
Computational Visualization Interpretation 
Jeffrey Heer, Fei-Fei Li 

Stanford Computer Science Seed Grant Proposal – Spring 2010 
 
Visual depictions of data such as charts, graphs, and statistical maps are a ubiquitous means of representing 
structured information. For at least the last 300 years, these visualizations have been a primary vehicle for 
communicating scientific and statistical results. While well-designed data graphics leverage human visual 
processing to more effectively convey data [27], in many cases they are the only publicly available representation 
of the underlying data, hindering reuse and analysis. This is unfortunate, as hundreds of publications (both printed 
and online) present data graphically, not to mention centuries of books and articles. 

In this project, we propose to develop computational models of graphical perception to extract data from two-
dimensional information graphics. We seek to combine computer vision techniques with models of chart decoding 
developed by psychologists, statisticians, and computer scientists. Our goal is to enable the automatic extraction of 
data from visualization images. We will build a corpus of examples for training and testing models, investigate 
textual and image features for chart recognition, and develop routines for data extraction from recognized 
visualization types. As perfect recognition is unlikely, we will also investigate visualization and interaction 
techniques for understanding and correcting our computational models, enabling interactive data extraction and 
incorporating active learning techniques to allow human input in the training loop. 

Our research could enable a variety of compelling applications. Imagine a climate scientist reviewing prior work on 
atmospheric carbon dioxide levels—with our techniques, she could extract data from a relevant chart embedded in 
a PDF file and compare that to her own results. Alternatively, a social entrepreneur reading The Economist might 
view growth predictions for developing regions, take a picture of a line chart with his mobile phone, annotate a 
region of interest, and e-mail extracted data to himself for further use. We might also apply our techniques at 
scale, extracting data from publication archives or scanned books, either automatically or with human supervision 
via crowdsourcing. Other applications include retargeting—extracting data and then re-visualizing it using a more 
effective representation—and visualization evaluation—our models may also indicate which visualizations will be 
easier for human viewers to decode, aiding design optimization. 

In short, we seek to develop general techniques for computational extraction of data from information graphics 
and apply these techniques to benefit domains such as scientific research, public policy, education, and design. In 
the spirit of the call for proposals, we believe that socially-relevant domains such as health, energy, education, and 
the environment could all benefit from improved access to data contained in published data graphics. In addition, 
the project will spur collaboration among the department’s Vision, Visualization, and HCI groups. 

Motivation and Prior Work 
Our research will draw on prior work in both perceptual psychology—particularly the study of graphical 
perception, or how people decode information in graphs—and computer vision techniques. 

Psychological Models of Graphical Perception 
A great deal of prior research has investigated how visual variables such as position, length, area, shape, and color 
impact the effectiveness of data visualizations. Inspired by Bertin’s [1] systematic identification of visual variables, 
researchers in cartography [10,16,21], statistics [4,5,25], and computer science [17] have derived perceptually-
motivated rankings of the effectiveness of the visual variables for encoding nominal, ordinal and quantitative data. 
These rankings were initially based on psychophysical models of human perception such as the Weber-Fechner law 
[19, 27] and Steven’s Power Law [19, 24]. For example, the latter predicts that position encodings are more 
accurate than 2D area encodings and that area encodings are more accurate than 3D volumetric encodings. 
Additional data comes from human subjects experiments comparing the effectiveness of visual encoding 
techniques (e.g., [3, 14, 22, 23, 25]). These experiments typically measure how each visual encoding variable 
affects the accuracy and/or response time of value comparisons of the underlying data. For example, Cleveland 
and McGill [5] showed subjects several types of charts including divided bar charts, stacked bar charts and pie 
charts and asked them to compare the values encoded by two of the marks. They measured response accuracy 



and found that position encoding along an aligned scale resulted in higher accuracy than length judgments, while 
angle judgments, as found in a pie chart, were more error-prone than position judgments. 

Other researchers have formulated cognitive models of graph perception at varying levels of detail. Kosslyn’s [13] 
model of chart perception identifies three levels of analysis: syntax, semantics, and pragmatics. Syntactic analysis 
requires identifying the distinct visual marks and categorizing them as labels, framing elements such as axes, or 
representations of the data. Semantic analysis involves associating the syntactic properties with the data they 
represent and turning perceptual inferences into statements about the data. Pragmatic analysis focuses on 
connotations beyond the semantic interpretation. Pinker’s [20] model describes a process of decoding visual 
information into a propositional language that is matched against a graph schema representing one’s familiarity 
with the chart type. Unfamiliar graphics require inferring this graph schema and are therefore harder to decode. 
Other models further divide chart decoding into simple perceptual operations and use these models to predict 
performance. Lohse [15] formulated a timing model for chart perception using cognitive operations such as move 
eyes, identify shape, retrieve memory, etc. Simkin and Hastie [22] posit that low-level graph perception can be 
described in terms of mental image operations such as anchoring, scanning, projection, and super-imposition. 
Gillan and Lewis [9] propose a Mixed Arithmetic-Perception (MA-P) model that combines perceptual inferences 
with mental arithmetic. The model predicts that the most effective visualizations minimize the need for mental 
math. However, these models are largely abstract; while some provide computational performance models, none 
specify concrete mechanisms for identifying syntactic visual features from input images. 

Computational Perception of Data Graphics 
A handful of computer graphics and computer vision researchers have attempted to automatically identify chart 
types and extract encoded data. For example, Zhou et al. [28] apply the Hough transform on an image edge map to 
model and extract data in bar charts. Huang et al. [11] apply off-the-shelf OCR software to identify text and image 
regions. They then strip all text from image regions, vectorize the image edge map, and apply a hand-constructed 
chart-specific procedure (i.e., for bar, line, and pie chart) to read off data values. More recent work has focused 
solely on the problem of accurately classifying a chart type [12, 26], similar in spirit to Pinker’s concept of 
identifying a graph schema. For example, Vitaladevuni et al. [26] construct low-level image features such as SIFT 
and HOG (Histogram of Oriented Gradients) descriptors which they then classify using multi-class Support Vector 
Machines. They achieve ∼80% accuracy across five classes: bar, line, pie, scatter, and surface plots. Mis-
classifications commonly occur when multiple encoding types are used, such as a regression line in a scatter plot or 
a Pareto curve plotted over a bar chart. As described in the next section, we believe we can achieve better results 
by creating models of graphical perception informed by psychological theories of chart decoding. 

Research Plan 
In this section, we present our preliminary research plan. While we intend to follow the specified path, we will of 
course evaluate progress and re-assess our strategy as the research progresses. We plan to start with simple data 
graphics first (e.g., bar charts, scatter plots, and line charts without overplotting), increasing both the 
sophistication of the charts (e.g., adding error bars, multiple encoding variables, etc) and the diversity of chart 
types (e.g., processing map displays) as the research progresses. Though comprehensive treatment of each of the 
steps below may be beyond the scope of this seed grant, we hope to jumpstart continuing research on this topic. 

Corpus Generation. Our initial task will be to create a corpus of chart images and corresponding data for the 
purpose of training and testing perceptual models. We will create a diverse corpus of 2D data graphics, including 
standard charts and graphs, maps, and network diagrams. First, we will generate our own collection of chart types 
using the Stanford Protovis toolkit [2]. This step is important because it will provide a corpus for which we have 
perfect knowledge of both the data and geometry of the chart. We will also introduce distortions to the generated 
images (e.g., shearing, blurring, noise, contrast and brightness adjustment) to create more difficult test cases. 
Second, we will construct a corpus of real-world examples from the web, books, and publication archives. We will 
use crowdsourcing methods such as Amazon’s Mechanical Turk to collect various examples. We plan to collect at 
least hundreds of images for each visualization type. Furthermore, all relevant examples will be stored and 
categorized in the Stanford ImageNet database [7], making the results accessible to other interested researchers. 

Visualization Type Recognition. Existing approaches to chart type recognition use seemingly sensible categories 
such as bar chart, line chart, etc. However, we contend that this classification is too coarse-grained and at odds 



with psychological research. A more deep-seated distinction is the recognition of framing elements: the use of 
metric spaces such as Cartesian and radial coordinates (c.f., Kosslyn [13] and Pinker [20]), or of container spaces 
that use Gestalt grouping features such as enclosure or connectivity to encode relationships among data. Once the 
suitable frame has been recognized, it provides a prior for how decoding should proceed. Our research will include 
an investigation of the image features indicative of these visualization types, with a focus towards those deemed 
semantically meaningful in prior cognitive models. We will especially draw upon our knowledge in scene and 
texture classification algorithms [8] for classifying encoding types. Oddly, existing techniques (e.g., [11,26]) 
explicitly ignore textual cues in the data. In addition, we intend to use existing OCR techniques to identify text in 
the display; we hypothesize that both label positions (e.g., regularly spaced along a Cartesian grid) and content 
(e.g., numbers vs. letters or dates) provide salient features for identifying both visual encoding and data types. 

Data and Reference Element Recognition. Once the visualization type has been established (either automatically 
or via user input), type-specific strategies can be applied. A next step is to separate reference elements such as 
gridlines and labels from data representative marks. We will explore a combination of edge detection, image 
segmentation techniques, and shape matching approaches for this purpose. We will attempt to classify common 
shape types such as bars, wedges, and poly-lines which represent data in the display. In the case of maps, we plan 
to apply shape matching techniques to learn common outlines for geographic maps, such as state and country 
boundaries. We also will develop models to identify legends, e.g., to identify color or shape encodings. 

Data Extraction. Once framing elements and data representative marks have been separated, we can attempt to 
interpret the data display. For example, in a Cartesian coordinate system, point positions, bar extents, and poly-
line vertices can be interpreted in terms of normalized [0,1] image coordinates. These extracted coordinates can 
then be mapped through a scale (either user-provided or automatically extrapolated from label text via OCR) to 
determine data values. We also plan to model extraction error; as a single pixel may cover multiple values in the 
data space, our extraction process should include this uncertainty. Similar strategies may be applied for other 
visual variables such as angle, area, color hue, and luminance. Our model will incorporate contextual and prior 
knowledge based on the visualization type we have identified. For example, the locations of relevant data points 
differ depending on whether we are analyzing a bar chart or a line chart. By incorporating such contextual 
information, we hope to improve significantly the recognition and extraction accuracy. 

Interaction and Error Handling. We may find it difficult to achieve high accuracy in all cases. Accordingly, we will 
also investigate interaction techniques for aiding ambiguous classifications or faulty recognition. We will construct 
visualizations that depict the model’s current assessment of recognized text and graphical marks. Users will be able 
to manually indicate the visualization type, encoding variables of interest, and also select erroneously recognized 
elements and provide corrective feedback, such as selecting an alternate interpretation from an N-best list. Based 
on this user input, we hope to use active learning methods to improve our models’ recognition ability on difficult 
cases [6]. We expect our interface will also provide a useful debugging tool as we refine our models. If successful, 
we hope to also explore the effectiveness of using the interface to crowdsource human corrective feedback. The 
goal would be to achieve greater scalability of batch data extraction, as when processing publication archives.  

Applications 

Interactive Data Extraction and Visualization Retargeting. A first application of our techniques is an interactive 
tool for data extraction and visualization retargeting. A user may find a chart in an image file or PDF, or take a 
picture using their mobile phone. We will apply our model to extract data from the chart. Once the data has been 
extracted, we can further use the data to generate a space of alternative visualizations by applying automated 
visualization design algorithms [17, 18]. 

Extracting Data from Archival Publications. A long-term goal of this research is to “bring to life” data graphics 
contained in thousands of old books and articles. We hope to assess the feasibility of providing automated or semi-
automated tools for extracting data sets from previous published charts. A useful starting point will be existing 
accessible publication archives such as the ACM Digital Library. 

Visualization Evaluation Tools. In addition to extracting data from charts, we will explore the use of our 
techniques for evaluating visualization designs. For example, a line chart with insufficient contrast between 
gridlines and plotted data may result in inaccurate extraction. Similarly, overplotting will make it difficult to extract 



values. Human viewers may experience similar difficulties, and so we plan to assess to what degree our models can 
be applied to rank-order multiple design alternatives. Note that this may result in a compelling use case even for 
models exhibiting insufficient accuracy for unsupervised extraction. 

Budget and Work Plan  
We seek seed funding for a 1-2 year period beginning Fall 2010. We ask for a budget of $100k to support two 
graduate students (either PhD or MS): one specializing primarily in computer vision and another in visualization 
and HCI. We will hold weekly research meetings in which we will share and evaluate research progress as well as 
read and discuss relevant related work. In addition to resulting publications, our primary deliverable will be an 
interactive proof-of-concept system for extracting data for multiple visualization types. 
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