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Interactive Analysis  
of Big Data

B ig data is all the rage. Computer scientists in databases, distributed systems,  
machine learning and visualization have all trumpeted the challenge and 
opportunities of our unprecedented—and exponentially increasing—access  
to data. Across academia, many have heralded the dawn of a “fourth paradigm”  

of data-driven scientific research [1]. Industrial observers see a growing demand for  
“data scientists” skilled in making sense of everything from sensor data to health records 
to copious logs of social and financial transactions. Recent reports indicate that in  
the next decade the demand for skilled analysts will far outstrip the supply [2].

New user interfaces can transform how we work with big data, 
and raise exciting research problems that span human-computer 
interaction, machine learning, and distributed systems.
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But what exactly constitutes “big 
data”? Petabytes? Exabytes? Yot-
tabytes?! (Yes, yottabyte is an actual 
word for 1024 bytes.) To characterize 
big data, we must consider multiple di-
mensions. Data may be tall: A database 
table or log file might contain billions 
or even trillions of records. Or, data can 
be wide: A single data set might contain 
hundreds or thousands of variables to 
consider. Moreover, data are often di-
verse: Many analyses require integrat-
ing multiple data sources with varied 
data types.

Each of these dimensions intro-
duces challenges for effective analysis.
Processing tall data requires scalable 
distributed systems and may suffer 
from long-running queries that sty-
mie rapid exploration. Analysis of 
wide data may involve a combinatorial 
set of relationships among variables, 
complicating data quality assessment 

and model design. Transforming and 
blending diverse data (e.g., improving 
predictions of internal sales by incor-
porating public weather and popula 
tion demographics data) often entails 
significant manual effort that is both 
difficult and time-consuming.

Another notion of big data with 
particular end-user relevance is data 
that is too large to manipulate on an 
interactive time-scale. In the face of a 
data deluge, what remains relatively 
constant is our own cognitive ability 
to make sense of the data and reach 
reliable, informed decisions. Big data 
is of little help when decoupled from 
sound judgment. Interactive analy-
sis tools can help quell “big data” by 
augmenting our ability to manipulate 
and reason about it. For example, well- 
designed visualizations can leverage 
visual perception to help us identify 
patterns and form new hypotheses. 

Novel interfaces can enable us to itera-
tively transform and model subsets of 
data, rapidly assess initial results, and 
translate the resulting procedures to 
run on scalable backends. Enabling 
such interactive analysis requires re-
search that combines systems, algo-
rithms, and human-computer interac-
tion in new ways.

Why Interactivity?
The goal of interactive analysis tools 
is to empower data analysts to formu-
late and assess hypotheses in a rapid, 
iterative manner—thereby support-
ing exploration at the rate of human 
thought. In a recent interview study 
of 35 data analysts at 25 different 
companies [3], we observed a general 
pattern of work shared by most ana-
lysts. This workflow consists of data 
discovery and acquisition; wrangling 
data through reformatting, cleaning, 
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suggest unresponsive tools can sig-
nificantly impact our search strategies 
and task performance [5]. Accordingly, 
interactive systems for big data must 
effectively orchestrate responsive 
client-side interfaces with slower but 
scalable backend processing.

The goal of facilitating interac-
tive analysis raises exciting research 
questions that span systems, statis-
tics, machine learning and human-
computer interaction. How might we 
enable users to transform, integrate, 
and model data while minimizing the 
need for programming? How might we 
build scalable systems that can query 
and visualize data at interactive rates? 
How might we enable domain experts 
to help guide machine learning meth-
ods to produce better models? In the 
remainder of this article, we examine 
a few research projects that attempt to 
address some of these questions.

Wrangling Big Data
One precursor to analysis—particu-
larly with diverse data—is the tedious 
process of reformatting data values or 
layout, correcting erroneous or miss-

and integration; profiling data to ex-
plore its contents, identify salient fea-
tures, and assess data quality issues; 
modeling data to explain or predict 
phenomena; and reporting results to 
disseminate findings. Most of these 
analyses are highly iterative in na-
ture, with analysts moving back and 
forth among these different tasks. 
For example, errors uncovered during 
profiling may reveal the need to ac-
quire additional data, while feedback 
from readers of a report may uncover 
flawed assumptions or suggest im-
proved modeling approaches.

Interactive tools for data analysis 
should make technically proficient 
users more productive while also 
empowering users with limited pro-
gramming skills. In our interviews 
we found that the programming 
skills of professional data analysts 
vary widely. Some primarily work 
within a graphical application like 
Excel or SAS/JMP. Others work with 
scripting languages in analytic en-
vironments such as R and MATLAB. 
Meanwhile, proficient “hackers” use 
a diversity of tools and languages, 

including distributed computation 
models such as MapReduce.

For application users and scripters, 
the lack of interactive tools for tasks 
such as data reformatting and integra-
tion leaves them dependent on corpo-
rate IT departments and induces sig-
nificant delays in analysis workflows. 
On the other hand, the overhead of 
writing programs (in multiple lan-
guages) for routine tasks leaves data 
scientists spending much of their time 
performing tedious data “munging”—
time that could otherwise be spent 
gaining insights from the data.

In addition, significant delays or 
unnecessarily complex interfaces may 
impede not only the pace of analysis, 
but also its breadth and quality. For 
instance, the latency of an interactive 
system can exert surprising effects 
on user activity. A study by Google 
engineers found that adding just 
200ms of latency to search results 
measurably decreased the number 
of searches conducted by users. Even 
more surprisingly, this effect can per-
sist for weeks after full performance is 
restored [4]. These and related results Th
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ing is responsible for up to 80 percent 
of the development time and cost in 
data warehousing projects [6]. Such 
wrangling often requires writing id-
iosyncratic scripts in programming 
languages such as Python and Perl, or 
extensive manual editing using tools 
such as Excel. This hurdle can also dis-
courage many people from working 
with data in the fi rst place.

To assist this process, researchers 
have developed a number of novel in-

ing values, and integrating multiple 
data sources. Analysts must regularly 
restructure data to make it palatable 
to databases, statistics packages and 
visualization tools. For example, one 
analyst we interviewed noted that:

“I spend more than half of my time 
integrating, cleansing, and transforming 
data without doing any actual analysis. 
Most of the time I’m lucky if I get to do 
any ‘analysis’ at all!”

Others estimate that data clean-

teractive tools. Potters Wheel [7] and 
Google Refi ne (http://code.google.
com/p/google-refi ne/) are menu-driv-
en interfaces that provide access to 
common data transforms. Other re-
searchers have contributed relevant 
algorithms for programming-by-dem-
onstration [8]. With these methods, 
users fi rst demonstrate desired ac-
tions in a user interface, for example 
selecting text such as addresses or 
phone numbers from larger strings. 
The system then attempts to general-
ize from these examples to produce ro-
bust programs, such as for address or 
phone number extraction [9].

Our work on Wrangler builds on 
these prior efforts to help analysts au-
thor expressive transformations [10]. 
To do so, Wrangler couples a mixed-
initiative user interface with a declara-
tive language for data transformation. 
Mixed-initiative systems combine au-
tomated services with direct user ma-
nipulation: As a user performs a task, 
the system may offer various forms of 
support, including automatic correc-
tions or recommended actions [11]. 
Declarative programming languages 
express the desired result of a compu-
tation (high-level operations or proper-
ties of an output) without describing 
its control fl ow (e.g., if statements or 
for loops). By decoupling specifi cation 
from execution, a declarative language 
can succinctly model a domain while 
freeing language designers to unob-
trusively optimize processing. With 
Wrangler, user selections on a data 

figure 1. end-user programming in data wrangler. an analyst selects state names 
in a data table, indicating her desire to extract them to a new column. in response, 
an inference engine recommends possible operations (bottom left). highlights in 
the table visually preview the results of a selected extraction rule (right).
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Year extract Property_crime_rate
0 Reported crime in Alabama
1 2004 4029.3
2 2005 3900
3 2006 3937
4 2007 3974.9
5 2008 4081.9
6 Reported crime in Alaska
7 2004 3370.9
8 2005 3615
9 2006 3582

10 2007 3373.9
11 2008 2928.3
12 Reported crime in Arizona
13 2004 5073.3
14 2005 4827
15 2006 4741.6
16 2007 4502.6
17 2008 4087.3

18 Reported crime in
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19 2004 4033.1
20 2005 4068
21 2006 4021.6
22 2007 3945.5
23 2008 3843.7

24 Reported crime in
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25 2004 3423.9
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figure 2. assessing social network data with three diff erent views. the choice of representation impacts the perception 
of data quality issues. (a) a node-link diagram does not not reveal any irregularities. (b) a matrix view sorted to emphasize 
connectivity shows more substructure, but no errors pop out. (c) sorting the matrix by raw data order reveals a signifi cant 
segment of missing data.

(a) (b) (c)
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that the data contains multiple clus-
ters, but not much else. Figure 2(b) 
shows the same data as a matrix dia-
gram; the rows and columns represent 
people and filled cells represent a con-
nection between them. Following best 
practices, we automatically permute 
(or “seriate”) the rows and columns of 
the matrix to minimize the distance 
between highly-connected people. One 
can see clusters of friendship commu-
nities along the diagonal, revealing 
more substructure than is apparent in 
the node-link view.

However, for the purposes of data 
cleaning, the “raw” visualization in 
Figure 2(c) is the most revealing. The 
rows and columns are sorted in the 
order provided by the Facebook API. 
We now see a striking pattern: The bot-
tom-right corner of the matrix is com-
pletely empty. Indeed, this is a missing 
data problem that arose because Face-
book enforced a 5,000 item result limit 
per query. In this case, the maximum 
was reached, the query failed silently, 
and the mistake went unnoticed until 
visualized. As this example indicates, 
choices of representation (e.g., matrix-
diagram) and interactive parameter-
ization (e.g., default sort order) can be 
critical to unearthing data quality is-
sues that can otherwise undermine ac-
curate analysis.

The challenges of effective vi-
sualization become more acute as 
the data grow larger. For tall data, 
a multitude of records can lead to 
crowded, uninformative displays. 
Consider the scatterplot in Figure 3; 
with only thousands of points, the 
display becomes cluttered and dif-
ficult to interpret. A scalable alter-

table trigger suggestions of possible 
operations, each of which is actually 
a statement in an underlying declar- 
ative language. As a result, the user 
and system work together to author 
scalable data transformation scripts.

Analysts using Wrangler specify 
transformations by building up a se-
quence of basic operations (see Figure 
1). As users select data within a table 
display, Wrangler suggests applica-
ble operations based on the current 
context of interaction. Meanwhile, 
programming-by-demonstration tech-
niques help analysts specify complex 
criteria such as regular expressions. To 
ensure relevance, Wrangler enumer-
ates and rank-orders possible opera-
tions using a model that incorporates 
user input with the observed frequen-
cy, diversity, and specification difficul-
ty of applicable transform types. Visu-
al previews of transformation results 
help analysts rapidly navigate and as-
sess the space of viable operations.

To support rapid interaction, Wran-
gler works with a sample of a data set 
within its Web-based user interface. 
The result of this wrangling process is 
not just transformed data, but a reus-
able program for data transformation. 
The resulting program is specified in 
a high-level declarative language that 
can be cross-compiled to a variety of 
runtime environments, including Ja-
vaScript (for processing in the browser) 
as well as Python, SQL and MapReduce 
(for server-side processing). By inter-
acting with a sample of data in the 
browser, users can generate programs 
that can process much larger data sets 
on the backend.

As an initial evaluation, we con-
ducted a controlled user study com-
paring Wrangler and Excel across a 
set of data cleaning tasks. We found 
that Wrangler significantly reduced 
specification time: Even with small 
data sets (< 30 rows), median comple-
tion time with Wrangler was still twice 
as fast for all tasks. By producing not 
just data but an executable program, 
Wrangler also enables a level of scal-
ability simply not possible with other 
graphical tools.

Of course, reformatting data is 
just one of many wrangling prob-
lems. Other tasks that can benefit 
from interactive solutions include 

entity resolution (for correctly match-
ing similar but non-identical records) 
[12], schema mapping (for integrat-
ing disparate data sources)[13], and 
anomaly detection and correction 
(for assessing data quality issues)[14]. 
More research is needed into systems 
that leverage user interaction to solve 
problems resistant to automation, 
and which provide procedures that 
can be executed at scale.

Visualizing Big Data
Once data has been suitably trans-
formed, analysis can begin in earnest. 
Exploratory analysis through visual-
ization is often a critical component 
for assessing data quality and develop-
ing hypotheses.

For an example of data quality as-
sessment, consider the social network 
diagrams in Figure 2. The data consist 
of a social network of friends, extract-
ed from Facebook using their Web 
API. Figure 2(a) visualizes the data as a 
node-link diagram with nodes placed 
via force-directed layout. We can see 

The goal of 
interactive analysis 
tools is to empower 
data analysts to 
formulate and 
assess hypotheses 
in a rapid, iterative 
manner.

Figure 3. Normal (left) and binned (right) scatter plots. Adapted from [14].
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formant recommendation algorithms 
coupled with the design of usable inter-
action and visualization methods.

Going Forward
The previous examples only begin to 
scratch the surface, touching on is-
sues that primarily stem from wran-
gling and profiling activities. Ad-
ditional research problems abound 
throughout the lifecycle of data analy-
sis. How might improved data index-
ing, metadata, and search methods fa-
cilitate data discovery? How might we 
design effective interactive systems 
not only for wrangling individual ta-
bles, but for performing data integra-
tion? Or for manipulating text, image, 
or video data? Or creating, assessing, 
and actively guiding machine learn-
ing models for classification or predic-
tion? And how might we best record 
and represent the analysis process to 
aid auditing, sharing and reuse? As 
the diversity, size, and availability of 
relevant data continues to increase, 
the design of novel interactive tools 
to aid analysis will remain an exciting 
and important topic for computer sci-
ence research.
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Interactive tools for 
data analysis should 
make technically 
proficient users more 
productive while 
also empowering 
users with limited 
programming skills.


