
Declarative Language Design for Interactive Visualization

Jeffrey Heer and Michael Bostock

Abstract—We investigate the design of declarative, domain-specific languages for constructing interactive visualizations. By sep-
arating specification from execution, declarative languages can simplify development, enable unobtrusive optimization, and sup-
port retargeting across platforms. We describe the design of the Protovis specification language and its implementation within an
object-oriented, statically-typed programming language (Java). We demonstrate how to support rich visualizations without requiring a
toolkit-specific data model and extend Protovis to enable declarative specification of animated transitions. To support cross-platform
deployment, we introduce rendering and event-handling infrastructures decoupled from the runtime platform, letting designers retarget
visualization specifications (e.g., from desktop to mobile phone) with reduced effort. We also explore optimizations such as runtime
compilation of visualization specifications, parallelized execution, and hardware-accelerated rendering. We present benchmark stud-
ies measuring the performance gains provided by these optimizations and compare performance to existing Java-based visualization
tools, demonstrating scalability improvements exceeding an order of magnitude.

Index Terms—Information visualization, user interfaces, toolkits, domain specific languages, declarative languages, optimization.

1 INTRODUCTION

Declarative languages often simplify programming tasks by requiring
that a developer specify what the results of a computation should be
rather than how the results should be computed. The separation of
specification from execution allows language users to focus on the
specifics of their application domain, while freeing language devel-
opers to optimize processing. For example, mark-up languages such
as HTML and CSS have enabled millions of novice programmers to
develop web pages, while database query languages such as SQL and
MDX insulate database users from the specifics of query planning and
execution. In contrast, most information visualization toolkits (e.g.,
[6, 7, 9, 10, 23]) adhere to an imperative programming model that
requires visualization designers to contend with software engineering
concerns, particularly when creating novel or customized graphics [1].

Moreover, contemporary visualization design tools must address a
number of new technical challenges. Not least among these is the
increasing heterogeneity of commodity hardware and interactive de-
vices. Visualization tools should ideally support interfaces ranging
from traditional desktop applications, to browser-based web clients, to
multi-touch mobile devices. Furthermore, visualization tools should
effectively capitalize on hardware trends such as multi-core comput-
ing and specialized graphics hardware. While point designs exist for
each of these areas, the field currently lacks a consistent approach to
visualization design and deployment across heterogeneous platforms.

To address these issues, we argue for a break with current compo-
nent model architectures and instead advocate the design of declara-
tive, domain-specific languages for interactive visualization. Our prior
work on Protovis [1] — an embedded domain-specific language (DSL)
for web-based visualization in JavaScript — has demonstrated that
a declarative language can simplify visualization specification while
supporting a high-degree of expressiveness and customization. In this
paper, we extend this line of work and introduce an implementation
of Protovis in the Java programming language. The system is the re-
sult of an exploration of implementation strategies for declarative vi-
sualization languages, and supports a diversity of data types, multiple
hardware devices, varied graphics and interaction infrastructures, and
platform-specific performance optimizations. More specifically, we
seek to address the following design goals:

• The authors are with the Computer Science Department of Stanford
University, Stanford, CA 94305.
E-mail: {jheer, mbostock}@cs.stanford.edu.

Manuscript received 31 March 2010; accepted 27 July 2010; posted online
11 October 2010; mailed on 5 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

Declarative language design and implementation. In practice,
designers must choose between many visualization systems, balancing
trade-offs among expressiveness (“Can I build it?”), efficiency (“How
long will it take?”) and accessibility (“Do I know how?”). In previous
work [1], we designed Protovis to balance these concerns and facili-
tate visualization design. In the current work, we demonstrate how the
Protovis design can be implemented within a statically-typed, object-
oriented programming language through a sequence of specification,
property binding, property evaluation, and rendering stages. We also
contribute extensions to the Protovis language design to enable declar-
ative specification of expressive animated transitions.

Cross-platform deployment. Everyday computing increasingly
involves a diversity of devices, creating a corresponding challenge for
visualization tools to support heterogeneous platforms. However, most
visualization tools today target a single platform. This is unfortunate,
as a designer’s investment in a particular tool may not transfer to other
computing environments. In response, we introduce a rendering and
event-handling infrastructure that abstracts above the host windowing
system. Our system supports a variety of renderers (e.g., OpenGL
via JOGL, Java2D, and Android for mobile devices) and interaction
paradigms (e.g., mouse-based or touch-based interaction). As a result,
developers can create renderers or event dispatchers for new platforms
as needed, letting designers retarget their visualization specifications
across platforms with reduced effort.

Format agnostic processing. Most visualization systems [6, 7, 9,
10, 23] require developers to corral their data into a toolkit-specific
data representation. As a result, programmers may have to map their
domain-specific representations to what the toolkit demands. Data ad-
hering to an unsupported format (e.g., semi-structured data) must be
suitably transformed, often consuming resources due to data replica-
tion. In practice we have found that modifying a visualization spec-
ification to suit a new data set is often easier than reconfiguring the
data to fit a specific toolkit. Protovis allows designers to mould the
visualization specification to the data using anonymous functions to
extract data properties. We demonstrate how this approach, more rep-
resentative of dynamically-typed functional languages, can be applied
within a statically-typed language such as Java, thereby allowing any
arbitrary, iterable collection of objects to drive a visualization.

Optimization. By decoupling specification from implementation,
developers can implement language optimizations without interfering
with the work of designers. We investigate optimization techniques
including runtime-compilation of visualization specifications, multi-
threaded parallel evaluation and rendering, and hardware-accelerated
graphics. We present benchmark studies measuring the performance
gains provided by these optimizations and compare Protovis perfor-
mance to prefuse [10], a Java-based visualization API, demonstrating
scalability improvements exceeding an order of magnitude.

2 MOTIVATION AND RELATED WORK

An array of options exists for creating interactive visualizations. Stan-
dard charting programs such as Excel and online tools such as Many-
Eyes [22] utilize a chart typology [25]: users select from a palette of
pre-defined visualizations. While often easy to use, such systems do
not permit novel designs or customization. At the other extreme, a
programmer may use a graphics API such as OpenGL, Processing or
Adobe Flash. With these low-level tools the task of creating a new vi-
sualization typically requires a significant software engineering effort
in an imperative programming style.

Falling somewhere in-between are visualization frameworks such
as the InfoVis Toolkit [6], Improvise [23], prefuse [10], and Flare [7].
The former [6, 23] provide a class hierarchy of visualization widgets
and new visualizations are introduced either by subclassing an existing
component or creating a new one. The latter [10, 7] build visualiza-
tions using composable operators for tasks such as data transforma-
tion, layout, and visual (color, shape, size) encodings. This subdivi-
sion enables construction of custom visualizations using lower-level
building blocks, similar to data-flow systems in scientific visualization
[15]. However, we have observed that in practice many novel visu-
alizations require programmers to author completely new operators.
Recent frameworks also introduce optimizations such as interruptible
multi-threaded execution [19] and GPU processing [16]. Unfortu-
nately, these approaches impose a burden on developers, who must
contend with increasingly complex APIs.

An alternative approach is to formulate a declarative, domain spe-
cific language (DSL) [17] for visualization design. Our hypothesis is
that by allowing designers to specify visualizations directly in terms
of data-representative graphical marks, we can simplify construction
while preserving an expressive design space. By decoupling specifica-
tion from execution, a declarative approach can unobtrusively support
performance optimization and retargeting across runtime platforms.

We take inspiration from existing declarative DSLs such as
HTML/CSS [14] and SQL; they are used by millions and insulate users
from platform and optimization issues. However, designing a stand-
alone language is a difficult task [17] and may complicate integration,
as visualizations are often used as components within larger applica-
tions. Thus, we believe that the most promising approach is the design
of embedded DSLs [12]. By implementing a DSL for visualization
within a host programming language, designers can use familiar syn-
tactic constructs, leverage the capabilities of the host language, and
integrate with other projects. Already, this approach has proven pop-
ular in the functional programming community (e.g., [5, 12]) and is
used to facilitate massively parallel programming [2, 17].

We are not the first to note the benefits of declarative languages
for visualization: researchers have introduced myriad languages for
visual analysis. Examples include Wilkinson’s Grammar of Graphics
[25], Wickham’s ggplot2 [24], Slingsby et al.’s HiVE [20] language for
hierarchical layouts, and the VizQL formalism of Tableau and Polaris
[21]. These languages provide a high level of abstraction and support
rapid analysis, but do not provide fine-grained control over graphics
and interaction. We target an intermediate level of abstraction that
permits a wide array of custom visual designs, embeds within a host
language, and yet avoids the tedium of low-level graphics tools.

Others have advanced arguments for this style of declarative visual-
ization language. Cottam et al. [3] describe a declarative language for
“point-implantation” graphics such as scatter plots and star maps, and
note that it accelerated iterative development. They later generalize
their approach in Stencil [4], a visualization model that shares some
commonalities with Protovis. For example, their Layer and Glyph ab-
stractions are similar in respects to Protovis Panels and Marks. How-
ever, they describe an abstract model only, and do not include im-
plementation or optimization details. Duke et al. [5] introduce DSLs
for scientific visualization embedded in the Haskell programming lan-
guage, and argue that information visualization might benefit from a
similar strategy. In the current work, we investigate the design and im-
plementation of declarative languages for interactive information visu-
alization, similarly realized as embedded DSLs that utilize functional
programming techniques.

3 LANGUAGE DESIGN

Protovis takes a graphical approach to data visualization, composing
custom views of data with simple graphical primitives like bars and
dots. These primitives are called marks, and each mark encodes data
visually through dynamic properties such as color and position. In
essence, a mark is simply a collection of bound properties for an asso-
ciated graphical form. Figure 1 shows these graphical primitives.

f g h

dcba

e

Fig. 1: Examples of primitive mark types. (a-h) Area; Bar; Dot;
Image; Line; Label and Bar; Rule and Bar; Wedge.

Marks are associated with data: a mark is generated once per asso-
ciated datum, mapping the datum to visual properties. Thus, a single
mark specification represents a set of visual elements that share the
same data and visual encoding. The type of mark defines the names
of properties and their meaning. A property may be static, ignoring
the associated datum and returning a constant; or, it may be dynamic,
derived from the associated datum or index.

Although marks are simple by themselves, one can combine them to
make rich, interactive visualizations. To facilitate this, Protovis sup-
ports panels and inheritance. A panel is a container for marks; the
contained marks are replicated for each datum on the panel. Protovis
uses inheritance to simplify the specification of related marks: a new
mark can be derived from an existing mark, inheriting its properties.
The new mark can then override properties to specify new behavior,
potentially in terms of the old behavior. In this way, the old mark
serves as the prototype for the new mark. Most marks share the same
basic properties for consistency and to facilitate inheritance.

Prototypal inheritance in Protovis also enables a “mix-in” function-
ality: a mark can directly extend another, effectively inserting an ad-
ditional prototype mark in the inheritance hierarchy. This provides
a convenient abstraction and extensibility mechanism. For example,
one may consolidate property definitions by defining a generic mark
as a set of shared properties. Other marks can then simply extend the
generic mark to inherit those properties outside of the standard inheri-
tance tree. Alternatively, a layout algorithm can interface with Protovis
using a mark instance with bound left and top properties. An existing
mark can extend the layout mark to inherit the position properties.

We provide additional details, including evaluations of the lan-
guage’s expressiveness and usability, elsewhere [1]. We now focus
on novel extensions to the language design and implementation.

3.1 Protovis-Java
Our first implementation of the Protovis language model [1] uses
JavaScript and SVG (scalable vector graphics) to enable web-based vi-
sualizations. As a dynamically-typed functional language, JavaScript
naturally lends itself to the task of defining mark properties as anony-
mous functions, and the system remains under active development.
However, while in-browser performance has improved dramatically in
recent years, it currently still falls short of the performance possible
within traditional compiled programs. Designers may also want to in-
clude visualizations as components within larger applications.

In response, we are also developing an implementation of Protovis
in the Java programming language. The system is a research prototype
for exploring the potential of Protovis’ declarative approach within a
statically-typed object-oriented language, including optimization tech-
niques that are not yet applicable within a browser. We chose Java

because it enables cross-platform deployment (including mobile de-
vices), supports myriad rendering options, and includes standardized
multi-threading support. However, the choice of Java does introduce
limitations; we discuss these at the end of the paper.

3.2 Visualization Specification
The Protovis-Java specification for a basic bar chart is shown in Fig-
ure 2. The specification takes a collection of Point2D objects and
encodes the y-component as a bar chart. An index value denoting
the current position in the input data list determines the horizontal po-
sition. The specification is quite similar to its JavaScript equivalent,
with properties specified using a method-chaining convention: each
property setter returns the mark instance. However, the specification
does contain two notable departures: the use of string literals to define
anonymous functions and the datatype property.

Java does not support anonymous functions directly; designers must
create a new class adhering to a known interface. Protovis provides a
Property interface to support this form of specification. However,
writing a new class definition for each property is tedious and the ex-
tra boilerplate code hampers legibility. Instead, designers can define
anonymous property functions using string literals: Java code defining
the property, bracketed by double curly braces. These dynamic proper-
ties are subsequently interpreted or compiled. Associated values, such
as the current data and index, are in scope by default and return
statements are omitted. Otherwise, these functions use the syntax and
semantics of regular Java code.

Unlike other visualization systems, Protovis places few constraints
on the input data—each mark must simply be provided with an
Iterable collection. Thus any arbitrary collection of objects can
drive a visualization. By defining suitable property functions, data el-
ements can be structured objects or even nested data structures. The
optional datatype property specifies the Java class type of the input
data. The property enables runtime type checking and removes the
need for manual typecasts within anonymous functions. If left un-
specified, data are treated as top-level Object instances.

3.3 Interaction
Figure 3 extends our bar chart example to highlight elements on mouse
hover. The specification creates a new bound variable (i) that stores
the index of the active element; the fill color is selected in response
to this value. Event handlers are defined similarly to visual proper-
ties, also permitting anonymous functions specified as string literals.
An additional event variable, accessible within the callback’s scope,
provides access to details such as the key pressed. Event objects are
specific to Protovis, decoupled from the windowing system.

3.4 Animation
Our Java system also contributes a novel design feature: declarative
specification of animated transitions. Protovis provides keyframe an-
imation by first computing starting and ending values and then in-
terpolating properties. By default, existing property settings deter-
mine starting values and an update computes new target values. An-
imated transitions are requested by providing a duration parameter to
the update method. The update method returns a Transition
instance; invoking the play method commences the animation. Mul-
tiple transitions can be concatenated to create staged animations.

We introduce new properties to support animation. The key prop-
erty determines the correspondence between data elements across up-
dates: identical key values imply object constancy. By default, the da-
tum itself is used as the key. The ease property accepts an easing func-
tion [13] to control the interpolation rate per-element, e.g., to provide
slow-in slow-out pacing. The delay property adjusts the onset time for
an item’s animation, enabling pauses or staggered animation [11].

The aforementioned properties are sufficient for scenes in which the
underlying data does not change. Additional mechanisms are needed
to specify animation behavior when data elements are added or re-
moved; for example, to fade items in and out. The enter and exit
methods each take a collection of properties to define the state of en-
tering and exiting elements. Syntactically, these methods mirror the

List<Point2D> data; // list of data points
Scene vis = new Scene().width(w).height(h).scene();

Mark bar = vis.add("Bar")
....data(data).datatype(Point2D.class)
....left("{{index*5}}") // x-coord by data sort order
....height("{{data.getY()}}") // y-coord by Point2D y value
....bottom(0)
....width(3);

vis.update();

Fig. 2: A simple bar chart visualization backed by Point2D objects.

bar.def("i", -1)
....fill("{{Fill.solid(i==index"
.........+ "?0xff0000:0x1f77b4)}}")
....mouseover("{{i(index).update()}}")
....mouseout("{{i(-1).update()}}");

Fig. 3: Adding interaction. Bars highlight red on mouse hover.

// new elements grow out of the baseline
Mark enter = new Mark()
....left("{{item.left+5}}") // begin right-shifted
....bottom(0).height(0).width(0);

// exiting elements shrink to the baseline
Mark exit = new Mark()
....left("{{item.left-3}}") // finish left-shifted
....bottom("{{item.bottom}}").height(0).width(0);

// add animation properties to bars
bar.key("{{data.hashCode()}}") // key by hash code
....delay("{{0.005*index}}") // stagger onset
....ease(Easing.Poly(2.2)) // slow-in, slow-out pacing
....enter(enter) // on enter
....exit(exit); // on exit

vis.update(1).play();

Fig. 4: Adding animated behaviors to the bar chart.

// new elements drop in "from the sky"
Mark enter = new Mark()
....left("{{item.left+5}}")
....bottom(h);

// exiting elements "blow up" as they fade out
Mark exit = new Mark()
....alpha(0) // fade out
....left("{{item.left-3-5}}")
....bottom("{{item.bottom-5}}")
....width("{{item.width+10}}")
....height("{{item.height+10}}");

Fig. 5: Alternative animation behaviors.

extend method: they accept a Mark instance containing a set of prop-
erties to invoke upon entrance or exit from the scene. The default enter
and exit behavior sets the alpha property to zero (fully transparent),
causing new items to fade in and exiting items to fade out.

This mechanism enables an expressive range of animation designs.
In Figure 4, new bars spring up from a height of zero, while exiting
bars shrink down to the baseline. In Figure 5, new bars fall from the
“sky”, while exiting bars “blow up” in size while fading out, similar
to a video game. Though perhaps not representative of best visual-
ization practices, these examples help illustrate the variety of possible
animated behaviors. As shown in Figure 8, the enter and exit proper-
ties also support effects such as fading axis gridlines in and out during
a scale change [11]: one need only keep a reference to the prior scale
settings in order to compute the entering position of new gridlines.

// [[3,4,5,3],[3,5,1,2]]

List<List<Integer>> data;

Scene vis = new Scene();

vis.add("Panel")

....data(data)

....height(50)

...add("Line")

....datatype(int.class)

....left("{{index*50}}")

....bottom("{{data*10}}")

....stroke(Stroke.solid(1,

...........0x3a68a4))

...add("Dot");

vis.update();

Panel
data [[3,4,5,3], [3,5,1,2]]
height 50

Line
data ?
datatype Integer
left index * 50
bottom data * 10
stroke 1px, #3a68a4

Dot
data ?
datatype ?
left ?
bottom ?
stroke ?

Fig. 6: Left: Specification of a line chart with multiple series. Right:
Mark hierarchy with arrows indicating the results of property binding.
Property values for the Dot mark are inherited from the Line mark.

4 LANGUAGE IMPLEMENTATION

Protovis instantiates visualization specifications using a multi-stage
pipeline. First, Protovis processes the input data and evaluates proper-
ties to create an abstract scenegraph describing the visual scene. Ren-
dering and interaction components then operate on this scenegraph,
handling all integration with the underlying windowing platform. This
process subdivides into six distinct phases:
• Bind. Traverse the mark hierarchy to resolve property definitions

for each mark specification.
• Build. Build the scenegraph. Evaluate the data and visible prop-

erties and create a scenegraph node per datum.
• Evaluate. Evaluate all bound properties and store the results on

the corresponding scenegraph nodes.
• Interpolate. During animation, advance interpolators according

to the current timestep, updating affected scenegraph nodes.
• Render. Draw the scenegraph to a display.
• Event. Dispatch interaction events to registered callbacks.
With the sole exception of event handling, each of these phases is

overseen by a central scheduler thread, which delegates work to ad-
ditional threads as needed (see §5). When a visualization update is
invoked, a new task is queued in the scheduler thread, which then com-
mences the bind, build, and evaluate phases. The interpolate phase is
triggered by a recurring scheduler task that requests animation updates
in accordance with the desired frame rate. Render phases are automat-
ically triggered upon completion of an update (bind-build-evaluate) or
interpolation step. We now describe each phase in greater detail.

4.1 Bind
The bind phase traverses the mark specification hierarchy to resolve all
visual property definitions. Each property is stored as an instance of
a Property interface. These property instances come in three basic
varieties: constants store a constant property value, compiled proper-
ties provide pre-defined compiled functions, and dynamic properties
contain a string that must either be interpreted or compiled prior to
property evaluation. (There is also a fourth class of properties—event
handlers—which we will discuss later.)

For each mark, Protovis traverses the mark hierarchy to collect
bound properties (see Figure 6). For a given property name, the first
property definition encountered is used as the bound property. Proto-
vis begins with the properties defined directly on the mark itself, pro-
ceeds through each mix-in registered via the extend method (visiting
the most recently added first), then walks up the prototypal inheritance
chain, and finishes with the defaults for the given mark type. The result
of this traversal is an associative array consisting of all bound proper-
ties for the given mark. If it is the first instantiation of the mark, or
if the collected properties differ from a previous instantiation, Proto-
vis also constructs a new Evaluator: an object that performs the
subsequent build and evaluate phases for the given mark.

Root

Panel [3,4,5,3] Panel [3,5,1,2]

3 4 5 3 3 4 5 3 3 5 1 2 3 5 1 2

Line Dot Line Dot

Fig. 7: Scenegraph resulting from the specification in Figure 6.

If Protovis is running on a JVM that provides compiler access as
part of the standard API (e.g., Java SE 1.6), it generates source code
for a new Evaluator and compiles it on-the-fly, resulting in a new
compiled class instance. When generating the source code, compiled
properties are included as member variables and simply invoked as
necessary. Constant values are similarly included as member variables
and assigned. Dynamic values are inlined within the source file and
compiled at runtime. Runtime compilation imposes only a small over-
head; in our tests most compilation tasks complete in 15 ms or less.
We cache source code and compiled classes to prevent unnecessary
compilation. As discussed in Section 5.1, we have found that dynamic
compilation provides up to a 2× performance improvement.

For platforms that do not provide compiler access at runtime (e.g.,
Android), we instead interpret dynamic properties. Protovis uses a
standard Expression design pattern [8, 9]: the text of each dynamic
property is parsed into a tree of operators that compute the property
values, and a context (or “environment”) object is used to access local
variables, such as the current index and other property values.

Alternatively, we could introduce a pre-processing stage prior to
compilation, rewriting dynamic properties into full class definitions.
However, this would limit updates to mark specifications at runtime,
providing no way to evaluate new properties specified as string literals.

4.2 Build

The build phase constructs a scenegraph from the data. Each data
value has a corresponding node in the scenegraph that stores all com-
puted visual properties (e.g., left, top, fill, etc). The mark hierarchy is
traversed in depth-first order and each mark’s Evaluator evaluates
the data property to retrieve the data to visualize.

Branching within the scenegraph is achieved using Panel marks. A
panel mark with more than one data element results in multiple panel
nodes in the scenegraph, useful for creating small multiples or layered
visualizations. For panel marks, the visible property is evaluated to
determine if child marks should be processed. If a panel node is not
visible, neither are its children and so their evaluation is culled. If true,
child marks’ evaluators are invoked recursively. The end result of this
process is a complete scenegraph structure, as in Figure 7. Note that
siblings from the same mark instance are grouped together in the tree.

When a visualization update is performed multiple times, the build
phase is responsible for updating the scenegraph structure. When the
number of data elements has changed, the evaluator adds or removes
nodes from the scene. If an animated transition has been requested,
special care must be taken to ensure proper node correspondence. Pro-
tovis uses values provided by the key property to match data elements
to existing scenegraph nodes, and in the process note when new data
enters the scene and old data exits the scene.

To track this state, Protovis maintains a collection of per node sta-
tus flags: a node is marked as born when it is newly created, as a
dying node when flagged for removal (i.e., its backing data element is
no longer returned by the data function), and as dead when it should
be removed from the scene. For example, if a datum is removed, its
corresponding node will first be marked as dying by the build phase.
Once the animated transition (e.g., fade out) has completed, the ani-
mation interpolator will mark the node as dead. The build phase will
then remove the node upon the next update. These flags also affect
subsequent evaluation of enter and exit properties.

When the build phase completes for the scene, an update event is
fired. This event enables extensions to operate with the guarantee that
the scenegraph structure is in place. For example, a force-directed
graph layout might advance a physical simulation; new position val-
ues can then be queried in the subsequent evaluation phase. However,
this approach does introduce limitations: for example, the build and
evaluate phases can not overlap, preventing pipelining.

4.3 Evaluate
The evaluate phase is the last stage of visual encoding. Protovis evalu-
ates the mark properties and stores the results on the scenegraph nodes.
Protovis traverses the scenegraph from the root down and for each sib-
ling group, the corresponding mark Evaluator assigns visual prop-
erty values to the nodes. The evaluator also sets a dirty flag on nodes
whose values change as a result.

When an animation is requested, the evaluator receives an addi-
tional Transition instance as an argument (c.f., [11]). This object
collects per-mark starting and ending values for property interpola-
tion. If the the born flag is set, the enter properties are evaluated to
determine the node’s starting state. If the dying flag is set, the exit
properties are evaluated to determine the node’s ending state.

4.4 Interpolate
The interpolate phase advances the set of interpolators within a Tran-
sition to animate the scenegraph state. The interpolators are initialized
during the preceding evaluate phase; interpolation is only performed
for values that change between states, avoiding unneeded computation.
Then, for each frame of the animation, the interpolators are stepped to
calculate a new scenegraph state. Users can specify stylized anima-
tions using the ease mark property, which specifies a pacing function
(e.g., slow-in slow out [13]), and the delay property, which delays an-
imation onset to create pauses or stagger node movement [11].

4.5 Render
The render phase draws the scenegraph to a display. Protovis renderers
are decoupled from the mark specification and evaluation machinery,
enabling the use of platform-specific renderers. We have built render-
ers for AWT/Java2D, OpenGL via JOGL, and Android (with OpenGL
ES to follow); Figure 8 shows an example of Protovis running on an
Android phone. For each renderer we provide a corresponding class
implementing a Display interface. Displays encapsulate a renderer and
one or more visualizations into a user interface component that can
then be integrated into an application. Displays also provide methods
for affine transformation (e.g., pan, zoom, rotate) of the rendered view.

Renderers perform a depth-first traversal of the scenegraph and ren-
der each node according to its mark type and visual properties. By de-
fault, the rendering order is determined by the order of mark groups in
the scenegraph. Users can modify this behavior using the depth prop-
erty, which controls the render order of mark groups within a panel.
Renderers are also responsible for loading and storing images used
when rendering Image marks. Our OpenGL renderer stores each im-
age as a texture in video memory. When rendering Label marks in
OpenGL, we first render the text using a software renderer (Java2D)
and then load the resulting bitmap as a texture.

4.6 Event
The event phase dispatches interaction events (e.g., keyboard, mouse,
or touch-screen events) to callbacks registered as mark properties (see
Fig. 3). Similar to other properties, event handlers can be specified
as standard Java classes, or as text strings that are then interpreted or
compiled. Event processing follows standard practice: an event loop
pulls events from a queue, resolves the target node(s), and then dis-
patches the event to the appropriate callbacks. Protovis also decou-
ples event handling from the underlying platform. Prior to dispatch,
platform level events (e.g., mouse and key events from a Display) are
intercepted and translated into Protovis’ own event model, which sup-
ports key, mouse, and multi-touch events. This level of abstraction
allows a single click event property to provide the same behavior on a
desktop PC and an Android mobile phone.

Fig. 8: Protovis on an Android mobile phone. The image sequence
shows a touch-initiated animated scale transition in a scatter plot.

5 LANGUAGE OPTIMIZATION

The internal implementation details of the phases presented in the pre-
vious section are hidden from Protovis users, and so within each stage
we are free to investigate a variety of implementation and optimization
strategies without impacting designers’ visualization specifications. In
this section, we describe optimization techniques and parallelization
strategies and present the results of benchmark studies measuring the
performance impacts of each. Readers uninterested in low-level opti-
mization details may safely skip to the section summary (§5.5).

All benchmarks were conducted on a MacPro system running Mac
OS X 10.6.2. The test machine had a quad-core 2.66 GHz Intel Xeon
Processor with per-core 256K L2 caches, a shared 8MB L3 cache, and
a main memory of 8GB using 1066 MHz DDR3 RAM. The processor
interconnect speed between cores was 4.8 GT/s. We ran each bench-
mark on a standard distribution Java Virtual Machine version 1.6.0
given 1GB of heap space (-Xmx1024M parameter). For each timing
measurement, we report average values over 100 iterations; variances
were a small fraction of the means and are omitted from our charts.

For our parallelization techniques we employ a task queue pat-
tern [18]: processing is divided into a set of tasks, which are then
queued. A collection of worker threads request tasks from the queue
and execute them in parallel. Our implementation exposes this func-
tionality as a general thread pool that also can be utilized by language
extensions such as layout algorithms. As our benchmarks were run on
a quad-core machine, at most four threads can be processed simulta-
neously. However, we vary the number of worker threads from 1 to 6
to assess the effect of oversubscription.

5.1 Encoding: Bind, Build, Evaluate
The bind, build, and evaluate stages populate a scenegraph and eval-
uate the visual properties at each node. For these encoding stages
we explored three forms of optimization: parallel processing, runtime
compilation of Evaluators, and pruning redundant updates.

5.1.1 Parallelization
Each of the bind, build, and evaluate stages are amenable to paral-
lelization. The bind phase is “embarrasingly parallel”: property res-
olution for each mark can be conducted in parallel without any de-
pendencies or interactions. However, as the total number of nodes in
the mark specification tree is typically small, this phase executes very
quickly and so parallelization provides little benefit. As such, we cur-
rently perform the bind phase in serial.

We have instead explored parallelization strategies for the build and
evaluate stages. Unfortunately, processing within both stages has a
number of dependencies, precluding a naı̈ve paralleization approach.
For instance, in the build phase a panel’s data property must be eval-
uated before any child marks can be processed. Similarly, property
evaluation for a mark may depend on the value of prior nodes in the
scenegraph, such as the parent panel’s width and height.

As a result, we must track these dependencies and only generate
parallel tasks once the dependencies have been met. For both the build
and evaluate phases, we break processing of each mark (or, for eval-
uation, each scenegraph sibling group) into a single task. Upon com-

1x

2x

3x

1 2 3 4 5 6

Number of Worker Threads

Bu
ild

 S
pe

ed

code-gen
compiled
interpreted

1 2 3 4 5 6
0 ms

50 ms

100 ms

150 ms

200 ms

250 ms

Number of Worker Threads

code-gen

compiled

interpreted

Fig. 9: Encoding (bind-build-evaluate) benchmarks for 1,000,000 elements by evaluation strategy and thread count. (a) Average performance
improvement factor using single-threaded evaluation as a baseline (higher is better). (b) Average encoding time in ms (lower is better).

1x

2x

3x

1 2 3 4 5 6

Number of Worker Threads

R
en

de
r S

pe
ed

bars

paths
dots

1 2 3 4 5 6
0 ms

20 ms

40 ms

60 ms

80 ms

100 ms

Number of Worker Threads

bars
paths

dots

Fig. 10: Rendering benchmarks for 50,000 elements by visualization type. (a) Average performance improvement factor using a single rendering
thread (no worker threads) as a baseline (higher is better). (b) Average per-frame render time in ms (lower is better).

1x

2x

3x

1 2 3 4 5 6

Number of Worker Threads

In
te

rp
. S

pe
ed

5k

50k
500k

1 2 3 4 5 6
0.1 ms

1.0 ms

10.0 ms

100.0 ms

Number of Worker Threads

5k

50k

500k

Fig. 11: Animated interpolation benchmarks by workload (# of elements). (a) Average performance improvement factor using single-threaded
interpolation as a baseline (higher is better). (b) Average per-frame interpolation step time in ms, plotted on a log10 scale (lower is better).

pletion of a task, a new set of tasks is submitted to the task queue
for the child marks. We exploit loop-parallelism by breaking up the
evaluation of a sibling group into multiple parallel tasks. We evenly
subdivide a group into as many tasks as there are worker threads.

5.1.2 Runtime Code-Generation and Compilation
As described in section 3.2, Protovis allows users to define property
functions using string literals that are processed at runtime. These
functions can either be interpreted—parsed into a tree of operators as
in the Expression [8] design pattern—or instead compiled into a new
class at runtime by leveraging compiler access provided by the stan-
dard Java API. The latter option introduces optimization opportunities,
as we can avoid the overhead of unnecessary method calls and stream-
line code generation by placing constants and bound variables inline.
In our benchmarks we compared three variants of property evaluation:

• Interpreted properties that are parsed into an operator tree and
evaluated at runtime.

• Code-generated properties that are dynamically compiled at run-
time to create a new Evaluator instance.

• Compiled properties written as regular Java classes and subject
to the standard compilation process.

5.1.3 Encoding Benchmarks
Our benchmark consisted of computing visual encodings for a scatter
plot of 1 million elements. Spatial position was randomly assigned

within the width and height of the parent panel; each point was en-
coded as a stroked, blue circle with a radius varied according to the
index value. Evaluation of non-constant properties was varied using
the property evaluation strategies described above. Although a single
plot with a million elements is rare, it provides a useful measure of
scalability; e.g., consider the more plausible case of a 10×10 scatter
plot matrix where each plot contains 10,000 points.

The performance data is shown in Figure 9. Figure 9(a) shows
the relative change in performance using the single-threaded case as
a baseline. For both the compiled and interpreted conditions, we see
that execution time improves as the number of threads is increased,
with best performance when the thread count is either 3 or 4. For
higher threads, performance worsened. In all cases, the performance
improvement is less than a factor of two. The results for runtime com-
pilation show a different picture: single-threaded execution outper-
forms parallel processing. Profiling reveals that in the single-threaded
condition less time is spent in the property evaluation stage. Our hy-
pothesis is that by streamlining code-generation we are able to gener-
ate methods that the JVM just-in-time compiler can more effectively
optimize. Parallelization worsens performance in this case, likely due
to increased overhead and lack of JVM runtime optimization.

Figure 9(b) shows the average time in milliseconds of the bind-
build-phase. Here we see that as the number of threads increases,
the performance difference between different evaluation strategies dis-
appears. We also see clear benefits for single-threaded evaluation of
runtime-compiled properties: updates are up to 2.2 times faster than

the other approaches when executed serially, and 1.2 times faster than
the peak parallel performance shared by all three approaches. These
results argue for single-threaded execution of optimized evaluators,
but also show that nearly equivalent performance can be achieved by
parallel processing of less-efficient evaluation strategies—a useful re-
sult when runtime compilation is not an option.

We also compared performance in an equivalent visual encoding
task using the prefuse visualization toolkit [10]. We measured the
time required to compute encodings for an identical scatter plot us-
ing a standard prefuse ActionList. The average visual encoding time
for prefuse was 784 ms—over 7 times slower than Protovis’ peak
performance and over 3 times slower than Protovis’ poorest perfor-
mance. Profiling reveals that the gap is primarily due to row and col-
umn lookup overhead in prefuse’s toolkit specific data structures, rein-
forcing one benefit of Protovis’ data agnostic approach. However, we
note that in practice prefuse’s software renderer (Java2D) is the more
significant performance bottleneck.

5.1.4 Pruning Redundant Updates

Next, we assessed the benefits of pruning unnecessary computation
during Protovis’ evaluation phase; many property functions will re-
turn the same value on reinvocation if the data is unchanged. To assess
the optimization potential, we used the same million-element scat-
terplot example and compared three conditions: (a) re-evaluating all
properties, (b) avoiding re-assignment of constant values based on a
property dirty flag, and (c) looping through all scenegraph nodes but
assigning nothing. The final condition was included in order to esti-
mate a lower bound on processing time. Figure 12 shows the results:
simply culling redundant constant assignments reduces running time
by roughly 25%, while skipping all property functions establishes a
rough lower bound of a 3× performance gain. These results suggest
that more aggressive pruning—by explicitly modeling the dependen-
cies among property functions to perform lazy evaluation—could yield
further benefits. However, rendering time and expensive layout com-
putations (e.g., force-directed layout) typically dominate such gains.

0 10 20 30 40 50 60 70 80 90 100 110

Encoding Time (ms)

Skip All (No-Op)
Skip Constants
Full Evaluation

Fig. 12: Encoding time for 1,000,000 elements, by pruning strategy.
Evaluators created via code-generation are used in each example.

5.2 Render

A primary performance bottleneck in many information visualization
systems is rendering, particularly among the tools that use software
renderers [7, 10, 23]. As described in Section 4.5, Protovis’ declar-
ative design enables seamless switching between different rendering
targets, including hardware-accelerated graphics via OpenGL. Unsur-
prisingly, this switch alone can improve performance by an order of
magnitude. We apply common OpenGL optimizations, such as using
vertex buffers, to maximize rendering performance. Protovis’ group-
ing of sibling marks in the scenegraph facilitates this process by batch-
ing similar geometries together. For opaque marks, we use the depth
buffer to cull unnecessary rendering. Finally, our renderers support a
“cache-as-bitmap” option for panels (exposed to users via the cache
property): non-volatile subtrees in the scenegraph are rendered once
and cached as a texture in video memory.

We also sought to parallelize rendering with a single graphics card.
As OpenGL is single-threaded, we implemented a master/worker pat-
tern [18]: worker threads compute the geometry (e.g., vertex and color
buffers) and a single master thread sends it to the graphics card. The
master thread generates tasks via pre-order traversal of the scenegraph
and ensures that geometry and color data are sent to the graphics card
in that order. Parallelism should improve performance in situations
where non-trivial processing is needed to prepare the geometry.

We benchmarked Protovis rendering performance using both a stan-
dard serial renderer and a master/worker parallel renderer. We tested
rendering of three different visualizations of 50,000 elements, each
requiring a greater processing workload to prepare the geometry:

• bars: A stacked bar chart consisting of simple rectangles.
• paths: A small-multiples line chart with varying line widths,

connected via miter joins.
• dots: A scatter plot of stroked circles, requiring discretization of

the circumference into line segments.

The results in Figure 10 show mixed benefits for parallelized render-
ing. The bars condition, which consists of rectangles that require
virtually no processing prior to rendering, suffers from the overhead
induced by parallel task management. The other two conditions, how-
ever, gain a 2× performance increase by delegating miter join calcula-
tion and shape discretization to worker threads. These benefits mani-
fest with 2-3 threads; more threads do not provide additional benefits.
We also compared these results with Protovis’ Java2D software ren-
derer: hardware acceleration improved rendering by 4.4×, 10.5×, and
14.6× for bars, paths, and dots respectively.

5.3 Interpolate
Parallelizing interpolation during animation is easy: once starting and
ending values have been computed, each scenegraph node can be con-
sidered in isolation. As a result, we can run multiple simultaneous
transitions in parallel, and can exploit loop-parallelism by breaking
a transition consisting of multiple scenegraph nodes into parallel sub-
tasks. Figure 11 shows the result of parallelizing interpolation for three
different workloads consisting of 5,000; 50,000; and 500,000 interpo-
lated elements in a scatter plot display. In each case, only spatial po-
sition properties (left, top, right, bottom) were interpolated. In each
case, increased parallelism improves the animation processing time,
with negligible benefits for oversubscription. When drawing animated
elements as single pixel points, parallelism improves the frame rate in
the 500k element condition from 9.1 fps to 21.3 fps.

5.4 Application Performance
In addition to benchmarks of specific pipeline stages, we tested over-
all application performance in a graph exploration tool. The applica-
tion involves visual encoding, layout calculation, and rendering and so
stresses multiple parts of the infrastructure. We measured frame rates
during interactive graph layout, computing one iteration of a force-
directed layout per frame. We used an artificial graph consisting of N
nodes in a linear chain, with N varied from 100 to 100k by factors of
10. We connected each node to the next 10 nodes in sequence; thus
the graph with N=100k nodes had nearly 1 million edges. We com-
pared Protovis using serial code-generated evaluators and parallelized
rendering (4 worker threads) to a nearly identical application created
in prefuse. As shown in Table 1, Protovis consistently has frame rates
an order of magnitude higher, up to 20 times faster for large graphs.

Table 1: Average frame rate of graph layout in frames/sec.

Nodes Edges Protovis prefuse Difference
100 955 66.00 44.45 1.5×

1,000 9,955 66.00 5.94 11.2×
10,000 99,955 11.76 0.56 20.1×

100,000 999,955 0.93 0.05 18.6×

5.5 Summary
In the bind-build-evaluate stages, we found that dynamic compilation
of serially-executed Evaluators leads to the best performance (up
to a 2× speed-up). The advantage for single-threaded evaluation most
likely stems from JVM runtime optimizations enabled by our code-
generation scheme. For other property evaluation approaches, we find
that parallel execution provides a mild benefit (up to 1.6×). Model-
ing the dependencies among properties may improve this further. In
the rendering stage, we found that parallelized rendering using worker
threads to prepare geometry and color data provides over 2× im-
provement for processing-heavy marks (e.g., miter joins and circular

discretization), and that performance plateaus at 2-3 worker threads.
However, parallelization overhead degrades performance when ren-
dering simple rectangles. We also found that animation interpolation
benefits from parallelization and scales well with the number of avail-
able cores. Finally, combining these optimizations we find that Pro-
tovis provides up to 20× higher frame rates than prefuse in a graph
exploration application. These performance improvements help visual
analysis scale to larger data sets.

However, more important than any specific optimization, the use of
a declarative specification language has enabled us to explore a space
of optimizations without impacting how users create visualizations.
We believe that a declarative approach provides an ideal framework in
which to explore additional sophisticated optimizations. For example,
Piringer et al.’s [19] threading strategies are applicable within Protovis,
as our task-based parallelization can support interrupt-driven early ter-
mination with minimal modification. More sophisticated uses of GPU
hardware might also be explored, as in McDonnel and Elmqvist’s [16]
image-space operations model, while insulating visualization design-
ers from the vagaries of shading languages. A shared language model
for interactive visualization can serve as a platform for continued re-
search and facilitate the dissemination of improved techniques.

6 DISCUSSION

We presented the design, implementation, and performance evalua-
tion of Protovis, a declarative, embedded domain-specific language
for specifying interactive visualizations. Building on prior work [1],
we extended the design of the Protovis language to include declarative
specification of animated transitions. We explained how the language
can be implemented in a statically-typed object-oriented language
and enable rich visualizations without requiring a toolkit-specific data
model. We then demonstrated how our declarative approach supports
retargeting across multiple rendering and interaction platforms.

Next, we introduced optimizations such as runtime compilation of
visualization specifications and parallel processing of visual encoding,
interpolation, and rendering stages. Within each category, benchmark
studies show that our optimizations can improve Protovis performance
by factors of 2 to 3. In the case of animated interpolation, these im-
provements continue to scale with the number of processor cores. We
also compared Protovis performance with prefuse, a popular Java vi-
sualization tool; a network visualization built with Protovis has up to
20 times higher frame rates than an equivalent prefuse-based visual-
ization. While these improvements increase the scalability of visual
analysis, they also serve to demonstrate the benefits of a declarative
approach: because the control flow is not the user’s responsibility, the
system can make optimization decisions on the user’s behalf.

A potential downside of declarative languages is that because the
control flow is not visible, the system might break in unexpected ways
that are difficult to debug. These crashes expose the underlying control
flow, as implemented by the system (rather than the user), potentially
adding confusion. For this reason, declarative systems should have
well-defined behaviors for invalid input and can benefit from improved
debugging support. New visual interfaces might support direct manip-
ulation of declarative visualization specifications, and enable brushing
and linking between specification code and running visualizations. A
specification editor might serve as a live interpreter, enabling designers
to sculpt their visualizations iteratively while working with real data.

While our use of the Java programming language has supported our
prototyping process, it is less well-suited to production use. Though
expedient, our use of string constants to specify anonymous functions
is clearly sub-optimal: it violates language norms and stymies IDE
support and debugging. In the future, we expect the insights gained
in the current research will be best applied in other programming lan-
guages. For example, as JavaScript performance continues to improve,
and additions such as worker threads and WebGL rendering become
commonplace, some of the approaches explored here can be trans-
ferred to the JavaScript implementation of Protovis.

Strongly-typed object-oriented languages that include functional
programming capabilities also provide attractive targets. For example,
C# now supports anonymous (lambda) functions and enables declar-

ative data manipulation via the LINQ language extension. The Scala
language combines functional and object-oriented paradigms, can tar-
get both the JVM and the .NET CLR, and is being extended to sup-
port staged compilation via “lifting” of program components [2]. This
enables developers to insert customized routines for manipulating a
program’s abstract syntax tree and performing code generation. As
a result, dependency detection and optimized code generation may be
possible while conforming to the norms of the programming language.
These developments bode well for the evolution of accessible, expres-
sive, and scalable languages for visualization.

Protovis source code, including all performance benchmarks, is avail-
able online at http://protovis.org/protovis-java.

REFERENCES

[1] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Trans. Vis. and Comp. Graphics, 15(6):1121–1128, 2009.

[2] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth, P. Hanrahan,
M. Odersky, and K. Olukotun. Language virtualization for heterogeneous
parallel computing. In Onward!, 2010.

[3] J. A. Cottam and A. Lumsdaine. ThisStar: Declarative visualization pro-
totype. In IEEE Information Visualization Posters, 2007.

[4] J. A. Cottam and A. Lumsdaine. Stencil: A conceptual model for rep-
resentation and interaction. In International Information Visualisation
Conference, pages 51–56, 2008.

[5] D. J. Duke, R. Borgo, M. Wallace, and C. Runciman. Huge data but small
programs: Visualization design via multiple embedded DSLs. In Practi-
cal Aspects of Declarative Languages, pages 31–45. Springer, 2009.

[6] J.-D. Fekete. The InfoVis Toolkit. In IEEE InfoVis, pages 167–174, 2004.
[7] Flare. http://flare.prefuse.org, March 2009.
[8] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Upper
Saddle River, NJ, 1994.

[9] J. Heer and M. Agrawala. Software design patterns for information visu-
alization. IEEE Trans. Vis. and Comp. Graphics, 12(5):853–860, 2006.

[10] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit for interactive
information visualization. In Proc. ACM CHI, pages 421–430, 2005.

[11] J. Heer and G. G. Robertson. Animated transitions in statistical data
graphics. IEEE Trans. Vis. and Comp. Graphics, 13(6):1240–1247, 2007.

[12] P. Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4), 1996.

[13] S. Hudson and J. T. Stasko. Animation support in a user interface toolkit:
Flexible, robust, and reusable abstractions. In ACM UIST, pages 57–67,
1993.

[14] H. W. Lie. Cascading Style Sheets. PhD thesis, University of Oslo, 2005.
[15] B. Lucas, G. D. Abram, N. S. Collins, D. A. Epstein, D. L. Gresh, and

K. P. McAuliffe. An architecture for a scientific visualization system. In
IEEE Visualization, pages 107–114. IEEE Computer Society Press, 1992.

[16] B. McDonnel and N. Elmqvist. Towards utilizing GPUs in information
visualization: A model and implementation of image-space operations.
IEEE Trans. Vis. and Comp. Graphics, 15(6):1105–1112, 2009.

[17] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

[18] A Pattern Language for Parallel Programming. http://parlab.
eecs.berkeley.edu/wiki/patterns, March 2009.

[19] H. Piringer, C. Tominski, P. Muigg, and W. Berger. A multi-threading
architecture to support interactive visual exploration. IEEE Trans. Vis.
and Comp. Graphics, 15(6):1113–1120, 2009.

[20] A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE Trans. Vis. and Comp. Graphics,
15(6):977–984, 2009.

[21] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Trans.
Vis. and Comp. Graphics, 8:52–65, 2002.

[22] F. B. Viégas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon.
Many Eyes: a site for visualization at internet scale. IEEE Trans. Vis. and
Comp. Graphics, 13(6):1121–1128, 2007.

[23] C. E. Weaver. Building highly-coordinated visualizations in Improvise.
In Proc. IEEE InfoVis, pages 159–166, 2004.

[24] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer,
2009.

[25] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, Secaucus, NJ, 2005.

http://protovis.org/protovis-java
http://flare.prefuse.org
http://parlab.eecs.berkeley.edu/wiki/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns

	Introduction
	Motivation and Related Work
	Language Design
	Protovis-Java
	Visualization Specification
	Interaction
	Animation

	Language Implementation
	Bind
	Build
	Evaluate
	Interpolate
	Render
	Event

	Language Optimization
	Encoding: Bind, Build, Evaluate
	Parallelization
	Runtime Code-Generation and Compilation
	Encoding Benchmarks
	Pruning Redundant Updates

	Render
	Interpolate
	Application Performance
	Summary

	Discussion

