ReVision: Automated Classification, Analysis
and Redesign of Chart Images

Anonymous
Institution
Location
email @host.domain

ABSTRACT

Poorly designed charts are prevalent in reports, magazines,
books and on the Web. Yet, most of these charts are only
available as bitmap images. Without access to the underly-
ing data it is prohibitively difficult for viewers to create more
effective visual representations. In response we present Re-
Vision, a system that automatically redesigns visualizations
to improve graphical perception. Given a bitmap image of a
chart as input, our system applies computer vision and ma-
chine learning techniques to identify the chart type (e.g. pie
chart, bar chart, scatterplot, etc.). It then extracts the graph-
ical marks and the data encoded by each mark. Using the
resulting data table ReVision applies perceptually-based de-
sign principles to populate an interactive gallery that enables
users to view alternative chart designs and retarget content to
different visual styles.

ACM Classification: HS5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

Keywords: Visualization, chart understanding, information
extraction, redesign, computer vision.

INTRODUCTION

Over the last 300 years, charts, graphs, and other visual de-
pictions of data have become a primary vehicle for communi-
cating quantitative information [27]. However, designers of
visualizations must navigate a number of decisions, includ-
ing choices of visual encoding and styling. These decisions
influence the look-and-feel of a graphic and can have a pro-
found effect on graphical perception [6]: the ability of view-
ers to decode information from a chart. Despite progress in
the development of design principles for effective visualiza-
tion [6, 11, 16, 19, 20, 23, 27], many charts produced today
exhibit poor design choices that hamper understanding of the
underlying data and lead to unaesthetic displays.

Consider the pie chart in Figure 1(a), which depicts data
concerning the 2005 research budget of the National Insti-
tutes of Health (NIH). The design of this chart could be im-
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Figure 1: Chart Redesign. (a) A pie chart of NIH expenses
per condition-related death. The chart suffers from random
sorting, highly saturated colors, and erratic label placement.
(b) Plotting the data as a sorted bar chart enables more ac-
curate comparisons of data values [6, 19].

proved in multiple ways: slices are ordered haphazardly, la-
bels are placed erratically, and label text competes with satu-
rated background colors. Moreover, the chart encodes values
as angular extents, which are known to result in less accurate
value comparisons than position encodings [6, 16, 23]. Fig-
ure 1(b) shows the same data in a redesigned visualization:
the bar chart sorts the data, uses a perceptually-motivated
color palette [25], and applies a position encoding of values.

For analysts working with their own data, visual design prin-
ciples [6, 11, 16, 27] and automated design methods [19, 20]
can lead to more effective visualizations. However, the vast
majority of visualizations are only available as bitmap im-
ages. Without access to the underlying data it is prohibitively
difficult to create alternative visual representations.

We present ReVision, a system that takes bitmap images of
charts as input and automatically generates redesigned visu-
alizations as output. For example, ReVision produces Figure
1(b) as a suggested redesign when given Figure 1(a) as input.
Our system identifies the type of chart, extracts the marks
and underlying data, and then uses this data in tandem with a
list of guidelines to provide alternate designs. ReVision also
supports stylistic redesign; users can change mark types, col-
ors or fonts to adhere to a specific visual aesthetic or brand.
We make the following research contributions:

Classification of Chart Images. ReVision determines the
type of chart using both low-level image features and ex-
tracted text-level features. We propose a novel set of features
that achieve an average classification accuracy of 96%. Our
image features are more accurate, simpler to compute, and
easier to interpret than those used in prior work. While we fo-
cus on the task of chart redesign, our classification method is
applicable to additional tasks such as indexing and retrieval.
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Figure 2: Our 10-category chart image corpus. Numbers in parentheses: (strictly 2D images + images with 3D effects).

Extraction of Chart Data. We present a set of chart-specific
techniques for extracting the graphical marks and the data
values they represent from a visualization. Our implemen-
tation focuses on bar and pie charts. We first locate the bars
and pie slices that encode the data. We then introduce heuris-
tics for associating these marks with related elements such
as axes and labels. Finally, we use this information about
the graphical marks to extract the table of data values under-
lying the visualization. Limiting the classification corpus to
bar and pie charts without 3D effects or non-solid shading,
we achieve an average accuracy of 64.5% in extracting the
marks, and an average accuracy of 66.5% in extracting the
data for charts whose marks were successfully extracted. We
note that the classification corpus contains a wide diversity of
charts with respect to image resolution and quality. We de-
tail the challenges of robustly extracting data from such chart
images.

We demonstrate how these contributions can be combined
with existing design guidelines to automatically generate a
variety of alternative visualizations. In the process of pur-
suing these goals, we also compiled a corpus of more than
2,500 chart images labeled by chart type. We are making
this corpus publicly available in the hope of spurring contin-
ued research on computational visualization interpretation.

RELATED WORK
Our ReVision system builds on three areas of related work.

Classifying Visualization Images

Classification of natural scenes is a well-studied problem in
computer vision [1, 3]. A common approach is to use a “bag
of visual words” representation [28] where words are low-
level image features (e.g., gradients, local region textures,
etc.). Each input image is encoded as a feature vector us-
ing these words. Machine learning methods then classify the
feature vectors and corresponding images into categories.

Researchers have developed specialized techniques for clas-
sifying chart images by type (e.g., bar chart, pie chart, etc.).
Shao and Futrelle [22] first extract high-level shape types
(e.g., line segments) from vectorized representations of charts
and then use these shape types as features for classifying six
kinds of charts. However, their approach relies on accurate
vectorization of charts, which frequently is not available.

Prasad et al. [21] classify bitmap images of charts drawn
from five common categories. They apply a series of pre-
processing and segmentation operations which require many
input-dependent parameters and complicate generalization of
their approach to more visualization categories. Addition-
ally, they use common features [9, 10] to summarize high
level properties of image regions and compare them using a
multi-resolution pyramidal histogram scheme. The connec-
tion between these features and the types of graphical marks

in the images is ambiguous. We are interested in image fea-
tures at the level of graphical marks, as we hypothesize that
they may predict the chart type more accurately.

Extracting Marks from Charts

A few researchers have investigated techniques for extracting
marks from charts. Zhou and Tan [29] combine boundary
tracing with the Hough transform to extract bars from bar
charts. Huang et al. [17, 18] generate edge maps, vectorize
the edge maps, and use rules to extract marks from bar, pie,
line, and low-high charts. However, they focus on extracting
the mark geometry rather than the underlying data. Their
techniques also rely on an accurate edge map, which can be
difficult to retrieve from many real-world charts, due to large
variance in image quality. We designed our techniques to be
more robust to such variance.

Automated Visualization Design

Researchers have applied graphical perception principles to
automatically produce effective visualizations. Mackinlay’s
APT [19] generates charts guided by rankings of visual vari-
ables for specific data types (e.g., categorical, ordinal, or
quantitative data). Stolte et al.’s Polaris [24] is a system
for generating small multiples [27] displays based on user
queries of a multidimensional data table. Mackinlay et al. [20]
later extend this work to support a broader range of auto-
mated visualization designs. These systems assist users in
producing visualizations directly from data; we seek to first
extract data from chart images and then redesign the visual-
izations to improve graphical perception. Our current work
is complementary to these earlier systems: once we have ex-
tracted the data table we could feed it into any of these sys-
tems to generate improved alternative designs.

SYSTEM OVERVIEW

ReVision is comprised of a three stage pipeline: 1) chart clas-
sification, 2) mark and data extraction and 3) redesign. In
stage 1, Revision classifies an input image according to its
chart type. This stage uses a corpus of test images to learn
distinctive image features and train classifiers. In stage 2,
ReVision locates graphical marks, associates them with text
labels, and extracts a data table. In stage 3, ReVision uses the
extracted data to generate a gallery of alternative designs.

STAGE 1: CLASSIFYING CHART IMAGES

While classification of natural images is a well-studied com-
puter vision problem, chart images are unlike natural images
in several important ways. First, marks within data graph-
ics are more discrete and frequently repeated than textured
regions in photographs. Second, there are many areas with
constant color so pixel neighborhoods with very low vari-
ances are common. Finally, text occurs more frequently and
prominently than in natural scenes. The following sections
describe how we account for these differences to achieve
classification accuracy superior to previous work [21].
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Figure 3: The ReVision classification pipeline, including
both image (left) and textual (right) features.

Learning Low-Level Image Features

We capture the patterns of recurring graphical marks by con-
structing image features directly from sample pixel patches
(small rectangular image regions). Such patches are predic-
tive of chart categories and are easier to compute and inter-
pret than more complex descriptors. As we will show, us-
ing image patches also achieves higher classification accu-
racy. We follow the approach of Coates et al. [7], who found
that random patch sampling and K-means clustering achieve
state-of-the-art performance for many types of images. We
determine parameter values by evaluating classification ac-
curacy in a series of cross-validation experiments.

Image Normalization. We normalize images to a constant
size of D x D pixels to ensure homogeneous sampling and
equivalence of each exemplar in the corpus. We preserve
the aspect ratio of the original image by padding with the
background color. We convert color images to grayscale, as
generally color is not indicative of visualization category. We
considered image sizes from D = 32 up to D = 512 and found
that D = 128 achieves the best classification performance.
We believe this is due to the reduction of noise and com-
pression artifacts in the down-sampled images (the average
image size in our collections is roughly 300 x 400 pixels).

Patch Extraction. We extract square patches from the im-
ages by uniform random sampling for 100 locations per im-

age. We tested patch sizes over the range from 2x2 up to
20x20 pixels and found that a patch size of 6 x6 pixels gave
the best classification performance. The optimal patch size
was consistently about 5% of the normalized image dimen-
sions. To filter out frequently occurring constant color re-
gions, we reject sample patches with variance less than 10%
of the maximum pixel value.

Patch Standardization. For classification, absolute pixel val-
ues are not as important as variation within a patch. Thus, we
normalize the contrast of each patch by subtracting the mean
and dividing by the standard deviation of the pixel values
in that patch. This normalization ensures that a single ap-
propriately weighted patch can represent patches with differ-
ent absolute intensities but similar variations. We perform a
standard “whitening” procedure on the entire patch set which
reduces the cross-correlation between patches and has been
shown to improve classification performance [7].

Patch Clustering. Given an extracted patch set, we perform
K-means clustering to obtain a set of “centroid” patches that
correspond to the most frequently occurring patch types. In
practice we set the number of centroids K to 200 as we found
that larger numbers of centroids did not achieve better per-
formance. The centroid patches constitute a feature set or
“codebook” which we can use to describe our image corpus.

These codebook patches capture frequently occurring graph-
ical marks such as lines, points, corners, arcs and gradients.
By extracting codebooks from each visualization category in-
dependently we see that the patch set reflects the occurrence
frequencies of marks characteristic of that category. As an
example, in Figure 4 we compare the centroids for 3 cate-
gories from the corpus of [21]. We invite the reader to guess
which categories are represented. !

Using Low-Level Image Features for Classification

To classify an input image, we first normalize it to a 128 x
128 grayscale image and extract 6 x 6 sized patches centered
on each pixel. We then perform the following steps:

Codebook Patch Response. For each extracted patch, we
determine the nearest codebook patch by Euclidean distance.
We thus obtain a D? centroid response map over the entire
image, where D is the normalized image dimension.

Feature Vector Formulation. We reduce the dimensionality
of the codebook patch response map by dividing the image
into quadrants and summing up the activations for each code-
book patch in a given quadrant. We thus obtain a 4K-length
feature vector for each input image.

Classification. We use the feature vectors to perform classifi-
cation using standard machine learning methods. We experi-
mented with many classification algorithms including logis-
tic regression, AdaBoosted decision trees [14] and Support
Vector Machines (SVMs) [8]. We find that SVMs using a
quadratic kernel function provide the best performance.

IBar Charts (left), Pie Charts (middle), Scatter Plots (right). Bar corners,
pie arcs and scatter points are prevalent within their respective categories.
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Figure 4: Codebook patches obtained from 3 different visualization categories. We invite the reader to guess which categories were
sampled. The answers are in the footnote at the end of the section “Learning Low-Level Image Features.”

Using Text-Level Features to Improve Classification
While image features offer powerful cues to determine the
category of a chart image, text-level features also contain
useful information. The position and size of text regions in
chart images may correlate with the type of visualization. In-
terestingly, prior work [17] argues for removing text regions
from chart images to reduce noise. We show that textual in-
formation can further improve classification accuracy.

We designed a tagging interface to annotate Prasad et al.’s
corpus [21] with the position, size, angular orientation and
content of text regions in each image. Our tool extracts the
text image region and performs OCR; the user can correct the
OCR output if desired. While manual text annotation is te-
dious, it is amenable to crowdsourcing; we designed the tag-
ging Ul with this scenario in mind. Furthermore, connected
components analysis or more sophisticated approaches [4]
could be used to extract text region bounding boxes automat-
ically. These methods could allow fully unsupervised textual
and image feature extraction from a visualization corpus.

To capture the distribution and density of text regions in an
input image, we construct a binary mask indicating which
pixels belong to text regions. We subdivide the mask into
N x N blocks, calculate the proportion of text region pix-
els in each block, and linearize these values into an N? el-
ement vector. The procedure is illustrated in Figure 3. We
set N = 8, as we have found that this value maximizes clas-
sification accuracy. However, at this resolution the exact po-
sitions, sizes and relative orientations of text regions are ab-
stracted. To retain this information we compute normalized
10-bin histograms of text region length, width, center posi-
tion, pairwise orientation, and pairwise distance between text
region centers. These histograms are concatenated with the
text density vector to create a final textual feature vector.

Classification Performance

We use two collections of chart images to evaluate our sys-
tem. The first corpus comes from previous work on visual-
ization image classification and was kindly provided by the
authors of [21]. The corpus consists of 667 images collected
from the Internet and categorized into 5 categories: bar charts
(125), curve plots (121), pie charts (134), scatter plots (162)
and 3D surface plots (125). We use this corpus to compare
our results against the prior state-of-the-art.

We also compiled a new corpus containing 2,601 chart im-
ages labeled with 10 categories using a semi-automated tool
for Google Image search. Example images from each cat-
egory are given in Figure 2. We use this larger corpus to
evaluate how our system scales to classifying images from

Prasad [21] Image  Text All  Binary
Bar 90% 8%  57% 89% 95%
Curve 76% 5%  50%  83% 92%
Pie 83% 93% 84%  95% 97%
Scatter 86% 91%  64% 91% 97%
Surface 84% 0% T71% 94% 97%
[ Average 84% 8% 66% 90% 96% |

Table 1: Classification accuracy on the corpus in [21]. We
compare prior results [21] to our method using image fea-
tures, text features, and both in multi-class SVMs. The last
column shows results for both features using binary SVMs.

Multi-Class  Binary
Area Graphs 88% 98%
Bar Graphs 78% 95%
Curve Plots 73% 91%
Maps 84% 97%
Pareto Charts 85% 97%
Pie Charts 79% 97%
Radar Plots 88% 93%
Scatter Plots 79% 93%
Tables 86% 97%
Venn Diagrams 75% 97%
[ Average 80% 9%6% |

Table 2: Classification accuracy on our 10-category corpus
(2,601 images) using only image features.

larger sets of visualization categories.

For a known benchmark, we use the corpus of visualization
images collected by Prasad et al. [21]. We first tested the per-
formance of the learned image features for classification by
training a multi-class SVM classifier using a quadratic ker-
nel through 5-fold cross-validation on the 5 category image
corpus. In each fold, we randomly pick 4/5 of the images
for training and the remainder for testing. Results are then
averaged over the 5 folds. Table 1 summarizes how our re-
sults compare to the ones reported by Prasad et al. (compare
the first two columns). Our weighted average classification
accuracy is 88%, exceeding the reported average accuracy of
84% of Prasad et al. by 4%. Incorporating text features fur-
ther increases our accuracy to 90%. We also use the same
procedure on our larger 10-category corpus where we obtain
an average classification accuracy of 80% (see Table 2).

As both graphical marks and structural elements may be used
across multiple chart categories (e.g., in hybrid chart types),
we relax the constraint of disjoint class categorization. Bi-
nary classifiers are more appropriate for a system like ReVi-
sion, where we can evaluate which positive categorizations
are valid in the data extraction part of the pipeline through er-
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Figure 5: Bar extraction procedure. We compute connected components (shown false-colored) and discard non-rectangular compo-
nents. We keep rectangles whose color differs from outer colors (see inset figure on this page) and that touch the inferred x-axis.

ror estimation and failure detection. To perform multi-label
categorization we construct a bank of binary 1-vs—all clas-
sifiers. We train a binary SVM for a single category by us-
ing in-category images as positive examples and all others as
negative examples. The results obtained using this method
are given in the rightmost columns of Tables 1 and 2: we
achieve an average accuracy of 96% on both corpora.

STAGE 2: MARK AND DATA EXTRACTION

After categorizing charts by type, ReVision proceeds to lo-
cate graphical marks and extract data. Our current imple-
mentation focuses on mark and data extraction algorithms
for bar and pie charts, two of the most popular chart types.

We have found that chart images from the web are often
heavily compressed and noisy. To reduce compression ar-
tifacts and noise we first apply the bilateral filter [26] to each
bar or pie chart image given by our chart classifier. The bilat-
eral filter smooths away small variations in color but retains
sharp edges in the image. Next we perform mark extraction
which locates geometric marks such as bars, pie slices, and
axes by fitting models of expected shapes. Then we perform
data extraction which infers the mapping between the data
space and the image space, associates labels with marks and
then extracts a data tuple for each mark.

Our algorithms are based on a few simplifying assumptions:

e Charts contain 2D marks and do not contain 3D effects.

e Each mark is solidly shaded using a single color. Marks
are not shaded using textures or steep gradients.

e Bar charts do not contain stacked bars.
e Bar chart axes appear at the left and bottom of the chart.

e Marks encode a data tuple, where at least one dimension is
quantitative and one dimension is categorical. For exam-
ple, in a bar chart the height of a bar represents a quantita-
tive value, while a category label may appear below.

Based on these assumptions we develop simple, robust data
extraction algorithms while still encompassing a significant
number of real-world charts. For example, 42% (52/125) of
the bar and 43% (53/125) of the pie charts in the Prasad cor-
pus [21] follow these assumptions.

Mark Extraction

In this stage, we locate the marks. For bar charts, we extract
the bars and axes. For pie charts, we extract the pie location
and slice borders. We discuss each in turn.

Bar Charts

Figure 5 shows the steps in our bar extraction algorithm. We
identify candidate bars by looking for rectangular connected
components and then use the location of the candidate bars
to extract the axes.

We first extract connected components from the filtered im-
age by grouping adjacent pixels of similar color —i.e., whose
L>-norm in normalized RGB space is less than 0.04 (Fig-
ure 5b). We then find rectangular connected components by
computing how much each component fills its bounding box.
If component pixels fill more than 95% of the bounding box,
we classify the component as a rectangle; otherwise, we dis-
card the component. We also discard very small and thin
rectangular component (i.e., width or height less than 2 pix-
els) as such small components are unlikely to represent bars
(Figure 5c).

The remaining set of rect-
angles are likely to include
all of the true data encod-
ing bars, but may also in-

clude background rectan- ] -
gles formed by gridlines. <l H
In Figure 5c the remaining : :
background rectangles are Bar  Background

shown in white, along with

the true bars. A key difference between the background rect-
angles and the true bars is that the true bars are surrounded
on all sides by background, while background rectangles are
likely to adjoin other background regions. We test for back-
ground rectangles by selecting one point outside each of the
four sides of each rectangular component and compare the
colors of these points to the average color of the pixels in-
side the rectangle, as shown in the inset figure. If any one of
the sampled points has the same color as the average interior
color, we classify the rectangle as part of the background and
discard it; otherwise, we assume it is a candidate bar.

Bar charts may be oriented horizontally or vertically. Since
bars encode data using length they vary in one dimension and
remain fixed in the other dimension (e.g., vertical bars vary
in height but maintain a fixed width). To identify which di-
mension varies most we build histograms of the widths and
heights of the candidate bars and find the mode of each his-
togram (Figure 6a). The histogram with the strongest mode
represents the constant dimension and gives us the orienta-
tion of the chart: vertical if the width is constant, horizontal
if the height is constant. For brevity, in the remainder of this
section we will describe our algorithms assuming a vertical
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chart. (b) Inferring the x-axis. At left, the y-difference image and projections along the rows. At right, a histogram of the y-values of
the bars. The mode of the y-value histogram matches a peak in the row projection imaged, which is the location of the x-axis.

bar chart, but our system works with horizontal bar charts
using analogous algorithms.

Finally, we extract the axes of the bar chart. We assume a
non-stacked bar chart, so every bar must touch the x-axis.
Therefore we build a histogram of the extreme y-values of
the candidate bars. The mode of this histogram corresponds
to the most common extreme y-value and represents the hor-
izontal line that most bars touch. We treat this mode as the x-
axis (Figure 6b). To ensure we have the correct axis, we com-
pute row projections of a column-difference image and check
for a peak near our tentative x-axis (Figure 6b). We discard
any candidate bar that does not touch the x-axis, which leaves
us with final candidate set of data encoding bars (Figure 5d).

We do not extract the y-axis for bar charts. As we will show
in the data extraction section, we can extract the data value
for the bars without knowing the location of the y-axis.

Pie Charts

Mark extraction in pie charts involves two phases. We first fit
an ellipse to the pie. We then unroll the pie and locate strong
differences in color to locate the pie sector edges.

Although most pie charts are circular, some are elliptical. For
greatest generality, we model the pie as an ellipse. We start
by computing the gradient of the chart and threshold to find
pixels near sharp changes in color. We set the threshold such
that at least 1/30 of the image pixels are kept as gradient
pixels. We use the text region tags from the classification
component to remove gradient pixels that result from text.

We then adapt the RANSAC [12] algorithm to fit an ellipse to
the gradient pixels. We use RANSAC because of its robust-
ness to outliers. In brief, our algorithm works as follows: we
first randomly selects 4 gradient pixels and compute an el-
lipse that passes through them using Fitzgibbon et al.’s direct
least-squares ellipse fitting method [13]. We then find the
set of gradient pixels that are at most 10 pixels away from
the ellipse and call them inliers. Next we check how well
the ellipse explains the inliers by computing an ellipse score.
The score is a weighted sum of three components: the cir-
cularity of the ellipse (ratio of the minor to major axis), how
tightly it fits the inliers (average distance of an inlier to the el-
lipse), and coverage (how much of the ellipse is near inliers).
Higher scores indicate better ellipses. Examples of low scor-
ing ellipes are shown in Figure 7. We keep the ellipse if its
score is higher than the previous highest score. We iterate
this process 20,000 times, which we experimentally found to

@ (b) (© (d)

Figure 7: A high scoring ellipse and three low scoring el-
lipses. (a) An high scoring ellipse maximizes, circularity,
goodness of fit and coverage. (b) An ellipse with low circu-
larity score, (c) low fit score, and (d) low coverage score.
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(a) Chart (b) Unrolled ellipse and

(c) Unrolled pie using ellipses as
difference image i i

ifferent radii

Figure 8: Unrolling the pie. Consider the inner ellipse
marked in (a). We unroll the ellipse by sampling points
at constant angular intervals (b). Peaks in the horizontal
derivative occur at sector edges. To improve our edge esti-
mation, we unroll multiple ellipses and sum their horizontal
derivatives (c). Peaks in the summed horizontal derivatives
occur at sector edges.

work well for our corpora.

To extract the pie sector edges we first “unroll the pie”; we
sample an ellipse located inside the pie at constant angu-
lar intervals creating a one-dimensional ellipse image (Fig-
ure 8a). We then take the horizontal derivative of this ellipse
image to identify strong changes in color. Color changes in-
dicate transitions between pie sectors and therefore the peaks
in the derivative gives us estimates for the sector edge loca-
tions (Figure 8b). To increase robustness of our estiamtes,
we unroll multiple concentric ellipses and sum their horizon-
tal derivatives (Figure 8c). We identify peaks in the summed
derivatives by looking for zero crossings of its first derivative.
Finally we retain all peaks that are more than one standard
deviation above the mean of the summed derivatives.

Data Extraction

In the data extraction step, our goal is to recover the data
encoded by each mark. In general, a mark encodes a tuple
of data, as stated in our assumptions. We recover these en-
codings by using the geometry of the extracted marks and
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Figure 9: Mark and data extraction failures. If marks are very small, our algorithms fail to extract them (a, b). Data extraction failures
occur when marks are mislabeled, e.g., when labels are rotated or if the chart places labels far from their associated marks (c, d).

the text region tags from the classification component. After
data extraction, we output a data table that contains an id and
data tuple for each mark.

Bar Charts

To recover the data from a bar
chart, we infer first the map-
ping between image space and
data space. While we assume
a linear mapping, we believe
our data extraction techniques
are amenable to other map-
pings (e.g. logarithmic) . The
linear mapping is fully defined
by a scaling factor between
image space and data space,
and the minimum value (usually the data value at the x-axis)
. We first recover the scaling factor by considering the y-axis
labels. We identify the y-axis labels that encode data values
by finding text regions that are equidistant from the leftmost
bar and line up vertically. We then estimate the scaling factor
using each pair of value labels, as illustrated by the inset fig-
ure. The distance between labels “5” and “10” is d = 60, and
the estimated scaling factor is 60/(10 —5) = 12. We take the
median of the estimated scaling factors computed for each
pair of labels to be the chart’s scaling factor. For this chart, it
was 12.5.
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We then find the minimum value. We begin with the y-axis
label vertically closest to the x-axis. If this label is 0, we set
the minimum value to 0. Otherwise, we compute the mini-
mum value using a similar procedure to computing the scal-
ing factors. For each label, we estimate a minimum value by
using the y-distance from the label’s center to the x-axis and
the chart scaling factor. For example, consider the inset fig-
ure above. Here, we assume a chart scaling factor of 12 and
use the location of the “10” label to estimate the minimum
value. We find X = 119/12 — 10 = —0.08. The actual mini-
mum is 0, so we are not exact, but close. We set the chart’s
minimum value to the median of these minimum value esti-
mates. For this chart, the median minimum value was -0.2.

Finally, we assign a category to each bar by associating it
with the nearest label below the x-axis.

Pie Charts

Sectors in a pie chart frequently encode two pieces of data:
they represent percentages of a whole and a level of a cat-
egorical variable. We compute the percentages they encode

directly from the recovered borders of the sectors. We then
assign a label to each sector by using the nearest text label to
the ellipse arc that spans the sector, which we approximate
using short line segments.

Extraction Results

We used the subset of the corpus of Prasad et al. [21] that met
our assumptions, resulting in 52 bar charts and 53 pie charts.
We assume a priori knowledge of the chart type, noting that
our classification component provides this information.

We report mark extraction and data extraction accuracy re-
sults separately, as accurate data extraction depends on ac-
curate mark extraction. We were able to successfully extract
marks for 35/52 (67%) of bar charts and 33/53 (62%) of pie
charts. Most of the failures were caused by very small marks
(Figure 9a, b). We discard or smooth small elements in both
bar and pie charts to combat image artifacts, but this some-
times results in legitimate marks being missed. In addition,
the small size of many of the charts exacerbate the problem;
the average dimension of the charts we used was 411 pixels.

Using the charts from which we were able to extract all
marks, we were able to successfully extract the data tuples
for 24/35 (69%) of bar charts and 21/33 (64%) of pie charts.
We used a simple closest-label heuristic to associate marks
with text labels. This heuristic may fail when labels are ro-
tated (Figure 9c), or when marks are small and are labeled
with callouts (Figure 9d).

Some charts contained data value labels for each mark (e.g.,
the exact percentage a pie sector represented), which gives
us ground truth values from which we can estimate extrac-
tion error. Of our successful extractions, 11 bar charts and
17 pie charts had data value labels. For bar charts, our ex-
tracted values were on average within 6.8% of the original
data. For pie charts, our extracted values were on average
within 4.6% of the original data, and within 0.33 absolute
percentage points. These are reasonable error rates given the
small sizes of many of the charts.

STAGE 3: REDESIGN

The output of the data extraction process is a relational data
table. ReVision uses this data to populate a gallery of al-
ternative visualizations (Figure 10). The gallery displays a
variety of visualizations sorted by effectiveness [19]; we use
rankings of visual encodings from prior work [19] informed
by graphical perception experiments (c.f., [6, 16, 23]).

ReVision chooses different visualizations depending on the
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Figure 10: ReVision Design Galleries. Given an extracted data table, the gallery presents a variety of chart types, sorted by proposed
perceptual effectiveness rankings [19]. Users can also select and compare color schemes and typefaces.

input chart type and extracted data. For the input pie chart
in Figure 10(a), the gallery presents bar charts to support
part-to-part comparisons and divided bar, donut, and treemap
charts to support part-to-whole judgments [23]. For the input
bar chart in Figure 10(b), ReVision generates a bar chart and
labeled dot plot to support comparison of individual values
and small dot and box plots to enable assessment of the over-
all distribution. Note that the y-axis of the input chart does
not start at zero; ReVision’s bar chart correctly incorporates
a zero baseline, while more appropriate charts (dot and box
plots) are used to focus in on the data range.

In addition, users can select and compare choices of font and
color palette. ReVision includes palettes designed for well-
spaced, perceptually discriminable colors [15, 25], as well
as palettes from popular charting tools and news magazines.
We generate charts using Protovis [2]; viewers can export
the Protovis definitions for subsequent modification or reuse.
Alternatively, users can export the data to create their own
charts using tools such as Microsoft Excel or Tableau [20].

LIMITATIONS AND FUTURE WORK

In its current state, ReVision is suitable for generating alter-
native visualizations for many published bar and pie charts.
However, more work is needed to overcome limitations of
our classification and extraction methods.

With respect to classification, we currently employ a manual

approach to annotating text regions. To achieve fully auto-
matic processing of textual features, we would need to em-
ploy text identification and extraction algorithms. We do not
yet use the text itself for classification; it is possible that such
information might further improve classification accuracy.

Another direction for future research is to explore category
inference for unlabeled image sets. Different categories of
chart images give rise to qualitatively different codebook
patches. We might leverage this to design a system to infer
chart categories in an unsupervised fashion. These categories
might be matched to known categories or labeled by hand.

ReVision might better leverage image features detected dur-
ing classification to inform data extraction. Using the feature
distributions over the image to predict the positions of graph-
ical marks might assist more robust data extraction methods.

Our mark extraction algorithms are ripe for additional re-
search. Our extraction techniques do not yet handle textured
marks or 3D effects (e.g., due to gradient shading or perspec-
tive) both of which are common in our corpora. As 3D effects
and textural patterns have been shown to hamper graphical
perception [5, 11], these charts are ripe for redesign. Un-
fortunately, recognizing general 3D effects and textures is
beyond the scope of our current techniques.

Our extraction algorithms do not yet parse legends. This
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Figure 12: Example ReVision redesigns for input bar charts.

oversight causes failures on charts where the legend provides
necessary labeling information, as in in grouped bar or pie
charts with categorical color encodings documented in a leg-
end. Finally, we plan to extend our extraction algorithms to
additional chart types, such as bubble, line, and donut charts.
Parts of our existing algorithms, such as scale estimation and
shape fitting, can be readily adapted to these chart types.

CONCLUSION

Although visualizations are becoming more numerous, many
could be productively redesigned. We have presented Re-
Vision, a system that classifies charts, extracts the marks
and data from the charts, and uses perceptually-based de-
sign principles to create automated redesigns. ReVision then
presents users with an interactive gallery that allows them
to retarget content to different visual styles. Automated re-
design is only one of many possible applications for a system
that extracts data from charts. Our techniques could be used

to enhance information retrieval systems with chart meta-
data, or support screen-reading of charts for blind users.

In addition to supporting redesign, we believe our approach
may eventually contribute insights for developing models of
graphical perception. Simple charts — such as the flat, solidly
shaded bar charts we consider — are relatively easy to ex-
tract. Difficulties arise as additional complexity is intro-
duced, whether due to compression artifacts or design ele-
ments. Future research might explore in what ways obstruc-
tions to automated visualization interpretation correlate with
human decoding of the same images. If fruitful, such efforts
may lead to improved methods for automated visualization
design [19, 20] from source data.
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