our initial implementation will use batch sampling and
model updates; as needed, we will investigate improved interactivity through online learning methods. On
these tasks we will collaborate closely with our faculty colleague and machine learning expert Prof. Carlos
Guestrin (see included letter of commitment).

7.1 Active Learning to Sample Unlabeled Examples
Our learning process will interleave data exploration by an analyst, instance labeling and constraint au-
thoring. To seed the process, the analyst can label an initial set of examples and/or features for each
category or field. Our system will then use the current predictions of the model to assess which features
are likely to reduce uncertainty about its predictions using expected information gain and its approxima-
tions [35, 81, 107, 112]. For example, a common approach is to sample instances with the the highest
uncertainty or which lie closest to current classifier decision boundaries [110].

To optimize the use of an analyst’s time and attention, selected examples should be both informative and
diverse. Nearly redundant features and examples which dominate large-scale data will simply drown out the
signal. To determine an appropriate initial sample, we will investigate alternatives to uniform random sam-
pling. For example, hybrid active learning [76] first clusters instances in an unsupervised fashion and then
uses the clusters to perform stratified sampling. We will experiment with augmenting this approach with an-
alyst input through selection of desired features or clusters in overview visualizations, and use visualizations
to select and label multiple instances simultaneously to perform batch active learning [108].

7.2 Feature-Based Supervision to Incorporate Domain Knowledge
Traditional forms of active learning sample unlabeled instances believed to be most informative for improv-
ing a model. However, labeling large numbers of examples may be inefficient, especially when an analyst
possesses valuable domain knowledge about the feature space. Early work in this area applies boosting to
features believed to be more informative [96], but does not associate features with specific classes. More
recent work uses feature-space annotations (e.g., indicating specific words that are associated with a given
class label) to adjust model priors [106, 109] or constrain inference [33–35, 39].

We propose to incorporate Ganchev et al.’s posterior regularization [39] framework to enable feature-based
weak supervision. Posterior regularization incorporates partial supervision for latent variable models using
moment constraints on model posterior distributions. For example, suppose we want to learn how to extract
not just the polarity of a product review, but more specific aspects. In restaurant reviews, we might want to
identify comments about food, service, and ambiance [114, 123]. Chain-structured models, such as CRFs,
are the tools of choice for such tasks, where each word is associated with a variable corresponding to the field
type (e.g., food, service, ambiance). In addition to choosing words indicative of each field, an analyst may
specify that food descriptions typically come before service and ambiance, and often constitute over half the
words in a review. In general, an analyst might specify a conjunction of such “features” that refer to states
and roughly constrain their proportion (expectation under the model). Posterior regularization framework
incorporates such constraints into model estimation without changing its structure or the complexity of
inference. The learning algorithm resembles Expectation Maximization (EM), but involves an additional
projection step which enforces constraints. Our interface will allow analysts to select features, annotate
them to produce constraints, and see examples that these features impact most.

Browsing of constraints at interactive speeds will be enabled by approximate, incremental re-training of
the model. Recent work on stratified sampling [34] has shown promising results in approximating feature
relevance by using small, well chosen subsets of the data. For some features, the effect on predictions can



be seen even using a very small subset of examples, but others require the entire data. Posterior regulariza-
tion inherits properties of the EM algorithm that allow incremental and approximate updates [39, 86]. Our
interface will allow the user to see the approximate results using a small, local subset of the data, while
progressively more accurate results are computed in the background. Thus, the analyst can quickly modify
the model if the approximate results do not seem promising.

7.3 Summary of Tasks and Goals
• Selecting informative and diverse examples or features: Incorporate active learning methods for

sampling promising and non-redundant examples and feature constraints for analysts to evaluate.
• Constraint-based supervision: Design simple and effective visual interface and process for expressing

constraints, which are then enforced via posterior regularization.
• Fast evaluation of the impact of changes: Construct approximations of constraint impacts for interac-

tive model building, enabled by progressive model-refining in the background.

8 Collaborative & Crowdsourced Labeling
To annotate large unlabeled data sets, collaborative, and more recently crowdsourced, annotation procedures
are common. Accordingly, our system must include support for integrating the contributions of multiple
annotators. We will include a user model to track who is using the system and their annotations and actions.
Our sampling procedures can use this information to request a set of redundant annotations to assess inter-
rater reliability or evaluate the performance of assistants. We will also provide flexible aggregation methods
(e.g., voting thresholds) to determine how to handle conflicting judgments.

8.1 Crowdsourcing Annotation Tasks
Crowdsourcing platforms, particularly Amazon’s Mechanical Turk [57], have become increasingly popular
for user studies [52,66], text annotation [78,113]), and even performing complex activities such as explana-
tory [133] and taxonomic [24] data analysis. By farming out annotation tasks to a pool of hundreds or
even thousands of workers, researchers can scale labeling with dramatically improved time and cost. Still,
ensuring high quality responses presents a serious challenge. Crowdworkers may misinterpret a prompt or
task, exhibit varying levels of effort, or outright scam by rapidly producing inauthentic responses. Many
studies engage crowdworkers to annotate documents on general topics such as movie reviews [115] or news
articles [106, 109]; recruiting or training crowdworkers with domain expertise, however, remains difficult.

To assist such efforts, we will research methods for reliably eliciting and integrating high-quality crowd-
sourced labels in text analysis workflows. Prior crowdsourcing research has developed programming frame-
works to support task allocation and adaptive jobs [1, 72]; tools for authoring complex, multi-phase crowd
workflows [67,68,71]; and visualization tools for inspecting worker activity [32,102]. We intend to provide
more targeted support for guiding and evaluating text annotation tasks: we will provide facilities to submit
jobs to Mechanical Turk, which in turn will direct crowdsourced workers to a version of our annotation
interface. Our system will log worker actions, collect annotations and make the results accessible through
existing visualization and collaboration facilities. After first eliciting judgments from a domain analyst, the
system will have “ground-truth” labels with which to evaluate the quality of worker responses and determine
appropriate aggregation schemes (e.g., corroborative vs. majority voting). Users will then be able to selec-
tively include crowdsourced annotations in their analysis pipeline. Going forward, we envision our system
facilitating the development and evaluation of more elaborate crowd management schemes (e.g., [30, 63]).



8.2 Semi-Automated Task Instruction
Providing understandable, unambiguous instructions is critical to facilitating high-quality annotations. In
our own work we successfully employed workers on Mechanical Turk to label medically relevant terms
in over 10,000 sentences [78], but doing so required multiple iterations of instruction design in which we
clarified the nature of “medically relevant” (e.g., “what terms would a doctor be interested in”) and presented
suitably diverse, informative examples. Similarly, our prior work on crowdsourcing explanations for patterns
in data [133] first required extensive validation of different task design strategies. Using active learning
methods (§7), we can partially automate the process of instruction formation by suggesting diverse examples
to include in worker instructions. To expedite convergence, we can also allow users to submit jobs with
various prompts and analyze the resulting labels before running larger-scale annotation jobs.

8.3 Summary of Tasks and Goals
• Collaboration support: Our system will track and aggregate contributions from multiple users.
• Crowdsourced labeling: We will develop facilities for submitting annotation tasks to Mechanical Turk,

visualizing worker activity and evaluating the responses.
• Instruction generation: We will research new methods to assist the generation and evaluation of task

instructions to facilitate higher-quality responses.

9 Evaluation
In addition to ongoing usability studies, we will evaluate different configurations of our system through
controlled experiments and long-term deployments with crowdsourced workers and domain researchers.

9.1 Controlled Experiments
To assess our system we will conduct a series of controlled experiments on real-world analysis tasks through-
out the lifecycle of the project. With but a few exceptions [100, 106, 109], evaluations of active learning
systems for text analysis use simulated user input drawn from pre-labeled data. Moreover, they assume that
users are oracles with perfect accuracy. In contrast, we will ask subjects to interactively construct text clas-
sifiers and compare the results across different system configurations. We will draw on existing benchmark
data sets from the text mining literature as well as data from our own prior work on patient-authored medi-
cal text. We will run initial experiments in person with collaborating research teams and their students. We
will then conduct larger-scale experiments by recruiting crowdsourced workers as participants [52, 66]. In
addition to scaling the participant pool, this strategy will allow us to compare domain expert and non-expert
users and also compare the relative contributions of active learning methods and crowdsourced annotation.

Independent factors that we can manipulate include: (1) classification unit (document vs. term), (2) number
of label classes, (3) labeling strategy (parallel vs. serial consideration of classes), (4) available visualizations,
and (5) active learning support (random sampling vs. uncertainty sampling vs. feature constraints). Given
the large space of possible experiments, we will conduct a series of accretive experiments, rather than a
full-factorial design. Dependent variables of interest include classifier performance (precision, recall, F1-
score, accuracy), time on task, and the number and type of samples or features annotated. We will also
conduct error analyses, in part to look for systematic biases that may result from the above manipulations.
For example, do active learning methods result in different patterns of misclassification?



9.2 Longitudinal Case Studies
We will also conduct long-term case studies [111] with our collaborators (§2). We will make our system
available to collaborators through a hosted web service which we will maintain, enabling interaction and
event logging for usage analysis. We will schedule regular meetings with our collaborators to interview
them on their experiences (when appropriate using usage data as an elicitation prompt), demonstrate new
features, receive feedback and prioritize future efforts. In addition, we will solicit feedback from, and
provide support for, external researchers who download and use open source releases of our software.

9.3 Summary of Tasks and Goals
• Controlled experiments: We will conduct controlled experiments with both domain experts and crowd-

sourced workers to systematically assess our design decisions on classifier and user performance.
• Longitudinal case studies: Through long-term deployments with collaborating researchers we will

assess tool usage and utility, with the goal of facilitating novel research results across varied domains.

10 Research Timeline
We will develop our system using a phased approach: we will start by scaffolding an end-to-end system,
then refine it with more functionality. Doing so, we can explore multiple research questions in parallel, then
integrate successful results. This strategy allows us to deploy and gain user feedback early in the process to
adaptively prioritize the research. The research team will consist of PI Heer, Senior Personnel Jason Chuang,
multiple PhD students (e.g., Diana MacLean, Jeff Snyder), undergraduate researchers and our collaborators.
Year 1 effort will focus on an initial system supporting text ingestion, feature extraction, annotation man-
agement and classification support (logistic regression, CRF) on the server, and an application scaffolding
and annotation interface for the web client (All, §4-5). We will deploy the system with our research collab-
orators and roll out new features as they mature. In parallel, we will investigate multiple model assessment
visualizations (All, §5), feature augmentation methods (Chuang, §6) and active learning support (Snyder,
§7). Moving forward into year 2, we plan to develop crowdsourcing and task generation support (MacLean,
§8). We will further refine each research component, initiate controlled experiments (§9) and integrate new
features with periodic software releases. In year 3 we will continue to refine and integrate additional features
in response to our ongoing experiments and collaborator feedback. At this point, we will further package
and document the system such that our open source release is usable by a larger community of researchers.

11 Results from Prior NSF Funding
PI Jeffrey Heer is an Associate Professor of Computer Science & Engineering at the University of Washing-
ton, and previously an Assistant Professor of Computer Science at Stanford University (2009–13). He has
received two prior collaborative NSF grants: IIS-1017745 “HCC: Small: Graphical Preception Revisited:
Developing and Validating Design Guidelines for Data Visualization” ($250k, 2010–13) and CCF-0964173
“DIC: Medium: Scalable, Social Data Analysis” ($333k, 2010–14). These awards have led to over a dozen
papers in the top venues in Human-Computer Interaction and Information Visualization (CHI, UIST, Info-
Vis, VAST & EuroVis), including best paper or honorable mention awards in each of these conferences.
NSF support for his work on interactive data transformation (CCF-0964173) led to founding Trifacta Inc.
(with Joe Hellerstein & Sean Kandel), which has raised over $16M in venture capital. These NSF awards
do not overlap with this proposal. Heer is also a Faculty Participant on NSF-1258485 “IGERT-CIF21: Big
Data U: A Program for Integrated Multidisciplinary Education & Research for Big Data Science”, led by PI
Carlos Guestrin. The current proposal is complementary to the educational aims of the IGERT.


