
 

HCC: Medium: Collaborative Research:  
Scaling Collaboration over Data and People 

Project Description 
As the recent meltdown of the financial markets has made clear, the world has become significantly 
interconnected. Individuals and organizations not only have access to enormous amounts of 
information but their tasks and lives are increasingly affected by what others do with this 
information. For the good, sites such as Wikipedia demonstrate how hundreds of thousands of 
contributors can pool their resources to create an encyclopedia of knowledge (Kittur & Kraut, 2008). 
Collaborations in teams and alliances now try to solve problems as disparate as investigating related 
homicides, documenting financial corruption, predicting elections, determining the sources of global 
warming, making field-spanning scientific discoveries, and tracing outbreaks of disease. Many 
endeavors have become more collaborative than not. In scientific research, for instance, teams 
increasingly dominate productivity in fields ranging from chemistry to psychology (Wuchty, 2007). 
Intelligence analysis (Heuer, 1999) and business innovation (Baron, 2006) also depend on whether 
individuals, groups, and organizations can integrate their knowledge, expertise, and insights.  

Here, we propose basic research in collaborative investigative analysis with intended application to 
domains such as financial and political investigation, criminal and intelligence analysis, and 
epidemiology. By collaboration, we mean more than information or data sharing (Greif & Sarin, 
1987). We also mean shared sensemaking—whether people working together can filter, 
disambiguate, and connect data, build schemas, and integrate information to identify and solve 
problems, make decisions, and take action (Nickerson, 1992). Collaborators’ goals might be to trace 
money laundering, to identify potential perpetrators of computer network attacks, or to identify the 
reason for a town’s high cancer rates. To achieve each of these goals, collaborators sift through 
evidence and explore hypotheses, trying to create logical linkages that point to an appropriate 
problem definition, trail of evidence, or insight. Great strides have been made in understanding, 
training, and supporting decision making in comparatively small groups (Kozlowski & Ilgen, 2006). 
However, much less progress has been made in understanding and improving investigative analysis 
in groups, particularly when the group encounters large amounts of data and there are large numbers 
of collaborators. Collaborative analysis across large amounts of data and many people is problematic, 
and the underlying cognitive and social processes are not well understood. 

Consider the following criminal case. A police department in North Carolina had considerable 
information about the circumstances surrounding local murders but did not realize in this myriad of 
data that a serial killer was on the loose. Henry Wallace had already strangled at least five young 
women, and he would kill four more women, when he was finally arrested for shoplifting at a mall 
and released (State of North Carolina v. Henry Louis Wallace, 2000). Wallace was eventually 
identified as a serial killer when a detective noticed strangulation in deaths only two weeks apart and 
told colleagues, who looked for and then found Wallace’s palm print on the car of a victim. As this 
case illustrates, significant breakthroughs in detective work often come about when detectives notice 
and discuss disparate and sometimes unlikely or competing hypotheses; colloquially, they “connect 
the dots.” Similarly, in intelligence analysis (Heuer, 1999), business innovation (Baron, 2006) and 
scientific research (Klahr & Simon, 1999; Simonton, 2003), success may hinge on collaborators 
associating information that others have not noticed or thought unimportant.  

Preliminary work 
We have conducted initial research on collaborative analysis by comparing the value of collaborative 
vs. individual analysis in an experimental paradigm. We use a criminal investigative analysis task 
called the Serial Killer Task. In this task, based on actual cases (e.g., Kraemer et al., 2004), 



 

participants role-play detectives in the homicide unit of a local police department. Evidence pointing 
to a serial killer is scattered, for instance, on linkages among victims who ride a particular bus route. 
Participants read and evaluate assorted documents, including witness and suspect interviews, 
coroner’s reports, crime statistics, a map of the zone and adjacent zones, a bus route map, and a 
police department organizational chart. In our first experiments (Balakrishnan et al., 2008, in press; 
Kiesler et al., 2008), participants worked either individually or synchronously with a partner through 
Instant Messaging [IM]. Across a series of studies, we manipulated how information was distributed 
across participant pairs, whether participants could use structured ways of organizing and reporting 
intermediate reasoning processes (e.g., an MO worksheet, timeline), and simple data visualization 
tools in the form of social network diagrams. We discovered that visualization tools improved 
analysis overall, but collaborative analysis was surprisingly less successful than individual analysis. 
In dyads, twice the intellectual power can be applied to the same data as when individuals do the 
analysis, but dyads did not perform better than solo analysts looking at the same amount of data and 
with comparable tools, and in many cases, they performed worse. Dyads also took longer to reach a 
conclusion. Our studies suggest that scaling up to just two people incurs coordination costs or 
“process losses” (Shepperd, 1993). Simply sharing information does not seem to help analysts reach 
the critical insight they need. Our finding fits with other work. For instance, Blockeel and Moyle 
(2002) report that barriers to analysts synchronizing their mental representations reduce the 
potentially added value of collaboration. 

In a parallel effort, we have built alternative collaborative visualization systems. Sense.us (Heer et 
al., 2007) is a web site supporting asynchronous collaboration across a variety of visualization types 
via view sharing, linked discussions, and graphical annotation. User studies revealed emergent 
patterns of social data analysis, cycles of observation and hypothesis, and the complementary roles of 
social navigation and data-driven exploration. These results suggest benefits for asynchronous forms 
of collaborative analysis in which individuals pass their contributions to others (c.f., Benbunan-Fich 
et al., 2003). Further enhancements include scented widgets (Willett et al., 2007)—user interface 
controls that visualize traces of social activity to enhance collective information foraging—and data-
aware annotation techniques (Heer et al., 2008) that support retargeting across representations of the 
underlying data. In controlled studies we found that these techniques can help analysts allocate their 
attention more effectively (e.g., by surfacing neglected data regions) and share annotations across 
diverse visual representations. While such tools provide a substrate for shared analysis, more 
research is needed to understand how to better facilitate and scale the integration of analytic insights 
(Heer & Agrawala, 2008). Our understanding of the design space of social data analysis tools is 
limited and, as a result, tools for social sensemaking remain in their infancy. 

One way to improve collaborative investigative analysis, which we explore in the proposed work, is 
to automate or support analysts’ sharing of intermediate products of their analysis work, such as their 
categorizations of data, their hypotheses, or tacit traces of their analytic behavior, such as the 
information they looked at and their paths through the data, given off as the analysts go about their 
work. Our major challenge is not only to create such tools, and to test their usefulness in 
collaboration, but also to assess whether they scale to large amounts of data and large collaborations. 

Intellectual merit 
The proposed research will improve our understanding of the complex cognitive and social 
coordination activities required in collaborative investigative analysis, and lead to new tools 
supporting this coordination. Our theoretical framework based on cognitive limitations and biases 
and social processes, exacerbated by scaling data and people, will guide new research on analysis and 
the potential of visualization tools. The research involves undergraduate, graduate, and professional 



 

students, and will result in their further training and education in interdisciplinary research. We 
propose interesting new educational activities, and have had experience in doing so in the past.  

Broader impacts 
This project has the potential to improve collaborative investigative analysis in many fields of critical 
importance to society, including criminal justice, intelligence, science, and epidemiology. Our results 
will provide new visualization tools for analysts in these areas, recommendations for organizational 
practices to improve the quality of collaborative analysis, new methods for training professional 
analysts to solve complex, interconnected problems, and new learning tools for graduate programs in 
fields such as epidemiological analysis and criminal justice.  

Research team 
The team consists of experts in organizational behavior (Kiesler), collaborative analysis (Kiesler, 
Fussell, Heer), computer-mediated communication (Fussell), information visualization (Heer), and 
information aggregation (Kittur). The PIs have a track record of successful interdisciplinary 
collaborations and have collaborated together on prior NSF-funded projects. Kiesler and Kittur are 
co-authoring chapters for a book on theory in online community design. Fussell and Kiesler have co-
advised three doctoral students. 

Scaling Collaboration 
In collaborative investigative analysis, we face two issues of scale, data and people. Both of these 
issues complicate theory and the development of tools.  

Scaling data 
In hundreds of small group experiments, including our own, participants have worked with 
comparatively little data, for example, 40 informative items or simple documents per person in a 
three-person group (e.g., Greitmeyer et al., 2006). By contrast, real world tasks often involve what is 
commonly understood as “information overload.” Consider for example, the thousands of data pieces 
that a homicide detective gathers and can consider in a portfolio of cases, and in addition, the various 
statistics and analyses from computers that the detective has at hand. If there are 10 detectives and 
they share their expertise and information with others, whether directly or through a database, the 
sheer amount of information will be overwhelming to them (see, for example, Boh, 2007). Even if 
the detectives can identify the unshared information each has, the group as a whole will have more 
information than it can analyze. In addition, the individual analyst will now have more information 
than he or she started with, leading to even greater overload. Thus, in complex environments with 
large amounts of data, information exchange alone is unlikely to enhance analysis. 

One strategy a group of analysts can use to cope with immense amounts of data is to agree to focus 
on certain hypotheses or categories of data (e.g., male suspects, murder weapons) in one way (e.g., 
pairings of men of a given age with use of the same weapon). That is, they may use a common 
framework or shared mental model to approach the data. Although many writers argue that groups 
need a shared mental model to succeed (e.g., Kozlowski & Ilgen, 2006), too much overlap can lead 
to cognitive tunneling (Cook & Smallman, 2007; Woods & Cook, 1999) whereby the collaboration 
fails to discuss unshared information (Stasser & Titus, 1987) and follows an incorrect path (e.g., 
looking closely at all young male suspects). Cognitive tunneling leads to confirmation bias 
(Nickerson, 1998), that is, failing to consider alternative hypotheses (e.g., looking at older suspects).  

Another strategy the group can use is for each detective to begin with a more prolonged period of 
individual analysis, sharing his or her lines of investigation or hypotheses only after some 



 

preliminary conclusions have been drawn (Dugosh et al., 2000). For example, if one detective has 
noticed that many crimes take place near hospitals, he might share this general observation with 
fellow detectives, rather than sharing all the available information about each individual crime. This 
strategy has the potential to reduce information overload and to increase creativity because each 
detective is contributing unique hypotheses or other intermediate products of the analysis process 
rather than raw data. This deliberate information pooling strategy, however, can be problematic in 
two ways. First, some key insights may not be evident within individual detectives’ portions of the 
data; they emerge only when the data are combined with others’ data. For example, if each detective 
is working on one crime that took place near a hospital, the fact that this is a general pattern across all 
detectives’ data may not be obvious. Second, cognitive biases, social pressures, and organizational 
disincentives can make analysts unwilling to share tentative hypotheses. For example, analysts might 
worry they would be punished for false positives and wasted resources. For these reasons, even in 
small groups with limited information to share, improved performance from deliberate information 
pooling are seldom realized (for an overview of this literature, see Mojzisch & Schulz-Hardt, 2005).  

Scaling people 
Fred Brooks famously said, “Adding manpower to a late software project makes it later” (Brooks 
1975). In investigative analysis, as well, a major issue of scale has to do with what happens when we 
increase the number of people involved in a collaboration. Although increasing the number of 
contributors to analysis potentially increases the likelihood that someone has a key insight or 
expertise needed, the evidence suggests that adding more people actually reduces efficiency and 
effectiveness. More people increases the costs of coordination—effort to meet with others, time spent 
learning who knows what, contextualizing information, deciding who should meet with whom, 
agreeing on the problem or tasks, keeping up with what is going on, and coming to consensus. 
Coordination costs in turn reduce the efficiency and effectiveness of a group (Steiner, 1972; Schulz-
Hardt et al., 2006). Adding more people also can yield diminishing returns because some members of 
the collaboration feel distant from others, slack off, or begin to feel unmotivated or unappreciated; 
losses are especially evident when the task has strong interdependencies (Hill, 1982; Karau & 
Williams, 1993; Shepperd, 1993). 

The people in a collaboration may belong to two or more different organizations. Analyst teams 
comprised of people from different organizations are becoming more common, given the complexity 
of problems analysts face in solving global crime, pandemics, and other geographically and 
organizationally distributed problems. Collaborations with members from multiple organizations, 
however, often suffer from increased coordination costs and social conflict due to members’ 
divergent organizational procedures, routines, cultures, and incentive structures (e.g., Cummings & 
Kiesler, 2005, 2007; Hinds & Mortensen, 2005; Katz & Te’eni, 2007). When such collaborations are 
also carried out over distance, the probability of serendipitous encounters drop drastically (Boh, 
2007). It also becomes significantly more difficult to locate individuals with a specific piece of 
knowledge. Hansen and Nohria (2004, p. 24) refer to this search as the ‘‘needle-in-a-haystack 
problem,” noting that ‘‘it is nearly impossible to connect the person who has the expertise with the 
person who needs it.’’  

Need for collaborative visualization tools that scale  
Visualization techniques represent complex numerical and textual information in pictorial or 
graphical form and facilitate exploration of data (Andrews & Heidegger, 1998; Shneiderman, 1996; 
Wattenberg, 1999). By removing the burden of mentally consolidating disparate information, such 
holistic representations of large amounts of data can help individuals spot anomalies, perceive 
patterns, and thus improve their problem solving success (Larkin & Simon, 1987). Visualization 



 

tools reduce task completion time and increase productivity on many information retrieval tasks 
(Hendrix et al., 2000; Stasko et al., 2000; Veerasamy & Belkin, 1996) and are commonly used to 
support intelligence analysis (Stasko et al., 2008; i2, 2009; Palantir, 2009; Wright et al., 2006; 
CoMotion, 2009). Information visualizations also can promote feelings of community and foster 
discussion in “wiki” websites (Viégas, Wattenberg, & Dave, 2004).  

The importance of collaborative investigative analysis in many real world tasks has spurred 
significant research of visualization tools that support collaboration. Early systems such as CoVis 
(Edelson et al., 1996), C-spray (Pang & Wittenbrink, 1997), CVD and Cave6D (Lascara et al., 1999), 
TIDE (Sawant et al., 2000), iScape (Börner, 2001), COVISA (Wood et al., 1997), and DIVA (Brewer 
et al., 2000) focus primarily on system control issues, e.g., enabling users to manipulate a shared 
visual interface in real-time. More recent research attempts to support not just multi-user interaction, 
but collaborative sensemaking of visualized data, typically through textual discussions linked to 
visualization states (Heer et al., 2007; Viégas et al., 2007; Eccles et al., 2007) and aggregation of 
individually-constructed artifacts such as network diagrams or measures of evidence quality (Billman 
et al., 2005; Convertino et al., 2008, Brennan et al., 2006; Keel, 2007). While promising, such 
systems do not yet scale to large data sets or numbers of collaborators. We believe that such 
scalability requires systems that not only handle large databases, but also represent the process and 
intermediate products of sensemaking—such as categories and hypotheses—in a format amenable to 
both manual and computational analysis.  

Much remains to be understood about the conditions under which groups optimally benefit from 
collaborative visualization, particularly in regards to higher-level sensemaking tasks. Some research 
suggests there are improvements in performance on certain analytical tasks, especially when the 
visualization is easily understood, the tasks require little coordination among collaborators, and the 
data and number of collaborators are constrained (Mark, Carpenter, & Kobsa, 2003a, 2003b). 
Visualization systems that minimize the overhead of planning and coordination among people lead to 
better group performance than systems with high coordination costs (Mark, Kobsa, & Gonzalez, 
2002). 

Only a few studies systematically examine the effectiveness of visualizations on such highly complex 
tasks as investigative analysis (e.g., Balakrishnan et al., 2008, in press; Convertino et al., 2008). In 
our serial killer studies mentioned above, we ran conditions in which participants were provided with 
social network diagrams to help them analyze the data. These visualizations improved the 
performance of both individuals and dyads; for example, a visualization integrating two sets of data 
held by different analysts improved their performance from a 25% solution rate (per pair) to a 67% 
solution rate. However, dyads did not overcome the collaborative challenge in sharing data, namely, 
that even with a diagram linking the data in logical ways, there is still too much to consider and there 
are coordination costs in discussing the data (Balakrishnan et al., 2008; Kiesler et al., 2008). 
Furthermore, when every analyst had all the data, performance in dyads seemed particularly prone to 
cognitive tunneling (Balakrishnan et al., in press). For a group to benefit from collaborative 
visualizations, tools must aid coordination cognitively and socially rather than be dependent on the 
pre-existing coordination of the group. 

In summary, we call for research that will lead to a fundamental understanding and better support for 
collaborative investigative analysis in critical domains such as criminal and intelligence analysis. 
There is considerable research towards support for small groups, such as helping groups set goals, 
keep on task, and maintain awareness of colleagues (e.g., Pritchard, 1995; Sawyer et al., 1999). In 
addition, research in information aggregation has made strides toward helping individuals and groups 



 

retrieve and share large amounts of information. This work has been especially useful when the task 
can be modularized (as in Wikipedia) and individuals can make individual contributions. We propose 
to build on this prior work to understand and improve collaborative investigative analysis, which 
demands that information not just be shared, but also integrated. We propose developing tools, 
research, and theory that extend prior work in a qualitatively different direction. We hypothesize that 
tools for sharing the intermediate products of analysis will transform the collaborative investigative 
analysis process by helping groups overcome information overload, cognitive tunneling, and social 
barriers to investigative analysis. We also propose that such tools may scale better than sharing raw 
data.  

Research Goals 
Solving the problems faced by analysts collaborating on large datasets requires us to expand models 
of investigative analysis beyond data and relations among data to the collaborators and relations 
among them. It requires us to scale up the study of collaboration as it has been studied in social 
psychology to larger amounts of data and larger groups of people, including dispersed groups. It 
requires us to create tools that help groups of people coordinate their analysis work at different stages 
of analysis. We believe this approach will reduce coordination costs that pose barriers to information 
sharing and will help collaborators use amounts of information that greatly exceed individual 
cognitive capacities. Specifically, we have three key research goals: 

Understanding how the process and results of collaborative analysis change as we increase the scale 
of data and people involved. Most theories of collaborative investigative analysis have been based on 
studies of small groups coping with manageable amounts of data. These theories will need to be 
extended and modified to fit the case of many analysts, sometimes from different organizations, 
collaborating on vast amounts of data. We need to understand how to best design tools that scale to 
larger groups of analysts and large amounts of data. 

Exploring optimal cognitive and social conditions for collaborative investigative analysis. 
Collaborations are social organisms that, over time, develop a particular culture and cognitive 
structure. We will address questions that remain unsolved in the literature: What degree of 
overlap in mental models leads to the best analytic success, with the least cognitive tunneling? 
What level of information should be shared: raw data, categories, or hypotheses? Should sharing 
be explicit, as through tags or speech; implicit, as through traces of analytic behavior; or both? 
How can computation facilitate matching and integration? How does collaboration across social 
boundaries affect trust and the willingness to share? 

Designing and testing visualization tools for collaborative investigative analysis. Visualizations 
are efficient ways of organizing information, a key component of investigative analysis. How can 
analysts benefit from the analytic work of others? We will examine how visualizations can help 
analysts make use of each others’ analysis behavior, and whether these tools scale to large 
datasets and large collaborations. 

We approach these three research goals in two highly intertwined research activities: development of 
visualization tools for collaborative investigative analysis, and behavioral studies of analysts using 
these tools.  



 

Research Plan 

Activity 1: Developing tools for collaborative investigative analysis 
Our approach to developing tools for collaborative visualization focuses on ways in which analysts 
can benefit from seeing the activity and intermediate products of others. To illustrate our approach 
we present a hypothetical scenario based on the Serial Killer Task described above. This simplified 
scenario nonetheless illustrates ways how collaborative visualizations could help analysts share their 
categorizations of data and their hypotheses, and follow the analytic behavior of others. We then 
raise some challenging research questions that arise from these ideas. 

Scenario 
Suppose three analysts collaborate to identify suspects for further questioning. Using a visualization 
of category structures, Carlin sees that 4 of the 7 victims were killed with a blunt instrument. 
Intrigued, she uses this categorization structure as a source to look for related structures, finding one 
Alice had previously created for “bus route 22x riders”. Looking at the overlap of the two, she finds 
that all of the four blunt instrument victims were also bus riders (see Figure 1). Thinking of a 
possible connection, she annotates the view that there might be a serial killer involved and adds it to 
the shared pool.  

Alice, notified that someone has used one of her categorization structures, finds Carlin’s combined 
view. She decides to try to find suspects who might be related. She comes up with a new hypothesis, 
and, using the underlying graph clustering algorithm, generates people who are linked to the victims 
(see Figure 2a). From this view, she finds two likely suspects: Wayne Millican and Ronald Raffield. 
She saves this view as a hypothesis, annotating that both are worthy of further inspection.  

Looking at the trace-surfacing view (see Figure 3), Carlin sees that Hao-Chin has spent some time 
already looking at Wayne Millican, and that he has annotated that Millican was carrying a toolbox on 

 
Figure 1. Sharing categorization structures. By combining her structure with Alice's, Carlin notices that 
all victims (in red) killed by a blunt instrument also rode the same bus line. From this, she induces that the 
cases may be linked, and annotates the view to share with others. 



 

the bus when interviewed for an unconnected case. Realizing that Millican may be connected in more 
ways than currently shown, she adds a hypothesis node linking Millican to the “killed by blunt 
instrument” node, greatly increasing his likelihood of involvement as he is now linked to both to the 
bus and to the murder weapon (see Figure 2b). She then messages Hao-Chin to take a look at the 
hypothesis, as he may have information to add. After inspecting the hypothesis, Hao-Chin adds to it 
by noting that Wayne Millican has an additional connection to the victims through working at the 
same hospital as two of them. This updated hypothesis is saved in the same thread as the original 
hypothesis, so people can discuss them together (see Figure 2c). 

Research questions for collaborative visualization 
This scenario, though purposefully simplified, highlights some key research questions we will 
examine in the development of visualizations: How can categorization structures be usefully shared 
between analysts? How can hypotheses be created, annotated, and shared? How can surfacing traces 
of analyst activity benefit others? Although the most effective way to support collaboration with 
visualization tools will vary depending on the specific analysis task, these research questions are 
relevant to some of the most common tasks that analysts engage in during investigative analysis, 
filtering and organizing information, and building and testing hypotheses (Pirolli & Card, 2005). For 
all stages of this work, an iterative design and evaluation process will be used to ensure that we have 
solved these problems in an effective way for analysis. 

 

Figure 2. Generating and sharing hypotheses. (a) Carlin uses the subset of related victims to find the 
most highly connected potential suspects. (b) After a tip from Hao-Chin, she realizes that Wayne Millican 
is related in multiple ways to the victims, and annotates, saves, and shares the hypothesis. (c) Hao-Chin 
views the hypothesis, adds support to it, and responds to Carlin. 



 

 

Sharing categories. Analysts may use many different ways of categorizing data as they explore it, 
from simple categories such as “victims killed with blunt instruments,” to more ad hoc categories 
such as “people who ride the bus to work but not back.” By choosing what information should be 
included in a category, collaborators focus and highlight different aspects of the information. Each 
category may serve as a potential component of a nascent hypothesis, indicating a factor that might 
contribute to the analysts’ understanding. Categories serve as a concrete, flexible, and integrable unit 
supporting higher-level sensemaking of the data. 

Being able to visualize the aggregated categorization structures of many individuals could help 
collaborators better understand the mental representations of their collaborators, make sense of the 
way others are grouping data, and induce higher-order schemas (such as the presence of a serial 
killer). Studies of how people represent and use concepts highlight that categories are often flexible, 
evolving, ad-hoc, and theory-driven rather than determined by static features of the data (Barsalou, 
1983; Murphy & Medin, 1985; Wittgenstein, 1953). Thus, there is no top-down correct way to 
categorize data; analysts will need to organize and reorganize the data in many different ways.  

We will explore how to most effectively enable analysts to flexibly organize information and share 
those organizations with each other, using our prior work on machine-assisted organization and 
visualization tools as a foundation (Kittur et al., 2007; Suh et al., 2007). To support analysis in a 
scalable fashion, we will explore methods for creating aggregated representations of category 
structures and usage traces. For instance, fuzzy categorizations might be inferred from a collection of 
individual categorization structures, with points of overlap and disagreement automatically 
highlighted for investigation. An important research question to answer is whether this approach can 
avoid cognitive tunneling, that is, collaborators fixating on a simplified structure and ignoring other 
ways of structuring the data. We believe post-hoc aggregation and visual analysis of category 
structures constructed by people working independently may provide a mechanism to help avoid 
groupthink. 

 

Figure 3. Surfacing analysts’ traces. Investigating Wayne Millican, Carlin sees that Hao-Chin has already 
spent significant time examining and annotating him. 



 

Our research must also tackle the perceptual scalability of visual representations of both raw data and 
metadata such as category structures. For instance, large networks with dense connectivity may be 
better depicted by applying appropriate network clustering or aggregation techniques (e.g., van Ham 
& van Wijk, 2004; Wattenberg, 2006) and by using a matrix display rather than a node-link diagram 
(Ghoniem et al., 2004). Our ongoing research on visualization architectures (Heer et al., 2005; Heer 
& Agrawala, 2006; Bostock & Heer, 2009) and graphical perception (Heer & Robertson, 2007; Heer 
et al., 2009) provides extensive experience and tools for developing scalable visualization designs. 

Sharing hypotheses. A hypothesis or schema can represent a set of relations between items, such as 
that there is a serial killer in the region; animals from a set of farms may be the source of new 
outbreak, or that a specific person is involved in a conspiracy. Inducing such hypotheses is difficult, 
as they require the integration of many, often disparate pieces of information (Gentner, 1983; 
Hummel & Holyoak, 2003). Groups can promote such integration when analysts generate hypotheses 
that others can cycle back and build on. For example, two detectives might combine their hypotheses 
in independent cases to identify a serial killer. Supporting coordination is especially important for 
hypothesis sharing, as collaborators need to share representations and mental models of the 
information space, suggesting that visualizing annotations and hypotheses of others could be highly 
beneficial. For instance, in the detective example above, one detective might note an anomaly in his 
case, which another detective could then use to induce a higher level schema across cases (i.e., that 
there is a serial killer). An important question here is when such schematizing produces commitment 
to a mental model and cognitive tunneling. The tool should allow inconsistencies in the evidence to 
be viewed, so that apparently similar hypotheses can be contrasted. A diversity of perspectives in a 
collaboration can help prevent cognitive tunneling (Convertino, et al., 2008; Jehn et al., 1999; 
Mohammed & Dumville, 2001). We will explore how to support this diversity, for example by 
making it possible to task an analyst to hunt for contradictory evidence for popular hypotheses.  

Another important issue is that each analyst may have his or her own criteria for judging what 
information is important and relevant, and different thresholds for sharing information he or she 
thought important. Thus this stage would likely be sensitive to social pressures such as the cost of 
sharing incorrect information or trusting others enough to give them priorities before all evidence is 
sifted. We will examine how to promote effective hypothesis sharing based on our prior work in 
schema induction (Kittur et al. 2004; Kittur et al., 2006), and the literature in the social costs of 
information sharing (e.g., Heuer, 1999; Johnston, 2005). 

Surfacing traces. With very large numbers of analysts and large amounts of data, many analysts will 
not be online at the same time and multiple passes through the data may be necessary. The lack of 
immediate communication and feedback creates an increased need for implicit coordination 
mechanisms (Rouse et al., 1992). For example, in large scale, asynchronous production systems such 
as Wikipedia, explicit coordination mechanisms such as communicating requests, do not scale up to 
large group sizes. By contrast, implicit coordination mechanisms, such as concentrating editing work 
in a small group of editors, actually increase in their effectiveness (Kittur & Kraut, 2008). On the 
other hand, the asynchronous nature of the work means that a person can benefit from the efforts of 
all those who have previously worked on the task. People can benefit from the aggregate traces of all 
past users, not just those currently using the system (Hill et al., 1992). Also, the aggregate 
organization of traces of past users may be more beneficial with more users (Furnas et al., 1987), and 
from having more hypotheses and annotations, than when there are fewer contributors. Our goal is to 
harness the traces and efforts of past contributors to benefit future contributors and to determine how 
collaboration visualization can improve this process. 



 

As analysts explore the data, they create traces that can be aggregated and displayed, such as how 
long they examined a suspect or whether they discussed the suspect with others. Many researchers 
have examined surfacing traces of how others have used or contributed to an artifact (Eick et al., 
1992; Hill et al., 1992; Viegas et al., 2004). A few have looked at using traces of others’ activity in a 
group setting (Gutwin, 2002), or applied this idea to analytic tasks (Wattenberg & Kriss, 2006; 
Willett, Heer & Agrawala, 2007). For example, Willett et al. found that visualizing analysts’ 
visitation patterns in navigation controls increased visitation to popular views but also led to 
increased inspection of unvisited views. However, little else has been done to characterize and 
provide guidance for the design space of such awareness cues. 

We will further explore what types of information about others’ analytic behavior would be useful to 
surface—both implicit activity such as what information analysts have looked at or searched for as 
well as explicit activity such as what they have discussed or marked as important. We will also 
examine what level of detail is most effective to surface. Depictions of activity traces might be scaled 
by depicting aggregates of total usage (as opposed to individuals, as in Figure 3), enabling interactive 
filtering to selectively show the activity of specific teams or individuals, or automatically selecting 
and highlighting the work of relevant analysts using activity metrics such as frequency and recency 
of access. Furthermore, activity traces can be used to communicate which regions of the data have 
been neglected, thereby helping analysts allocate their attention more effectively. 

Because the visualization of traces will compete for attention with the data themselves, showing 
more traces may not always be beneficial. Moreover, because the traces show human behavior and 
not “objective” data, there is a social dimension to this tool. Analysts may be uncomfortable with 
others’ attention on their behavior, and this discomfort may increase in organizations with social 
costs of false positives or when the collaboration is made up of analysts accountable to different 
organizations (Stewart et al., 1998). We will begin by building on our work in surfacing traces in 
both visualizations and Wikipedia (Willett et al, 2007; Kittur et al., 2007, 2008; Suh et al., 2007, 
2008) and examine the informational and social benefits and costs of this approach. Without actual 
experimentation, it is not obvious what the effects of these methods will be. We therefore plan to 
tightly interweave the design and development of our analysis tools with behavioral studies of 
analysts collaborating using these tools. 

Activity 2: Behavioral studies of collaborative investigative analysis  
In Activity 2, we aim to investigate how the introduction of visualization tools can overcome 
problems that arise from scaling and to enhance our understanding of how scaling people and data 
influences the process of collaborative analysis using such tools. Our strategy for pursuing these 
goals is to look at collaborative analysis at different levels of scaling of people and data. We will 
begin our research in a domain where we have a developed paradigm for studying analysis— 
criminal analysis. Inducing useful schemas from that information is a difficult task, as there is a huge 
amount of information, people may specialize in different areas, and not all links are important. We 
also use a dataset from the SEMVAST project (www.cs.umd.edu/hcil/semvast). 

In our prior experiments using the serial killer task, the total amount of data did not exceed the 
capabilities of a single analyst. A strategy of pooling unshared information might be effective with 
these limited data (e.g., Stewart, Billings, and Stasser, 1998), but not when the amount of information 
exceeds what a single analyst can review. To conduct the proposed research, a modification we will 
make to this paradigm is to add more cases, more details about each case, and more statistical data, 
bringing the task more in line with real-world analytic tasks. This modification will make the task 
more comparable to that of intelligence analysis, detection of corporate crime, and epidemiology. 



 

Below, we refer to this task as the Scaled Serial Killer Task. For all studies, in addition to the college 
student participant pool we also plan to use either actual analysts or graduate students trained in 
analytical fields such as epidemiology (Cornell) or business analysis (Cornell, Carnegie Mellon, 
Stanford). These fields also may attract people high in analysis abilities (Frederick, 2005). 

Study 1: Effects of scaling people and data 
We will examine how groups of analysts exchange information and develop solutions as both the size 
of the group and amount of data changes. Groups of 3, 6, 9 and 12 participants will work on the 
Scaled Serial Killer Task. Each group will be responsible for either 300, 600, 900 or 1200 pieces of 
data. Members of the group will be assigned to solve detective cases. Half of the groups will use our 
previously developed social network diagram tool (Balakrishnan et al., 2008) as they work on their 
tasks. The other half of the groups will receive no visualization. The dependent measures will focus 
on how groups exchange information and whether or not they identify a serial killer embedded in the 
dataset. 

Using this paradigm, we can examine the effects of scaling both people and data independently. We 
anticipate that the value of adding analysts to the group will depend on whether or not that additional 
analyst brings with him/her more data for the group to consider. When the analyst does not, 
coordination load is increased but the likelihood of finding the serial killer may not improve. In 
addition, we will record and code group interactions as well as individual manipulations of the data. 
Our prediction is that the group’s strategy for analyzing data will change as information load 
increases. Specifically, for groups with the visualization tool, we expect there to be a shift from 
explicit (verbal) sharing of information to implicit (via changes to the network diagram) sharing of 
hypotheses as information load increases. 

In addition, we will use Likert scales to assess people’s view of their partners (e.g., are they doing 
their share? Would they work with them again? Are they competent?), of the task (e.g., How difficult 
is it?) and of team performance. We will measure cognitive tunneling as the overlap in categories 
considered by the team. We also will score performance on the task based on the number of 
references to evidence of the serial killer people list in their reports. In addition, we will log and 
analyze people’s category creation processes to see when and how often they make new categories, 
when and how often they consider others’ categories, and whether people’s new categories build 
upon one another’s categories. 

Study 2: Scaling across organizational boundaries 
We will examine how problems of scaling are compounded when analysts work across 
organizational boundaries. Groups of 3, 6, 9 or 12 analysts will try to identify the serial killer based 
on 1200 pieces of information. Half of the analysts will be located at Carnegie Mellon University and 
told that they are part of the Pennsylvania office; the other half will be located at Cornell University 
and told that they are part of the New York office. Half of the groups will share a single social 
network visualization tool; the other half will use two visualizations, one for each site 
(“organization”). We anticipate that a single social network tool will increase sharing of information 
across sites. 

In addition to the measures above, we will examine how organizational boundaries affect the sharing 
of information, time spent considering information shared by others, and the likelihood of a solution. 
When initial visualization tools from Activity 1 are available, we will incorporate them into our 
manipulations. This study also may incorporate explicit manipulations of the social costs of 
information sharing, e.g., participants docked for incorrect hypotheses. 



 

Study 3: Sharing categorization structures. 
This study follows the iterative development of tools that promote the sharing of categorization 
structures (cf. Figure 1). We hypothesize these tools will enhance collaborative analysis, especially 
as group sizes become large and synchronous discussion becomes more problematic. We will use the 
Scaled Serial Killer Task. For this type of problem, where the data are filtered at the local level as 
relevant and organized into implicit or explicit categories (e.g., weapons, alibis, transport), 
visualizations that promote shared categorization may be particularly useful, although when more 
people are creating many categories at the same time, their utility may be decreased. In this study, 
groups of 3 participants will work together on the serial killer task. Half of the groups will be 
provided with a shared categorization structure visualization tool, the precise details of which depend 
upon the outcome of efforts in research activity 1. The other half of the groups will be provided with 
no visualization tool. Cross-cutting this manipulation will be a comparison of different lengths of 
initial individual exploration of the data prior to group discussion. The outcome of this study will 
influence subsequent studies as we scale up to more participants and new visualization techniques. 

Study 4: Integrating and sharing hypotheses. 
Study 4 will test the proposition that visualizations that support the sharing of hypotheses will 
provide value to collaborative analysis above and beyond visualizations that support sharing of 
categorizations. The conditions of the study will be: no visualization tool, shared categorization tool 
used in Study 1, shared categorization tool + shared hypothesis tool. As before, the precise features 
of this tool will depend upon the outcome of visualization efforts. Groups of 3 or 6 participants will 
work together on the serial killer task. Measures will be similar to those of Study 1. In addition, we 
will log and analyze use of the visualization tools and analyze the relationship between this usage 
and verbal exchange of information (from IM logs) and task performance. We also will measure the 
extent to which participants debate hypotheses, as the tool is developed in ways to compare and 
contrast different hypotheses. A follow-up study will examine the effect of social costs of 
information sharing on use of these visualizations. 

Study 5: Surfacing traces. 
This study explores the conditions under which people can benefit from the traces and efforts of past 
users to improve their investigative analysis performance. Our basic approach will be similar to that 
of earlier studies, in that individual participants will try to identify relationships in a large dataset. 
For this study, however, we need to move beyond the serial killer dataset to one with thousands of 
entities and relationships. Our plan is to draw on the VAST 2006 visualization competition dataset, 
which includes a conspiracy to commit financial fraud and a related epidemiological outbreak. These 
data represent problems for analysts that may be solved through visualization and augmentation 
tools. Significant effort from many parties has gone into the creation of these synthetic datasets, and 
they include very large amounts of information that would be difficult for any individual to analyze. 
They are thus ideal for our purposes. Our goal is to understand how to harness the past behavior of 
others most effectively to aid in investigative analysis. The results will inform the design of 
visualization tools and group organization strategies that maximize the effectiveness of large, 
asynchronous groups. 

We will manipulate how many prior participants’ work will be aggregated. Levels include 
aggregations of 0, 5, or 30 participants. We will aggregate the work of analysts in the 0-participant 
condition as input for the 5- and 30-participant conditions. Secondary independent variables will vary 
per experiment, such as the social cost of sharing information or users’ expectations of the utility of 
the aggregate. Outcome measures will include objective criteria such as the accuracy of the solution, 



 

time to completion, use of others’ work, and time spent on relevant versus irrelevant items. Measures 
will also include subjective criteria such as perceived understanding of the information space, liking 
of the tools, and self-efficacy. 

Additional studies  
In later years, we will intend to conduct additional studies to follow up on the results of Study 3 
using the VAST dataset. We will address issues such as: Which past efforts are most useful to users, 
and what is the optimal representational level at which to surface them? How should results be 
altered based on properties of the analyst, such as motives, interests, and expertise? Do the quality 
and users’ expectations of traces impact performance? We will also investigate how previous users’ 
categorization efforts can be harnessed to support asynchronous work; i.e., when shared categories or 
hypotheses are from past contributors rather than current collaborators.  

Research Timeline and Performance Goals  
Our research timeline is shown in Table 1. Entries refer to the years that the studies are conducted; 
presentations and submissions for publication will follow in the next year.  

Year of Project Activity 
Year 1 Year 2 Year 3 

Visualization 
Development 

Sharing categorization 
structures 

  

Integrating and sharing 
hypotheses 

Surfacing traces 
 

Behavioral 
Studies 

Expand serial killer task 
Studies 1 and 2: Effects of 

scaling people and data, 
effects of organizational 
differences. 

Adapt VAST dataset 
Studies 3 and 4: Value of 

sharing categories, and 
value of sharing hypotheses  

Study 5: Value of sharing 
behavioral traces 

Follow up studies  

Table 1. Tentative schedule of research activities by funding year. 

Synergistic and Educational Activities 
Synergistic activities. The proposed project has close ties to other NSF-funded work at Carnegie 
Mellon and Cornell, including studies of coordination among hospital teams (Kiesler, Fussell), 
studies of multitasking and attention, studies of cultural diversity in collaboration (Fussell), studies of 
surfacing traces in collaboratively-generated knowledge systems (Kittur and Kraut) and studies of 
visualizing categorization structures (Kittur and Chau). The project also has close ties to visual 
analytics research at Stanford (Heer), which houses a DHS-funded Regional Visual Analytics Center. 
The PIs also have relationships with (unclassified) research in the intelligence community, through 
the KDD program, and talk with analysts through that program. Heer also has fostered a relationship 
with a company developing analytic tools (see attached letter). 

Integrating research and education. The PIs will integrate their research with ongoing educational 
activities at their respective sites. Graduate students engaged in these projects interact in research 
team meetings, providing them with a stimulating, multidisciplinary educational environment. 
Kiesler will introduce a collaboration tool in her Human Factors undergraduate/masters course to 
help students use fault tree analysis. Fault tree analysis is a difficult skill and students commonly 
overlook evidence and use overly simple categorization schemas. Building tools for comparing and 
using others’ fault tree analyses will require an algorithm that could build on commonalities in how 
students label levels of the tree and linkages. 



 

Integrating diversity. The PIs have a history of integrating foreign students, minorities, and women in 
their research projects. Drs. Kiesler and Fussell have advised doctoral, master’s and undergraduate 
students, of whom approximately half have been women and 75% have been minority and foreign 
students. Drs. Heer and Kittur will be new faculty investigators, injecting innovativeness into our 
work (Guimera et al., 2005).  

Results of Prior NSF Funding 
Large scale collaboration in critical environments. Kiesler, S., Fussell, S. R., Yang, J., Weisband, S., 
Xiao, Y., et al. (Sept. 1, 2003-Aug 30, 2010) (NSF ITR 0325087, with University of Maryland 
Medical Center and University of Arizona). Total budget: $1,250,000. 
The goals of this project are to understand how people allocate time and effort across multiple 
projects with different collaborators and to develop new technologies to enhance coordination across 
people and projects. We conducted field studies on how medical personnel coordinate in hospital OR 
suites (Xiao et al., 2007; Ren et al., 2008; Scupelli et al., under review) and a series of lab studies 
examining how people allocate communication and effort across two projects, each with a different 
partner (Fussell et al., 2004). We also examined how cultural factors impact communication and 
collaboration (Setlock et al., 2007, Kayan et al., 2006, Setlock et al., 2004). Tool development efforts 
include a new IM tool providing information on partners’ task related activities (Scupelli et al., 2005) 
and a video system to help remote experts allocate attention across multiple novices (Ou et al., 2005). 
This project has been highly successful in generating publications, conference presentations, and 
invited addresses, as well as in training students. To date, it has funded 4 doctoral students, one post-
doctoral fellow, four Master’s students, and many undergraduates through NSF’s REU program. 
Several of the Master’s and undergraduate students have gone on to industry or further study.  

ITR Research Assessment. J. Cummings & S. Kiesler. Collaborative Research. (June 1/2004- June 1, 
2008). (Research portion of this grant, $150,000.00) 
This evaluation study focused on the coordination activities and project outcomes of 491 of NSF’s 
Information Technology Research collaborations. The PIs ran a meeting of ITR PIs and studied their 
projects. An important finding was that more universities involved in an NSF-sponsored 
collaboration predicted fewer coordination activities and fewer project outcomes. Mediation analysis 
showed that insufficient coordination explained a negative relationship between the number of 
universities and project outcomes. Further coordination activities declined most when both number of 
disciplines and number of universities were high. This project informs the current proposal because it 
identifies coordination costs as a primary reason why scaling collaborations is a problem. In addition 
to a report to NSF, key publications from this project are Cummings and Kiesler (2005, 2007, 2008). 

NSF Graduate Research Fellowship, A. Kittur (June 1, 2003-June 1, 2006). 
This fellowship supported a series of studies examining how humans learn, represent, and use 
abstract relational concepts. While most previous studies of categorization have focused on concepts 
defined by simple features, some of the most important types of concepts–such as barrier, 
conservation of energy, or breach of contract–cannot be so described. Drawing on theories from 
analogy and schema induction, we conducted a series of experiments that showed fundamental 
differences between how feature-based and “relational” categories are learned, represented, and used 
(Kittur et al., 2004, 2006). Bayesian statistical modeling was used to quantitatively capture these 
differences and to demonstrate the computational constraints needed to model them (Kittur et al., 
2006). Our results support a view of human categorization that is remarkably flexible, dynamic, and 
driven by individuals’ goals rather than surface features of the environment. 



 

Collaboration Plan 

PI roles and responsibilities 
The project will be directed by Dr. Sara Kiesler, in the Human Computer Interaction Institute at 
Carnegie Mellon University, who will be responsible for scheduling team meetings, submitting NSF 
reports, and other managerial activities. Dr. Kiesler will also head the efforts to conduct Studies 3 
and 4, incorporating the results of our visualization development efforts. A doctoral student with 
skills in behavioral research and group collaborative will assist in developing the Serial Killer task 
and designing and running experiments. Dr. Kiesler and her doctoral student will be assisted in these 
activities by undergraduates interested in the area of human-computer interaction (HCI) and 
computer-supported collaborative work (CSCW).  

Dr. Susan Fussell, in the Department of Communication and Field of Information Science at Cornell 
University, will head the efforts to expand the Serial Killer task and to develop the new research 
paradigm used to study the effects of scaling data and people on collaborative analysis. She will also 
head the efforts on Studies 1 and 2. A Cornell graduate student with expertise in computer-mediated 
communication and CSCW will work with her on these activities. One or more part-time 
undergraduate students will assist in preparing materials for studies and running participants. 
Although each has taken primarily responsibility for some studies under Activity 2, Drs. Kiesler and 
Fussell plan to collaborate closely on all of them. 

Dr. Jeffrey Heer and Dr. Aniket Kittur will head the efforts to design and develop new visualization 
tools to improve collaborative analysis. Visualization tool development will be conducted at Stanford 
University under the supervision of Dr. Heer, who will bring to bear expertise on automating and 
designing the visualizations and generating large scale visualizations that people can understand. Dr. 
Kittur will head efforts developing and applying cognitive science theories and factors to 
visualization design, including what elements should be visualized, how the visualizations affect 
meaning and sensemaking, and how these factors can be measured. Again, though each has taken 
primary responsibility for tools under Activity 1, both plan to collaborate closely on each part. A 
graduate student with expertise in visualization and human-computer interaction at each of their 
institutions (Stanford, Carnegie Mellon) will assist in these efforts and spend a summer working at 
the other institution (Carnegie Mellon, Stanford) to facilitate collaboration. One or more part-time 
undergraduate students will assist in preparing visualizations for use in the experiments of Activity 2. 

Project management across investigators, institutions and disciplines 
Project management will be the responsibility of Dr. Kiesler. As a group, the team will develop 
research plans for the parts of the work for which they are responsible. Through the specific 
coordination mechanisms described in the next section, Dr. Kiesler and the co-PIs will ensure that 
research progresses as planned. 

Project management across disciplines is facilitated by the tightly interwoven research plan, in which 
behavioral studies directly inform the development of visualization tools, which will in turn be 
evaluated in subsequent behavioral studies. The PIs have extensive experience with interdisciplinary 
collaboration, including collaboration with investigators from the set of disciplines represented in this 
proposal. Kiesler and Fussell have jointly advised three graduate students, a relationship which they 
have continued after Fussell moved to Cornell. Kiesler and Fussell have also collaborated on three 
large NSF grants in the past, all of which have been successful and made significant contributions to 
the field. 



 

All PIs have a history of successful interdisciplinary projects, as evidenced by co-authorship of 
papers and ensuring relationships with faculty from other disciplines.  

Specific coordination mechanisms 

Semi-yearly site visits 
The PIs and their graduate students will convene twice a year for a day and a half, alternating west 
and east coast. These meetings will help team members continue to get to know one another, learn in 
depth about research activities at each site, and brainstorm as a group about directions for the project. 
In addition, the PIs expect to meet in person several other times a year for conferences (e.g., at the 
CHI, CSCW and HRI program committee meetings and conferences).  

Monthly PI meetings 
The PIs will meet monthly to discuss progress and discuss next steps in each of the main activities of 
the grant. Meetings will be held over audio conference, using screen sharing software to share 
presentations. 

Project meetings  
Bi-weekly meetings will be held that include students and faculty at the three sites. At each meeting, 
one student will present his or her current research project and discuss open research issues with the 
entire group. The meetings will ensure that students and faculty at each location are actively engaged 
in each other’s research. Meetings will generally be held over audio conferencing with additional 
tools to allow students to present slides and other materials via the web. On occasion, we will make 
use of video conferencing facilities already present at each site.  

Informal communication 
All PIs regularly use Instant Messaging and are accustomed to talking to one another on a near daily 
basis. These conversations will be used to resolve short term issues (e.g., purchasing decisions) and 
to keep one another posted on progress in between monthly PI meetings. 

Budget line items supporting coordination mechanisms 
The monthly PI meetings, weekly project meetings, and informal meetings require no additional 
budget items. The monthly PI meetings, weekly project meetings, and informal meetings require no 
additional budget items. The alternating semi-yearly site visits require two trips per year for four or 
five individuals (PIs and 2 students to Stanford and to Cornell or Carnegie Mellon). Carnegie Mellon 
and Cornell are in driving distance of one another, helping limit costs. 


